JPH0491638A - Energy system - Google Patents
Energy systemInfo
- Publication number
- JPH0491638A JPH0491638A JP2208871A JP20887190A JPH0491638A JP H0491638 A JPH0491638 A JP H0491638A JP 2208871 A JP2208871 A JP 2208871A JP 20887190 A JP20887190 A JP 20887190A JP H0491638 A JPH0491638 A JP H0491638A
- Authority
- JP
- Japan
- Prior art keywords
- energy
- power
- hydrogen
- generated
- district
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000001257 hydrogen Substances 0.000 claims abstract description 51
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 51
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000000446 fuel Substances 0.000 claims abstract description 26
- 238000005265 energy consumption Methods 0.000 claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 13
- 239000000956 alloy Substances 0.000 claims abstract description 13
- 230000005611 electricity Effects 0.000 claims description 15
- 238000005868 electrolysis reaction Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 abstract description 16
- 150000002431 hydrogen Chemical class 0.000 abstract description 8
- 239000002699 waste material Substances 0.000 abstract 1
- 238000010248 power generation Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000003916 acid precipitation Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002593 Fe-Ti Inorganic materials 0.000 description 1
- 229910002335 LaNi5 Inorganic materials 0.000 description 1
- 229910017961 MgNi Inorganic materials 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は、風力、水力、地熱、潮汐、温度差、太陽熱、
太陽光などの自然エネルギーに基づいて発電した電力を
、エネルギー消費地に輸送するエネルギーシステムに関
する。[Detailed description of the invention] (a) Industrial application field The present invention applies to wind power, water power, geothermal heat, tides, temperature differences, solar heat,
It relates to an energy system that transports electricity generated from natural energy such as sunlight to energy consumption areas.
(ロ)従来の技術
化石エネルギーの枯渇と共に、温暖化、酸性雨の発生な
どの地球環境の危機が叫ばれ始めて久しい。そのような
観点から風力、水力、地熱、潮汐、温度差、太陽熱、太
陽光などの無公害の自然エネルギーに着目したエネルギ
ーシステムの開発が試みられているが、そのトータル的
な進展状況は遅々としたものと云わざるを得ない状態に
ある。(b) Conventional technology It has been a long time since people began to talk about the global environmental crisis, such as global warming and the occurrence of acid rain, along with the depletion of fossil energy. From this perspective, attempts have been made to develop energy systems that focus on non-polluting natural energies such as wind, water, geothermal, tides, temperature differences, solar heat, and sunlight, but overall progress has been slow. I am in a state where I have no choice but to say that.
そのような状況下においても、太陽光を直接電気エネル
ギーに変換する太陽電池に関する技術開発は比較的進ん
でおり、その変換効率だけを見ても一時期の2倍以上を
記録している。そして例え「エコノミストJ ’89.
8.15.22合併号、成るいは「太陽エネルギーJo
urnal of JSESJ ’89 Vol、15
\o、5などに述べられているように、太陽電池を赤道
近辺の砂漠地域に配置し、その太陽電池で発電した電力
を超電導ケーブルを用いてエネルギー消費地へ送電しよ
うとした雄大な提案が為されている。Even under such circumstances, the technological development of solar cells that directly convert sunlight into electrical energy is relatively advanced, and the conversion efficiency alone is more than double what it was at one time. For example, ``Economist J '89.
8.15.22 Merger issue, or “Solar Energy Jo”
urnal of JSESJ '89 Vol, 15
As mentioned in \o, 5, etc., there was a grand proposal to place solar cells in desert areas near the equator and to transmit the electricity generated by the solar cells to energy consuming areas using superconducting cables. is being done.
一方、太陽電池で発電した電力を用いて水を電気分解し
て水素と酸素とを発生させ、その水素をエネルギー源と
しようとした提案も例えば、特開昭54−127890
号、特開昭55−116601号公報などに示されてい
る。On the other hand, there is also a proposal to use electric power generated by solar cells to electrolyze water to generate hydrogen and oxygen, and use the hydrogen as an energy source, for example, in JP-A-54-127890.
