JPH0491442A - Manufacturing apparatus for crystal - Google Patents

Manufacturing apparatus for crystal

Info

Publication number
JPH0491442A
JPH0491442A JP20717790A JP20717790A JPH0491442A JP H0491442 A JPH0491442 A JP H0491442A JP 20717790 A JP20717790 A JP 20717790A JP 20717790 A JP20717790 A JP 20717790A JP H0491442 A JPH0491442 A JP H0491442A
Authority
JP
Japan
Prior art keywords
raw material
mercury
material liquid
reaction tube
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20717790A
Other languages
Japanese (ja)
Inventor
Hiroshi Takigawa
宏 瀧川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20717790A priority Critical patent/JPH0491442A/en
Publication of JPH0491442A publication Critical patent/JPH0491442A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an apparatus for obtaining an epitaxial crystal containing a predetermined composition and made of HgCdTe, etc., having high uniformity of composition with high reproducibility by providing a vertical reaction tube, a substrate mounting base, a rotary shaft, a carrier gas inlet tube, an organic metal gas inlet tube, and heating means. CONSTITUTION:A vertical reaction tube 11 provided with a liquid reservoir 12 for containing material liquid for epitaxial growth in a bottom, a substrate mounting base 13 capable of mounting a substrate 18 oppositely to the surface of the liquid and rotating, a rotary shaft 16 connected to the base 13 to transmit the rotation of rotary means 20, a carrier gas inlet tube 23 inserted into the tube 11 for introducing carrier gas for evaporating the liquid, an organic metal gas inlet tube 21 inserted into the tube 11 between the base 13 and the reservoir 12 for introducing organic metal gas, and heating means 14 for heating the tube 11 and the reservoir 12 are provided. Further, for example, an organic metal gas reverse flow preventing partition 22 having a plurality of through holes 19 for reducing the internal sectional area of the tube 11 is provided between the reservoir 12 and the tube 21.

Description

【発明の詳細な説明】 〔目 次〕 概要 ・・・ ・・・ ・・・・・・・・・   ・・
・  5頁産業上の利用分野・・・・・・・・・・・・
・・・・・・・・・・・・6頁従来の技術・・・ ・・
・・・・・・・    ・・・・・・6頁発明が解決し
ようとする課題・・・・・・・・・8頁課題を解決する
ための手段・・・・・・・・・・・・10頁作用 ・・
・・・・・・・・・・・・・・・・  ・・・・・・・
・・・・・ 13頁実施例・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・18頁発明の効果・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・27頁導入管と、 前記反応管の側面に設置され、前記基板と前記液溜を加
熱する加熱手段とを設けて構成する。
[Detailed Description of the Invention] [Table of Contents] Overview ・・・ ・・・ ・・・・・・・・・ ・・
・Page 5 Industrial application fields・・・・・・・・・・・・
・・・・・・・・・・・・Page 6 Conventional technology...
・・・・・・・・・・・・Page 6 Problem to be solved by the invention・・・・・・・・・Page 8 Means to solve the problem・・・・・・・・・・・・・・10 page action ・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・Page 13 Example・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・Page 18 Effects of the invention・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・Page 27 It is configured by providing an introduction tube and a heating means installed on the side surface of the reaction tube to heat the substrate and the liquid reservoir.

〔概 要〕〔overview〕

化合物半導体結晶の製造装置に関し、 所定の組成を有し、かつ組成の均一性の高いエピタキシ
ャル結晶が再現性よく得られる結晶製造装置を目的とし
、 底部にエピタキシャル成長用の原料液体を収容する液溜
を設けた縦型反応管と、 該原料液体の液面に対向して基板が設置可能で、かつ回
転可能な基板設置台と、 前記基板設置台に接続され、回転手段の回転を伝達する
回転軸と、 前記反応管内に挿入され、前記原料液体を蒸発させるキ
ャリアガスを導入するキャリアガス導入管と、 前記基板設置台と、前記液溜の間の反応管内に挿入され
、有機金属ガスを導入する有機金属ガス〔産業上の利用
分野〕 本発明は赤外センサ用材料として使用される水銀・カド
ミウム・テルル(HgCdTe)等の水銀(Hg)を含
む狭バンドギヤツプ化合物半導体のMOCVD成長法に
おいて、所定の組成を有し、且つ組成の均一性の高いエ
ピタキシャル結晶を再現性良く得るための結晶製造装置
に関するものである。
Regarding the manufacturing equipment for compound semiconductor crystals, the aim is to provide a crystal manufacturing equipment that can obtain epitaxial crystals having a predetermined composition and high compositional uniformity with good reproducibility. a vertical reaction tube provided therein; a rotatable substrate installation stand on which a substrate can be placed facing the liquid surface of the raw material liquid; and a rotation shaft connected to the substrate installation stand and transmitting the rotation of the rotation means. a carrier gas introduction tube inserted into the reaction tube to introduce a carrier gas that evaporates the raw material liquid; and a carrier gas introduction tube inserted into the reaction tube between the substrate installation stand and the liquid reservoir to introduce an organometallic gas. Organometallic Gas [Industrial Application Field] The present invention relates to the MOCVD growth method of narrow bandgap compound semiconductors containing mercury (Hg) such as mercury-cadmium-tellurium (HgCdTe) used as materials for infrared sensors. The present invention relates to a crystal manufacturing apparatus for obtaining an epitaxial crystal having a high composition and high composition uniformity with good reproducibility.