No. 55-116601, etc.
(ハ)発明が解決しようとした課題
ところが前者の提案は発電と消費とがリアルタイムのも
のであり、また提案の後者はエネルギー蓄積を前提とし
たものであって、システム立ったトータル的な考え方は
一切為されていない。(c) Problems that the invention sought to solve However, the former proposal involves real-time power generation and consumption, and the latter proposal is based on the premise of energy storage, so the overall system-based concept is Nothing has been done.
(ニ)課題を解決するための手段
本発明はこのような課題に鑑みて為されたちのであって
、自然エネルギーに基づいて発電した電力をリアルタイ
ムでエネルギー消費地に高電圧DCatすると共に、発
′を電力が消費電力を越えて余剰電力が生じた場合は、
その余剰電力にて水を低電圧電気分解して水素を発生さ
せ、その発生水素を一旦水素吸蔵合金に貯蔵し、その貯
蔵された水素をエネルギー消費地に輸送して消費地にお
し)てその輸送されてきた水素を燃料として燃料電池を
作動させ、その燃料電池作動によって生じた電力と熱と
を消費地で利用しようとしたものである。(d) Means for Solving the Problems The present invention has been made in view of the above problems, and is capable of transmitting high-voltage DCat power generated based on natural energy to energy consuming areas in real time, and If the power exceeds the power consumption and there is surplus power,
Using the surplus electricity, water is electrolyzed at low voltage to generate hydrogen, the generated hydrogen is temporarily stored in a hydrogen storage alloy, and the stored hydrogen is transported to an energy consumption area. The idea was to use the transported hydrogen as fuel to operate a fuel cell, and to use the electricity and heat generated by the fuel cell operation at the consumption site.
(ホ)作用
本発明によれば、自然エネルギーに基づし1で発電され
た電力が無駄なく活用され、エネルギー問題を抜本的に
解決することができる。(E) Function According to the present invention, the electric power generated in step 1 based on natural energy is utilized without wastage, and energy problems can be fundamentally solved.
(へ)実施例
第1図は本発明エネルギーシステムの概念図であって、
この図の上側は電力の発電と消費とが同時に行われるリ
アルタイム系(R)を示し、下側は発電された電力を一
旦貯蔵した後、必要時に利用する貯蔵系(S)を示して
いる。枕てこの第1図において、1は自然エネルギーの
収集手段として最も一般的な太陽電池であって、赤道近
辺の砂漠地域などに数i〜数1100k平方のオーダの
大面積に渡って配置されている。(f) Embodiment FIG. 1 is a conceptual diagram of the energy system of the present invention,
The upper part of this figure shows a real-time system (R) in which power generation and consumption are performed simultaneously, and the lower part shows a storage system (S) in which the generated power is temporarily stored and then used when necessary. In Fig. 1 of the pillow lever, 1 is a solar cell, which is the most common means of collecting natural energy, and is placed over a large area on the order of several i to several 1100 square meters in desert areas near the equator. There is.
2はこの太陽電池lにて発電された直流電力の電圧を数
100KV程度の直流高圧に昇圧する昇圧器、3はこれ
とは逆に数V〜数10Vの低圧に降圧する降圧器、4は
上記太陽電池1と昇圧器2並びに降圧器3との間に設け
られた電力分配器で、昇圧器2側への電力を優先し、そ
の昇圧器2側への電力が余剰となった場合に限って降圧
器3側へ電力を供給する機能を持っている。2 is a step-up device that boosts the voltage of the DC power generated by this solar cell 1 to a high DC voltage of about several 100 KV, 3 is a step-down device that steps down the voltage to a low voltage of several V to several tens of V, and 4 is a step-down device that steps down the voltage to a low voltage of several volts to several tens of volts. A power divider installed between the solar cell 1 and the booster 2 and bucker 3, giving priority to power to the booster 2 side, and when the power to the booster 2 side becomes surplus. It has the function of exclusively supplying power to the step-down converter 3 side.