(従来の技術〕 従来のHgCdTe等の結晶を製造するためのMOCV
D法による結晶製造装置を第8図に示す0図示するよう
に水銀を収容する蒸発器1のガス導入管2より該蒸発器
内に水素(Ht)ガスを導入して水銀をバブリングさせ
て横型の反応管3に導入し、該反応管内に収容している
エピタキシャル成長用の基板4に水銀を供給する。
(Prior art) Conventional MOCV for manufacturing crystals such as HgCdTe
A crystal manufacturing apparatus according to method D is shown in FIG. 8. As shown in FIG. mercury is introduced into a reaction tube 3, and is supplied to a substrate 4 for epitaxial growth housed in the reaction tube.

一 また図示しないが、カドミウム(Cd)やテルル(Te
)を含む液状の有機金属化合物を収容した蒸発器内に前
記した水素ガスを導入し、前記有機金属化合物を担持せ
る水素ガスを有機金属ガス導入管5より反応管3内に供
給する。
Although not shown, cadmium (Cd) and tellurium (Te)
) The hydrogen gas described above is introduced into an evaporator containing a liquid organometallic compound, and the hydrogen gas capable of supporting the organometallic compound is supplied into the reaction tube 3 from an organometallic gas introduction pipe 5.

そしてこの基板4を設置するカーボン製の基板設置台6
を反応管の外部に設けた高周波誘導コイルより成る加熱
手段7で加熱して基板4を加熱することで水銀、並びに
有機金属化合物を熱分解して基板上に水銀を含む化合物
半導体結晶を気相成長している。
And a carbon board installation stand 6 on which this board 4 is installed.
By heating the substrate 4 by heating means 7 consisting of a high-frequency induction coil provided outside the reaction tube, mercury and the organometallic compound are thermally decomposed, and a compound semiconductor crystal containing mercury is placed on the substrate in a vapor phase. Growing.

またその他の横型の反応管を用いた方法として第9図に
示すように、反応管3内の矢印Aに示すガスの流れる方
向より見てエピタキシャル成長用の基板4の上流側に水
銀溜8を設置し、この水銀溜8内の水銀を反応管3の外
部に設けたヒータ9で加熱し、基板4に水銀を供給し、
ガス導入管2よりジエチルテルル、ジメチルカドミウム
等の有機金属化合物を担持せる水素ガスを導入してHg
CdTeのエピタキシャル結晶を基板4上に気相成長す
る方法が知られている。
As another method using a horizontal reaction tube, as shown in FIG. 9, a mercury reservoir 8 is installed upstream of the substrate 4 for epitaxial growth when viewed from the gas flow direction shown by arrow A in the reaction tube 3. Then, the mercury in the mercury reservoir 8 is heated by a heater 9 provided outside the reaction tube 3, and the mercury is supplied to the substrate 4.
Hydrogen gas that can support organometallic compounds such as diethyl tellurium and dimethyl cadmium is introduced from the gas introduction pipe 2 to produce Hg.
A method is known in which a CdTe epitaxial crystal is grown on the substrate 4 in a vapor phase.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の方法のうち、第8図に示す前者の方法では、ジメ
チルカドミウムのような有機化カドミウム(Cd)や、
ジエチルテルルのような有機化テルル(Te)等の原料
ガスは、水素ガス等で希釈されて、水銀の蒸発器1を通
過せずに反応管3に導入される。そのため、水銀の蒸発
器1を通して導入されたガスと均一に混合せず、反応管
3内の水銀の分圧が不均一になるという問題がある。
Among the conventional methods, the former method shown in FIG. 8 uses organic cadmium (Cd) such as dimethyl cadmium,
A raw material gas such as organic tellurium (Te) such as diethyl tellurium is diluted with hydrogen gas or the like and introduced into the reaction tube 3 without passing through the mercury evaporator 1. Therefore, there is a problem that the mercury does not mix uniformly with the gas introduced through the evaporator 1, and the partial pressure of mercury in the reaction tube 3 becomes non-uniform.

また、水銀の蒸発器1からエピタキシャル成長用の基板
4までの間はヒータ9で加熱しているが、この間に温度
の低い領域があると水銀の凝結等が生じ、反応管3への
水銀供給量も不安定になるという問題がある。
Furthermore, the area between the mercury evaporator 1 and the substrate 4 for epitaxial growth is heated by a heater 9, but if there is a low temperature area in between, mercury condensation, etc. will occur, and the amount of mercury supplied to the reaction tube 3 will decrease. There is also the problem of instability.

また第9図に示す後者の方法では、水銀溜8の上を水素
が通過する間に、水素中に充分な水銀が飽和するまでに
到らず、水銀溜8の上を通過した水素中の水銀濃度が安
定しないという問題がある。
In addition, in the latter method shown in FIG. There is a problem that the mercury concentration is not stable.

更にジメチルカドミウム等の有機金属を含んだ水素ガス
が、ガス導入管2を通じて水銀溜8の上を通過するため
、水銀溜の水銀表面が汚染され、水銀溜8からの水銀蒸
発量が安定しないという問題がある。
Furthermore, since hydrogen gas containing organic metals such as dimethyl cadmium passes over the mercury reservoir 8 through the gas introduction pipe 2, the mercury surface of the mercury reservoir is contaminated, and the amount of mercury evaporated from the mercury reservoir 8 is unstable. There's a problem.

また両者の方法に共通して、水銀蒸気が重いため、この
水銀蒸気が反応管3の下側に偏在し、基板4の周辺に於
ける水銀分圧が不均一になるという問題がある。
Furthermore, both methods have the problem that, since mercury vapor is heavy, this mercury vapor is unevenly distributed below the reaction tube 3, and the mercury partial pressure around the substrate 4 becomes non-uniform.

またガスの排出側には、基板4を出し入れするために、
直径の大きいフランジ10が必要であり、このフランジ
には、反応管内の気密性を高めるために耐熱性の悪いO
リング等を使用することが必要なため、その部分が低温
になり、反応管内の水銀分圧が不均一になるという問題
がある。
In addition, on the gas discharge side, in order to take in and take out the substrate 4,
A flange 10 with a large diameter is required, and this flange is equipped with O, which has poor heat resistance, in order to improve airtightness inside the reaction tube.
Since it is necessary to use a ring or the like, there is a problem in that the temperature in that part becomes low and the mercury partial pressure in the reaction tube becomes non-uniform.

また水銀蒸気圧が大で水銀分圧が高いため、水銀溜8か
らの水銀消費量が多く、水銀溜の中の水銀量が成長中に
変化するため、基板4への水銀供給量が安定しないとい
う問題がある。
In addition, since the mercury vapor pressure is high and the mercury partial pressure is high, the amount of mercury consumed from the mercury reservoir 8 is large, and the amount of mercury in the mercury reservoir changes during growth, so the amount of mercury supplied to the substrate 4 is unstable. There is a problem.

また水銀以外の有機金属化合物についても、基板付近に
均一に供給される保証がなく、結晶製造装置が決まると
結晶成長条件を変えて、基板付近の有機金属濃度を調節
することが出来ないという問題が有る。
There is also the problem that with regard to organometallic compounds other than mercury, there is no guarantee that they will be uniformly supplied near the substrate, and once the crystal manufacturing equipment is decided, it is not possible to adjust the organometallic concentration near the substrate by changing the crystal growth conditions. There is.