次に先ずリアルタイム系(R)について説明する。本発
明においては電力輸送手段として直流送電方式が採用さ
れている。その理由は直流送電の場合、大地帰路方式が
採用できるために送電線設置経費が少なくて済むこと、
送電線路損失が交流の場合に比べて少ないこと、絶縁材
料の耐圧は交流に比べて直流に対して強いこと、などの
理由を挙げることができる。Next, the real-time system (R) will be explained first. In the present invention, a DC power transmission system is adopted as the power transportation means. The reason for this is that in the case of DC power transmission, the ground return method can be used, which reduces the cost of installing transmission lines.
Reasons for this include that the power transmission line loss is lower than in the case of alternating current, and that the withstand voltage of the insulating material is stronger against direct current than against alternating current.
5は昇圧器2にて昇圧された高圧直流をエネルギー消費
地6へ送電する高圧送電線である。この送電線5として
は、例えば送it圧500 K V、送電電流2KAの
場合、断面積2500mm”で導体抵抗0.00732
Ω、/km(20℃)の銅線が用いられる。この導線を
用いた場合、送電距離が例えば2251Onとしたと送
電効率は98.7%、となり、また送電距離が700k
fflとしたと送電効率は95.9%となる。勿論エネ
ルギー消費地6においては実際には送られてくる高圧直
流を直流−交流変換して利用勝手のよい交流電圧を得て
いるが、本発明の要旨とは直接関係がないので詳細は省
略されている。Reference numeral 5 denotes a high-voltage power transmission line that transmits the high-voltage DC boosted by the booster 2 to the energy consumption area 6 . For example, when the transmission voltage is 500 KV and the transmission current is 2 KA, the power transmission line 5 has a cross-sectional area of 2500 mm and a conductor resistance of 0.00732.
A copper wire of Ω,/km (20° C.) is used. When using this conductor, if the power transmission distance is, for example, 2251 On, the power transmission efficiency is 98.7%, and the power transmission distance is 700 km.
ffl, the power transmission efficiency is 95.9%. Of course, in the energy consumption area 6, the high-voltage DC that is sent is actually converted from DC to AC to obtain an AC voltage that is easy to use, but the details are omitted because it is not directly related to the gist of the present invention. ing.
次に貯蔵系(S)の説明を行う。7は上記降圧器3にて
降圧された低圧直流によって水を電気分解する水分解装
置で、水分解のための単セルには1.5V程度の低電圧
を供給する必要があり、通常、その単セルを10〜20
セル程度を直列に接続してたものを必要個数並置する構
成が採られている。尚、この水分解装置としては、ナフ
ィオンなどのイオン交換膜を用いるSPE法や、ジルコ
ニアなどの固体電解質を用いる方法などが、電力効率、
即ち電気−水素変換効率の点などからこの種システムの
ような大量の水分解に適している。Next, the storage system (S) will be explained. 7 is a water decomposition device that electrolyzes water using the low-voltage direct current stepped down by the step-down converter 3. It is necessary to supply a low voltage of about 1.5 V to a single cell for water decomposition, and normally, 10-20 single cells
A configuration is adopted in which a required number of cells are connected in series and arranged side by side. As for this water splitting device, the SPE method using an ion exchange membrane such as Nafion, or the method using a solid electrolyte such as zirconia, etc., is effective in terms of power efficiency and
That is, from the viewpoint of electricity-hydrogen conversion efficiency, this type of system is suitable for large-scale water splitting.
8はこの水分解装置7から得られる水素を貯える水素貯
蔵装置で、LaNi5で代表される希土類−Nl系合金
、Mg Ni系合金、F e −T i系合金、Zr
−Mn系合金などの水素吸蔵合金から成っている。Reference numeral 8 denotes a hydrogen storage device for storing hydrogen obtained from the water splitting device 7, which contains rare earth-Nl alloys represented by LaNi5, MgNi alloys, Fe-Ti alloys, and Zr.