以上述べたように従来の結晶製造装置においては、蒸発
し易い水銀を含む結晶を製造すると、基板周辺の水銀分
圧を精度良く一定に保つことが困難なため、基板への水
銀の付着率、基板からの水銀解離率が一定にならず、ま
た基板付近の有機金属濃度を調節できないため、結晶組
成の制御精度が悪くなり、結晶内の組成の均一性も悪く
なるという問題が有る。
As mentioned above, in conventional crystal manufacturing equipment, when manufacturing a crystal containing mercury, which easily evaporates, it is difficult to maintain a constant mercury partial pressure around the substrate with high precision, which reduces the rate of mercury adhesion to the substrate. Since the mercury dissociation rate from the substrate is not constant and the organic metal concentration near the substrate cannot be adjusted, there are problems in that the control accuracy of the crystal composition is poor and the uniformity of the composition within the crystal is also poor.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の結晶製造装置は底部にエピタキシャル成長用の
原料液体を収容する液溜を設けた縦型反応管と、該原料
液体の液面に対向して基板が設置可能で、かつ回転可能
な基板設置台と、前記基板設置台に接続され、回転手段
の回転を伝達する支持棒と、前記反応管内に挿入され、
前記原料液体=10 を蒸発させるキャリアガスを導入するキャリアガス導入
管と、前記基板設置台と、前記液溜の間の反応管内に挿
入され、有機金属ガスを導入する有機金属ガス導入管と
、前記反応管の側面に設置され、前記基板と前記液溜を
加熱する加熱手段とを設けたことを特徴とする。
The crystal manufacturing apparatus of the present invention includes a vertical reaction tube equipped with a liquid reservoir at the bottom for containing a raw material liquid for epitaxial growth, and a substrate that can be installed facing the surface of the raw material liquid and can be rotated. a support rod connected to the substrate installation table and transmitting rotation of the rotation means; inserted into the reaction tube;
a carrier gas introduction tube for introducing a carrier gas for evaporating the raw material liquid = 10; an organometallic gas introduction tube inserted into a reaction tube between the substrate installation stand and the liquid reservoir and introducing an organometallic gas; The method is characterized in that a heating means is installed on a side surface of the reaction tube and heats the substrate and the liquid reservoir.

また前記反応管の基板上部で該反応管の内壁に所定の間
隔を隔てて挿通自在に内接し、中心に基板設置台を回転
するための回転軸を挿通するための貫通孔を有し1、前
記反応管の側面の加熱手段で加熱される熱放散防止用の
スペーサを備える。
Further, the upper part of the substrate of the reaction tube is inscribed in the inner wall of the reaction tube at a predetermined interval so as to be freely inserted, and has a through hole in the center for inserting a rotation shaft for rotating the substrate installation stand; 1; A spacer for preventing heat dissipation is provided which is heated by the heating means on the side surface of the reaction tube.

更に前記液溜と有機金属ガス導入管の間に前記反応管の
内部断面積を低減する複数の貫通穴を備えた柱状の有機
金属ガス逆流防止隔壁を設ける。
Further, a columnar organometallic gas backflow prevention partition wall having a plurality of through holes for reducing the internal cross-sectional area of the reaction tube is provided between the liquid reservoir and the organometallic gas introduction tube.

また前記キャリアガスの導入管の先端部が、液溜の原料
液体表面にキャリアガスを吹きつけるノズルを備えてい
るか、或いは液溜内の原料液体内に浸漬しており、前記
キャリアガス導入管の各々にガス流量調節手段を設ける
Further, the tip of the carrier gas introduction pipe is equipped with a nozzle that sprays the carrier gas onto the surface of the raw material liquid in the liquid reservoir, or is immersed in the raw material liquid in the liquid reservoir, and the tip of the carrier gas introduction pipe is Each is provided with a gas flow rate adjusting means.

また前記液溜の原料液体表面にキャリアガスを吹きつけ
るノズルの構造が、ジヲウロの先端部構造のように複数
のキャリアガス吹き出し穴を備えた開放端部を有する構
造とする。
Further, the structure of the nozzle for spraying the carrier gas onto the surface of the raw material liquid in the liquid reservoir is such that it has an open end portion provided with a plurality of carrier gas blowing holes like the tip structure of a water blower.

更に前記有機金属ガス導入管の先端部のガス吹き出し口
が、基板の成長面に向けてガスが吹きつけられるように
して複数本、流量調節手段を設けて配設し、前記種類の
異なる有機金属ガス吹き出し口を、前記基板設置台の回
転軸を軸とする回転対称な位置に配置する。
Further, a plurality of gas outlet ports at the tip of the organometallic gas introducing tube are provided with flow rate adjusting means so that the gas is blown toward the growth surface of the substrate, The gas blow-off ports are arranged at positions that are rotationally symmetrical about the rotation axis of the substrate mounting table.

更に前記液溜に対して連通管で接続された原料液体供給
槽を前記反応管の外部に設け、該原料液体供給槽の原料
液体液面に斜めに光線を入射する光源と、該光線の原料
液体液面での反射光を検出する光検知器から構成された
原料液体レベル針を備える。
Furthermore, a raw material liquid supply tank connected to the liquid reservoir by a communication pipe is provided outside the reaction tube, and a light source that obliquely impinges a light beam on the raw material liquid surface of the raw material liquid supply tank, and a source liquid of the light beam. It is equipped with a raw material liquid level needle consisting of a photodetector that detects reflected light on the liquid surface.

また前記連通管が変形可能な可撓性の管で形成され、原
料液体の液面レベル計からの信号によって、原料液体供
給槽を移動機構で上下に移動可能とする。
Further, the communication pipe is formed of a deformable flexible pipe, and the raw material liquid supply tank can be moved up and down by a moving mechanism in response to a signal from a liquid level meter of the raw material liquid.

更に前記原料液体供給槽に接続して原料液体補給装置を
設け、原料液体の液面レベル針からの信号によう原料液
体を原料液体供給槽に送出し、前記原料液体供給槽内の
原料液体の液面の高さを一定に保つようにする。
Furthermore, a raw material liquid replenishment device is connected to the raw material liquid supply tank, and the raw material liquid is sent to the raw material liquid supply tank according to the signal from the raw material liquid level level needle, and the raw material liquid in the raw material liquid supply tank is Try to keep the liquid level constant.

【作 用〕[For production]

本発明の結晶製造装置においては、第1図に示す縦型の
反応管11の底部に水銀のような原料液体の液溜12を
配置して、反応管と液溜とを加熱するヒータ14を備え
ている。
In the crystal manufacturing apparatus of the present invention, a reservoir 12 of a raw material liquid such as mercury is arranged at the bottom of a vertical reaction tube 11 shown in FIG. 1, and a heater 14 is installed to heat the reaction tube and the reservoir. We are prepared.

液溜12内の水銀の水銀蒸蒐は重いため、下方に到る程
、水銀濃度が高くなる傾向があるので、液溜を基板設置
台13の下に配置し、そこから水銀を供給することによ
り、水銀濃度分布が安定し、エピタキシャル成長用の基
板18の近傍の水銀分圧の制御精度が向上する。
Since the mercury evaporated from the mercury in the liquid reservoir 12 is heavy, the mercury concentration tends to increase the lower it goes. Therefore, the liquid reservoir is placed under the substrate installation stand 13 and mercury is supplied from there. This stabilizes the mercury concentration distribution and improves the control accuracy of the mercury partial pressure near the substrate 18 for epitaxial growth.

また、基板18を成長面を液溜12に対向して、下向き
に保持できる基板設置台13は、水銀が下から供給され
、反応管11中の水銀濃度は高さによって決まる構造を
備えたこととあいまって、基板表面の水銀の濃度を一定
に保つことができる。
Further, the substrate mounting table 13, which can hold the substrate 18 downward with the growth surface facing the liquid reservoir 12, has a structure in which mercury is supplied from below, and the mercury concentration in the reaction tube 11 is determined by the height. Combined with this, the concentration of mercury on the substrate surface can be kept constant.

また基板設置台13の回転機構は成長用基板の表面の水
銀濃度を、更に均一にするために効果的である。
Further, the rotation mechanism of the substrate mounting table 13 is effective for making the mercury concentration on the surface of the growth substrate more uniform.

またガスの排出側には、基板18を出し入れするための
直径の大きいフランジ15の基板側に、反応管11と狭
いギャップを有するように反応管の内壁に内接するスペ
ーサ17と、このスペーサを加熱するヒータ14^とを
備えている。このスペーサ17は反応管11との間隔を
10m−程度以下にすることによって、ガスの逆流を少
なくし、フランジ15が低温でも、反応管11内全体を
高温に上げたと同様な効果をもたらす。
Further, on the gas discharge side, a spacer 17 inscribed in the inner wall of the reaction tube so as to have a narrow gap with the reaction tube 11 is provided on the substrate side of the flange 15 having a large diameter for taking the substrate 18 in and out, and this spacer is heated. It is equipped with a heater 14^. By setting the spacer 17 to the reaction tube 11 at a distance of about 10 m or less, backflow of gas is reduced, and even if the flange 15 is at a low temperature, it produces the same effect as if the entire inside of the reaction tube 11 were raised to a high temperature.

このスペーサ17は簡単な円柱状、或いは円筒状の構造
であり、石英ガラス等の耐熱性の高い材料を用いて形成
する。
This spacer 17 has a simple columnar or cylindrical structure, and is formed using a highly heat-resistant material such as quartz glass.

また水銀以外の結晶成分を反応管に供給する有機金属ガ
ス導入管21の先端部の吹き出し口は、液溜12と基板
設置台13との間に設けることで、液溜12内の水銀が
有機金属によって汚染するのを減らすごとができる。
Furthermore, the outlet at the tip of the organometallic gas introduction tube 21 that supplies crystalline components other than mercury to the reaction tube is provided between the liquid reservoir 12 and the substrate installation stand 13, so that the mercury in the liquid reservoir 12 can be It is possible to reduce contamination caused by metals.