- It is made of a hydrogen storage alloy such as a Mn-based alloy.
9はこの水素吸蔵合金から構成されている水素貯蔵装置
8から放出される水素をエネルギー消費地6近傍まで輸
送するパイプラインで、水素輸送圧力2kg7/Cm”
、ガス流速4m%S程度が長距離パイプライン輸送に適
している。lOはエネルギー消費地近傍に設けられた燃
料電池発電所で、パイプライン9を経由して輸送されて
くる水素を燃料とし、該燃料電池発電所10で発電され
た電力はエネルギー消費地6に直送されると共に、その
発電の際に生じる熱エネルギーも消費地に送られ利用さ
れる。尚、この燃料電池発電所10においてはパイプラ
イン9を介して供給される水素を直接燃料として発電動
作を行っても良いが、燃料電池発電所10側にもL記水
素貯蔵装置8と同様な水素吸蔵合金から成る水素貯蔵部
を設けて置けば安定して発電動f111′を継続するこ
とができるで−あろう。9 is a pipeline that transports the hydrogen released from the hydrogen storage device 8 made of this hydrogen storage alloy to the vicinity of the energy consumption area 6, and the hydrogen transport pressure is 2 kg7/Cm.
, a gas flow rate of about 4 m%S is suitable for long-distance pipeline transportation. IO is a fuel cell power plant installed near an energy consumption area, which uses hydrogen transported via a pipeline 9 as fuel, and the electricity generated at the fuel cell power plant 10 is directly sent to an energy consumption area 6. At the same time, the thermal energy generated during power generation is also sent to the consumption area and used. Note that this fuel cell power plant 10 may perform power generation operation using hydrogen supplied via the pipeline 9 as fuel directly, but the fuel cell power plant 10 side may also have a similar hydrogen storage device 8 described in L. If a hydrogen storage section made of a hydrogen storage alloy is provided, it will be possible to stably continue power generation f111'.
ここでこの燃料電池発電所IOの規模の一例を示してお
く。約100戸の住宅からなるマンションに必要な電力
量とされている2400KWh(200KWx12時間
)を燃料電池発電所10が発電するとした場合、燃料電
池と電力調整用のインバータとコントロールパネルとを
含めた発電部の大きさは、幅2〜3m、奥行き3〜4m
、高さ約2mであり、またその時必要とした水素量は約
800m”、この水素量を貯蔵する水素貯蔵部を構成す
る水素吸蔵合金の量としては4トン程度が必要であろう
。Here, an example of the scale of this fuel cell power plant IO will be shown. If the fuel cell power plant 10 generates 2,400 KWh (200 KW x 12 hours), which is the amount of electricity required for a condominium consisting of about 100 houses, the power generation including the fuel cell, inverter for power adjustment, and control panel. The size of the section is 2-3m wide and 3-4m deep.
, the height is approximately 2 m, and the amount of hydrogen required at that time is approximately 800 m'', and the amount of hydrogen storage alloy constituting the hydrogen storage section to store this amount of hydrogen will be approximately 4 tons.
このようにエネルギー消費地6の近傍にその消費地の電
力消費量に見合った規模の燃料電池発電所を設ける方式
のメリットは、発tt力のみならず、その発電の際に生
じる熱をも消費地で利用することができ、トータル的な
エネルギー効率を向上せしめることができる点であろう
。即ち、燃料電池の発電機としての効率はせいぜい50
〜60%であるが、発電熱をも含めたエネルギー利用効
率は80%にも達することが期待できる。In this way, the advantage of installing a fuel cell power plant near an energy consumption area 6 in a scale commensurate with the electricity consumption of that consumption area is that it consumes not only power but also the heat generated during power generation. The advantage is that it can be used locally, improving overall energy efficiency. In other words, the efficiency of a fuel cell as a generator is at most 50
The efficiency of energy use, including the generated heat, can be expected to reach 80%.
尚、上記実施例においては、水素貯蔵装置8から放出さ
れる水素をエネルギー消費地6近傍まで輸送する手段と
してパイプライン9を用いているが、水素貯蔵装置8と
エネルギー消費地6との距離が1oookmを越える場
合は、パイプライン9に代えて、水素を吸収した水素吸
蔵合金を船舶による海上運搬の方が水素輸送効率は高く
なるので、この船舶輸送を採用すべきであろう。In the above embodiment, the pipeline 9 is used as a means of transporting the hydrogen released from the hydrogen storage device 8 to the vicinity of the energy consumption area 6, but if the distance between the hydrogen storage device 8 and the energy consumption area 6 is If the length exceeds 10km, the hydrogen storage alloy that has absorbed hydrogen can be transported by sea instead of using the pipeline 9. Since the hydrogen transport efficiency will be higher, this ship transportation should be adopted.
而して赤道近辺の砂漠地帯に設けられた太陽電池1にて
発電された電力は、先ず電力分配器4にでリアルタイム
系(R)が優先され、エネルギー消費地6での消費電力
に見合った電力が昇圧器2にて昇圧されて送電線5を介
してエネルギー消費地6へ送られる。太陽電池1による
発電量がエネルギー消費地6における必要電力量と等巳
いが、少ない場合は太陽電池1で発電された電力の全て
はこのリアルタイム系(R)にて消費され、貯蔵系(S
)には送られない。Therefore, the power generated by the solar cell 1 installed in the desert area near the equator is first given priority to the real-time system (R) at the power divider 4, and the power is matched to the power consumption at the energy consumption area 6. Electric power is boosted by a booster 2 and sent to an energy consumption area 6 via a power transmission line 5. If the amount of power generated by the solar cell 1 is equal to or less than the amount of power required in the energy consumption area 6, all of the power generated by the solar cell 1 is consumed in this real-time system (R) and stored in the storage system (S).
) will not be sent.
一方、太陽電池1が発電する発電量がエネルギー消費地
6が必要とした電力量を越えた場合は、電力分配器4は
降圧器3側へその余剰電力を分配し、水分解装置7にお
ける水分解に適した低圧直流に降圧する。水分解装置7
はその低圧直流を受けて水を電気分解し、水素と酸素と
を生成する。斯して得られた水素は水素貯蔵装置8に送
られて貯蔵される。またこの水素貯蔵装置8に貯えられ
た水素はパイプライン9を経由してエネルギー消費地6
の近傍に設けられ燃料電池発電所1゜に送られ、例えば
リアルタイム系(R)にて太陽電池1から直接送電され
る電力が不足したような場合、適宜この燃料電池発電所
10での発電動作を行い、エネルギー消費地6へその不
足電力と熱とを供給する。On the other hand, if the amount of power generated by the solar cell 1 exceeds the amount of power required by the energy consumption area 6, the power distributor 4 distributes the surplus power to the step-down converter 3 side, and the water splitter 7 Step down to low voltage direct current suitable for decomposition. Water splitting device 7
receives the low-pressure direct current and electrolyzes water to produce hydrogen and oxygen. The hydrogen thus obtained is sent to the hydrogen storage device 8 and stored. Furthermore, the hydrogen stored in this hydrogen storage device 8 is transferred to an energy consumption area 6 via a pipeline 9.
For example, when there is a shortage of power directly transmitted from the solar cell 1 in the real-time system (R), the power generation operation at the fuel cell power plant 10 is performed as appropriate. and supplies the insufficient power and heat to the energy consuming area 6.