また、水銀の液溜12と有機金属ガス導入管21の先端
の吹き出し口の間に、例えば、反応管11の半径を小さ
くする等して、反応管の断面積を低減する領域を設ける
と有機金属ガスの逆流が防げて効果的である。この断面
積を低減する方法は、複数の穴をあ、けた円柱、或いは
円筒性の有機金属ガスの逆流防止隔壁22を取りつける
ことが効果的であり、これによって成長用基板への水銀
供給を均一にすることもできる。
Furthermore, it is possible to provide an area between the mercury reservoir 12 and the outlet at the tip of the organometallic gas introduction tube 21 to reduce the cross-sectional area of the reaction tube 11, for example by reducing the radius of the reaction tube 11. It is effective in preventing backflow of metal gas. An effective way to reduce this cross-sectional area is to install a cylinder with multiple holes or a cylindrical organometallic gas backflow prevention partition wall 22, thereby uniformly supplying mercury to the growth substrate. It can also be done.

また上記逆流防止隔壁22を取りつけることで有機金属
ガスの水銀の液溜12への逆流が防げるようにし、水銀
の液溜の液表面が汚染して水銀蒸発量が変わることを防
止している。
Further, by attaching the backflow prevention partition 22, it is possible to prevent the organometallic gas from flowing back into the mercury reservoir 12, thereby preventing the liquid surface of the mercury reservoir from being contaminated and changing the amount of mercury evaporation.

有機金属ガス導入管の先端部の吹き出し口を、成長用基
板の成長面にガスが吹きつけられる方向に向け、複数の
有機金属ガス導入管21のそれぞれに流量調節手段26
を取りつけたことにより、基板への有機金属の供給量の
分布が調節できる。そして基板設置台13の回転機構と
の相乗効果により基板の表面への有機金属の均一供給が
可能になる。
A flow rate adjustment means 26 is installed in each of the plurality of organometallic gas introduction tubes 21, with the outlet at the tip of the organometallic gas introduction tube directed in the direction in which the gas is blown onto the growth surface of the growth substrate.
By attaching this, the distribution of the amount of organic metal supplied to the substrate can be adjusted. The synergistic effect with the rotation mechanism of the substrate mounting table 13 makes it possible to uniformly supply the organic metal to the surface of the substrate.

特に有機金属の種類が異なるごとに、異なる有機金属ガ
ス導入管を備え、基板設置台13の回転軸16を軸とす
る回転対称な位置に、種類の異なる有機金属用のガス吹
き出し口を配置することにより、それぞれの有機金属成
分ごとに独立に基板表面への有機金属の供給量分布が調
節可能になる。
In particular, different metal-organic gas inlet pipes are provided for different types of organic metals, and gas outlets for the different types of organic metals are arranged at positions rotationally symmetrical about the rotation axis 16 of the substrate installation table 13. As a result, the distribution of the amount of organic metal supplied to the substrate surface can be adjusted independently for each organic metal component.

また原料液体の水銀を蒸発させるための水素のキャリア
ガス導入管23の先端部の吹き出しノズルは、液溜12
から反応管11内へ水銀の供給を確実に行うために、液
溜12の液面下に浸漬させて、水素でバブリングするよ
うな構造にしても良い。
In addition, the blowing nozzle at the tip of the hydrogen carrier gas introducing pipe 23 for evaporating the mercury in the raw material liquid is connected to the liquid reservoir 12.
In order to reliably supply mercury from the mercury into the reaction tube 11, a structure may be adopted in which the mercury is immersed below the liquid surface of the liquid reservoir 12 and hydrogen is bubbled therein.

また上記水素のキャリアガス導入管のガスの吹き出しノ
ズルは、反応管への水銀供給を安定に行うために、第4
図(a)に示すように水銀表面に水素を吹きつけるのも
効果的である。また水銀の供給をより安定に行うために
、第4図(ハ)のように水素吹き出しノズルの吹き出し
口をジョウロの先端部のような開放端部25を有するよ
うにするのが好ましい。また水素のキャリアガス導入管
を複数本とし、各キャリアガス導入管ごとに流量調節手
段を備えることで、流量調節により反応管に水銀を均一
に供給できる。
In addition, in order to stably supply mercury to the reaction tube, the gas blowing nozzle of the hydrogen carrier gas introduction tube is
It is also effective to spray hydrogen onto the mercury surface as shown in Figure (a). In order to supply mercury more stably, it is preferable that the hydrogen blowing nozzle has an open end 25 like the tip of a watering can, as shown in FIG. 4(c). Further, by providing a plurality of hydrogen carrier gas introduction tubes and providing a flow rate adjustment means for each carrier gas introduction tube, mercury can be uniformly supplied to the reaction tube by adjusting the flow rate.