尚、第1図は説明の簡単のために太陽電池1とエネルギ
ー消費地6とが1対1で対応している場合を示したが、
実際にjは第2図に示すように、エネルギー消費地6は
単一の太陽電池1がらの電力のみによって賄われている
のではなく、複数の電力源が関連付けられていたり、原
子力発電所や火力発電所などの太陽電池以外の発電系に
も依存している場合が考えられる。また第3図に示すよ
うに、リアルタイム系(R)を経て電力を供給するエネ
ルギー消費地6と、貯蔵系(S)を経て電力を供給する
消費地6゛が異なる場合もあり、種々の電力供給経路の
多様化が考えられる。In addition, although FIG. 1 shows the case where the solar cell 1 and the energy consumption area 6 correspond on a one-to-one basis for the sake of simplicity,
In fact, as shown in Figure 2, the energy consuming area 6 is not only supplied with electricity from a single solar cell 1, but is also provided by multiple electricity sources, such as nuclear power plants, etc. It is conceivable that power generation systems such as thermal power plants depend on power generation systems other than solar cells. Furthermore, as shown in Fig. 3, the energy consumption area 6 to which power is supplied via the real-time system (R) and the energy consumption area 6 to which electricity is supplied via the storage system (S) may be different. Diversification of supply routes is considered.
また以上の説明においては太陽エネルギーを直接電力に
変換する太陽電池を採用した場合について記述したが、
風力発電、水力発電、地熱発電、潮汐発電、海水の温度
差発電、太陽熱発電など、太陽から供給されるエネルギ
ーに基づいて発生する各種の自然現象を利用した発電手
段も同様に利用することができる。Also, in the above explanation, we have described the case where solar cells that directly convert solar energy into electricity are used.
Power generation methods that utilize various natural phenomena that occur based on energy supplied by the sun can also be used in the same way, such as wind power generation, hydroelectric power generation, geothermal power generation, tidal power generation, seawater temperature difference power generation, and solar thermal power generation. .
(ト)発明の効果
本発明は以上の説明から明らかなように、自然エネルギ
ーに基づいて発電した電力をリアルタイムでエネルギー
消費地に高電圧DC送電すると共に、発電電力が消費電
力を越えて余剰電力が生じた場合は、その余剰電力にて
水を低電圧電気分解巳て水素を発生させると同時にその
水素を一旦7ト素吸蔵合金に貯蔵し、その貯蔵さhた水
素をエネルギー消費地に輸送して消費地においてぞの輸
送されてきた水素を燃料として燃料電池を作動させ、そ
の燃料電池作動によって生じた電力と熱とを消費地に供
給しているので、クリーンな自然エネルギーに基づいて
発電された電力が無駄なく利用され、化石エネルギーの
枯渇問題、地球の温暖化や酸性雨の発生などの地球環境
間組を抜本的に解決することができる。(g) Effects of the Invention As is clear from the above description, the present invention transmits high-voltage DC power generated based on natural energy to energy consuming areas in real time, and generates surplus power when the generated power exceeds the consumed power. If this occurs, the surplus electricity will be used to generate hydrogen by low-voltage electrolysis of water, and at the same time, the hydrogen will be temporarily stored in a 7-ton storage alloy, and the stored hydrogen will be transported to the energy consumption area. The transported hydrogen is used as fuel to operate a fuel cell at the consumption area, and the electricity and heat generated by the fuel cell operation are supplied to the consumption area, so power generation is based on clean natural energy. The generated electricity will be used without wastage, and it will be possible to fundamentally solve global environmental problems such as the depletion of fossil energy, global warming, and the occurrence of acid rain.
第1図は本発明システムの構成を示す概念図、第2図、
第3図は本発明システムの他の構成を示す概念図である
。
1・・太陽電池、2 ・昇圧器、3 ・・降圧器、電力
分配器、5・・送電線、
エネルギー消費地、7 水分解装置、水素貯蔵装置、
9 ・パイプライン、
・燃料電池発電所。FIG. 1 is a conceptual diagram showing the configuration of the system of the present invention, FIG.
FIG. 3 is a conceptual diagram showing another configuration of the system of the present invention. 1. Solar cells, 2. Boost, 3. Step down, power divider, 5. Transmission lines, energy consumption areas, 7. Water splitting equipment, hydrogen storage equipment,
9 ・Pipelines, ・Fuel cell power plants.