また第1図に示すように、液溜12の底から連通管27
で接続された水銀供給槽28を設けることで、反応管1
1の外部から水銀の液溜12に水銀を供給し、液溜の水
銀液面を一定に保てる。
Furthermore, as shown in FIG.
By providing a mercury supply tank 28 connected to the reaction tube 1
By supplying mercury to the mercury reservoir 12 from the outside of the mercury reservoir 12, the mercury liquid level in the reservoir can be kept constant.

この水銀供給槽28は比較的低温の水銀を蓄えるもので
あり、強度の点から金属の内側に化学的に安定した弗化
エチレンをコーティングした構造等が好ましい。この水
銀供給槽の水銀液面を一定に保つためには、水銀の液面
レベル計が必要であり、各種の液面レベル計の採用が考
えられるが、第6図のように、光源31と光検知器33
を組み合わせた水銀レベル針は水銀のレベルが非接触で
測定できる点で好ましい。また第1図に示す水銀供給槽
28の水銀液面の高さを一定に保つために水銀補給装置
34を設け、この水銀補給装置34内の水銀が前記水銀
の液面レベル針で測定された水銀の液面レベルに応じて
水銀供給槽内に所定の水銀を補給する構造を採る。
This mercury supply tank 28 stores relatively low-temperature mercury, and from the viewpoint of strength, it is preferable to have a structure in which the inside of the metal is coated with chemically stable fluorinated ethylene. In order to keep the mercury liquid level in this mercury supply tank constant, a mercury liquid level meter is necessary, and various types of liquid level meters can be considered, but as shown in Fig. 6, the light source 31 and Photodetector 33
A mercury level needle with a combination of these is preferable because the mercury level can be measured without contact. In addition, a mercury replenishment device 34 was provided to maintain a constant level of the mercury liquid level in the mercury supply tank 28 shown in FIG. A structure is adopted in which a predetermined amount of mercury is replenished into the mercury supply tank according to the liquid level of mercury.

またその他の方法としては、水銀補給装置を使う以外に
、連通管27を変形可能な管で構成して水銀供給槽の高
さを上下に移動する移動機構で変える構造が、水銀の汚
染を防ぐ意味から好ましい。
In addition to using a mercury replenishment device, another method is to prevent mercury contamination by constructing the communication pipe 27 with a deformable pipe and changing the height of the mercury supply tank with a moving mechanism that moves it up and down. Preferable for its meaning.

この変形可能な連通管には、水銀供給槽と同じ理由から
、弗化エチレン製あるいは金属ベローズの内側に弗化エ
チレン製の管を入れた管で構成することができる。
For the same reason as the mercury supply tank, this deformable communication tube can be made of fluoroethylene or a tube made of fluoroethylene inside a metal bellows.

水銀の液溜12の底から連通管27で接続された水銀供
給槽28は、反応管11の外部から液溜12に水銀を供
給して液溜の水銀液面を一定に保つようにしている。液
溜の液面の高さを一定に保つことにより、液溜12から
反応管11への水銀蒸発量が時間的により安定するよう
にしている。
A mercury supply tank 28 connected to the bottom of the mercury reservoir 12 through a communication pipe 27 supplies mercury from the outside of the reaction tube 11 to the reservoir 12 to keep the mercury liquid level in the reservoir constant. . By keeping the height of the liquid level in the liquid reservoir constant, the amount of mercury evaporated from the liquid reservoir 12 to the reaction tube 11 is made more stable over time.

〔実 施 例〕〔Example〕

以下、図面を用いて本発明の実施例につき、詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の結晶製造装置の一実施例の構成図であ
り、MOCVD結晶製造装置を示している。本実施例に
ついて、第1図を参照して説明すると、石英ガラス等で
製造した縦型の反応管11の底部に水銀を収容する液溜
12を配置している。二〇液溜12から基板設置台13
までの反応管11の壁は、水銀の液溜12以上の温度(
例えば250℃)にヒータ14等で加熱できるようにし
ている。基板設置台13はカーボン等で構成し、高周波
誘導加熱方式を用いて例えば4(10)℃に加熱できる
ようにする。
FIG. 1 is a block diagram of an embodiment of the crystal manufacturing apparatus of the present invention, and shows an MOCVD crystal manufacturing apparatus. The present embodiment will be described with reference to FIG. 1. A liquid reservoir 12 containing mercury is placed at the bottom of a vertical reaction tube 11 made of quartz glass or the like. 20 From the liquid reservoir 12 to the substrate installation stand 13
The walls of the reaction tube 11 up to the temperature of the mercury reservoir 12 or higher (
For example, it can be heated to 250° C. by a heater 14 or the like. The substrate mounting table 13 is made of carbon or the like, and can be heated to, for example, 4 (10)° C. using a high frequency induction heating method.