Claims (2)
タイムでエネルギー消費地に高電圧DC送電すると共に
、発電電力がエネルギー消費地における消費電力を越え
て余剰電力が生じた場合は、その余剰電力にて水を低電
圧電気分解して水素を発生させ、その発生水素を一旦水
素吸蔵合金に貯蔵し、その貯蔵された水素をエネルギー
消費地に輸送すると同時に、エネルギー消費地において
はその輸送されてきた水素を燃料として燃料電池を作動
させ、その燃料電池の作動によって生じた電力と熱とを
エネルギー消費地で利用することを特徴としたエネルギ
ーシステム。(1) In addition to transmitting high-voltage DC power generated based on natural energy to energy consuming areas in real time, if the generated power exceeds the power consumption in the energy consuming areas and surplus power arises, that surplus power will be used. Hydrogen is generated by low-voltage electrolysis of water, the generated hydrogen is temporarily stored in a hydrogen storage alloy, and the stored hydrogen is transported to an energy consuming area, and at the same time, the transported hydrogen is An energy system characterized by operating a fuel cell using fuel as fuel, and using the electricity and heat generated by the operation of the fuel cell at an energy consumption area.
力エネルギー、地熱エネルギー、潮汐エネルギー、温度
差エネルギー、太陽エネルギーのいずれか、若しくはそ
れらの組み合わせであることを特徴とした請求項(1)
記載のエネルギーシステム。(2) Claim (1) characterized in that the natural energy is any one of wind energy, hydraulic energy, geothermal energy, tidal energy, temperature difference energy, solar energy, or a combination thereof.
Energy system described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2208871A JPH0491638A (en) | 1990-08-06 | 1990-08-06 | Energy system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2208871A JPH0491638A (en) | 1990-08-06 | 1990-08-06 | Energy system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0491638A true JPH0491638A (en) | 1992-03-25 |
Family
ID=16563501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2208871A Pending JPH0491638A (en) | 1990-08-06 | 1990-08-06 | Energy system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0491638A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005347181A (en) * | 2004-06-04 | 2005-12-15 | Idemitsu Kosan Co Ltd | Fuel cell system and fuel cell system control method wherein hydrogen needed by fuel cell is promptly supplied without excess or insuficiency |
JP2006037226A (en) * | 1999-05-12 | 2006-02-09 | Stuart Energy Systems Corp | Energy distribution network |
JP2006161123A (en) * | 2004-12-09 | 2006-06-22 | Hitachi Zosen Corp | Water-electrolysis hydrogen producing apparatus utilizing wind power generation |
JP2015216830A (en) * | 2014-04-14 | 2015-12-03 | ティーエムイーアイシー コーポレーション | Hybrid power converter for renewable energy power plant |
JP2018207728A (en) * | 2017-06-08 | 2018-12-27 | 清水建設株式会社 | Power management system and power management method |
US10214821B2 (en) | 2012-05-28 | 2019-02-26 | Hydrogenics Corporation | Electrolyser and energy system |
JPWO2021200170A1 (en) * | 2020-04-01 | 2021-10-07 | ||
WO2022042216A1 (en) * | 2020-08-25 | 2022-03-03 | 同济大学 | Mpc-based hierarchical coordination control method and device for wind-hydrogen coupling system |
JP2023013534A (en) * | 2021-07-16 | 2023-01-26 | 株式会社堤水素研究所 | Tritium-containing water treatment method, treatment business method and treatment apparatus |
-
1990
- 1990-08-06 JP JP2208871A patent/JPH0491638A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006037226A (en) * | 1999-05-12 | 2006-02-09 | Stuart Energy Systems Corp | Energy distribution network |
EP1623955A3 (en) * | 1999-05-12 | 2018-02-28 | Stuart Energy Systems Corporation | Energy distribution network |
JP2005347181A (en) * | 2004-06-04 | 2005-12-15 | Idemitsu Kosan Co Ltd | Fuel cell system and fuel cell system control method wherein hydrogen needed by fuel cell is promptly supplied without excess or insuficiency |
JP2006161123A (en) * | 2004-12-09 | 2006-06-22 | Hitachi Zosen Corp | Water-electrolysis hydrogen producing apparatus utilizing wind power generation |
US11268201B2 (en) | 2012-05-28 | 2022-03-08 | Hydrogenics Corporation | Electrolyser and energy system |
US11761103B2 (en) | 2012-05-28 | 2023-09-19 | Hydrogenics Corporation | Electrolyser and energy system |
US10214821B2 (en) | 2012-05-28 | 2019-02-26 | Hydrogenics Corporation | Electrolyser and energy system |
US10435800B2 (en) | 2012-05-28 | 2019-10-08 | Hydrogenics Corporation | Electrolyser and energy system |
JP2015216830A (en) * | 2014-04-14 | 2015-12-03 | ティーエムイーアイシー コーポレーション | Hybrid power converter for renewable energy power plant |
JP2018207728A (en) * | 2017-06-08 | 2018-12-27 | 清水建設株式会社 | Power management system and power management method |
WO2021200170A1 (en) * | 2020-04-01 | 2021-10-07 | 川崎重工業株式会社 | Energy supply system |
JPWO2021200170A1 (en) * | 2020-04-01 | 2021-10-07 | ||
WO2022042216A1 (en) * | 2020-08-25 | 2022-03-03 | 同济大学 | Mpc-based hierarchical coordination control method and device for wind-hydrogen coupling system |
US12034307B2 (en) | 2020-08-25 | 2024-07-09 | Tongji University | MPC-based hierarchical coordinated control method and device for wind-hydrogen coupling system |
JP2023013534A (en) * | 2021-07-16 | 2023-01-26 | 株式会社堤水素研究所 | Tritium-containing water treatment method, treatment business method and treatment apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Widera | Renewable hydrogen implementations for combined energy storage, transportation and stationary applications | |
EP1506590B1 (en) | Hydrogen based energy storage apparatus and method | |
CN110654520A (en) | Ship direct-current networking system adopting fuel cell and ship applying same | |
WO2022217836A1 (en) | Lunar base energy supply and application system based on technology of hydrogen production by means of water photolysis | |
JP7286071B2 (en) | Hydrogen supply system and hydrogen supply method | |
KR20090059389A (en) | The system for producing renewable energy | |
US10840572B1 (en) | Solar hydrogen generation and off-peak storage | |
CN110453238B (en) | Plateau oxygen system control device of coupling distributed power supply | |
CN115084580B (en) | Renewable energy in-situ energy storage system and method based on reversible solid oxide battery | |
CN112634082A (en) | Island and reef integrated energy support system | |
JP7351708B2 (en) | energy management system | |
CN116154975A (en) | Off-grid clean energy comprehensive energy storage and supply system | |
JPH0491638A (en) | Energy system | |
Solovey et al. | Researching and adjusting the modes of joint operation of a photoelectric converter and a high pressure electrolyzer | |
JPH0492374A (en) | Energy system | |
KR20210089314A (en) | Floating Solar System and Method of Maximizing Solar System Efficiency Using the Same | |
CN106086924A (en) | A kind of coupling CO2the hydrogen manufacturing energy storage method of recycling | |
CN114844079A (en) | Comprehensive energy system based on wind, light and hydrogen storage multi-energy complementation and control method | |
EP3840093A1 (en) | Energy transmission system and wind farm | |
KR20200123884A (en) | Solid oxide fuel cell system using ballast water treatment system | |
JP2004071487A (en) | Distributed power generation system | |
Hassan et al. | Optimum Design of Photovoltaic/Regenerative Fuel Cell Power System for a Remote Telecom Station | |
JPH0491640A (en) | Energy system | |
Fabbri et al. | A hybrid stand alone power system for telecom applications in minor islands | |
CN116976593A (en) | Energy and resource application method and equipment capable of realizing remote water supply |