そして基板設置台13は、真空チャック等を用いて基板
18を液溜12に対向するように下向きに設置している
The substrate installation table 13 uses a vacuum chuck or the like to place the substrate 18 facing downward so as to face the liquid reservoir 12.

またガスの排出側のフランジ15はステンレス等で形成
し、0リング等で気密に保つようにする。
The flange 15 on the gas discharge side is made of stainless steel or the like, and is kept airtight with an O-ring or the like.

基板設置台13とフランジ15の間には、第2図(a)
および第2図(a)のn−n ”線断面図の第2図(ハ
)に示すように石英ガラス等で形成し、中心に前記第1
図で示した回転軸16が挿通する貫通孔19を備えた円
柱状、或いは円筒状のスペーサ17が設けられ、反応管
11の内壁と10−程度の間隔を隔てて、内接するよう
にして設置されている。
Between the board installation stand 13 and the flange 15, as shown in Fig. 2(a)
As shown in FIG. 2(c), which is a cross-sectional view taken along line nn'' in FIG. 2(a), the first
A cylindrical or cylindrical spacer 17 is provided with a through hole 19 through which the rotating shaft 16 shown in the figure is inserted, and is installed so as to be in contact with the inner wall of the reaction tube 11 at a distance of about 10 mm. has been done.

上記スペーサ17の変形例としてフランジ15と接続し
た一体構造で取りつけることもできる。そして、基板設
置台13とスペーサ17の途中までの間は水銀の液溜1
2の温度以上に保つため、ヒーター14A等で加熱でき
るようにしている。
As a modification of the spacer 17, it may be attached in an integral structure connected to the flange 15. A mercury liquid reservoir 1 is located between the substrate installation stand 13 and the spacer 17.
In order to maintain the temperature above 2, it can be heated with a heater 14A or the like.

またジエチルカドミウムや、ジエチルテルル等の有機金
属ガス導入管21は、水銀蒸気と反応しない石英ガラス
等で作製して、前記した水銀の液溜12と基板設置台1
3との間に取りつける。そして水銀の液溜12と有機金
属ガス導入管21の間には、反応管11の断面積を低減
するための複数の穴をあけた有機金属ガスの逆流防止隔
壁22を石英ガラスや、カーボン等で作製して反応管1
1の内壁に取りつけている。
In addition, the organometallic gas introduction pipe 21 such as diethyl cadmium or diethyl tellurium is made of quartz glass or the like that does not react with mercury vapor.
Attach it between 3 and 3. Between the mercury reservoir 12 and the organometallic gas introduction tube 21, a partition wall 22 for preventing backflow of organometallic gas with a plurality of holes in order to reduce the cross-sectional area of the reaction tube 11 is installed using quartz glass, carbon, etc. Make reaction tube 1 with
It is attached to the inner wall of 1.

この逆流防止隔壁の構造は第3図(a)の側面図、およ
び該側面図のI−1’線断面図の第3図(ハ)に示すよ
うに多数の貫通孔19を有している。
The structure of this backflow prevention partition wall has a large number of through holes 19, as shown in the side view of FIG. .

前記した第1図に示すように液溜12内の水銀を蒸発さ
せるためのキャリアガス導入管23は、石英ガラス管等
で形成され、該ガス導入管の先端部のノズル部は水銀の
液溜12の液面下に浸漬させて、水素でバブリングする
ようにしている。
As shown in FIG. 1, the carrier gas introduction tube 23 for evaporating the mercury in the liquid reservoir 12 is formed of a quartz glass tube or the like, and the nozzle at the tip of the gas introduction tube is used to evaporate the mercury in the liquid reservoir 12. 12 and is immersed below the surface of the liquid to bubble hydrogen.

またその他のキヤ・I分ス導入管の実施例としでは、第
4図(a)に示すように前記したキメ÷ガス導入管の先
端部の水素ガスの吹き出しノズル23Aは反応管への水
銀の供給を安定に行うため、バブリングで水銀24の液
面24Aを大きく揺動させることをさけて、水銀24の
液面24A表面に水素を吹きつける構造を採っても良い
In addition, in another embodiment of the gas inlet tube, as shown in FIG. In order to ensure stable supply, a structure may be adopted in which hydrogen is sprayed onto the surface of the liquid surface 24A of the mercury 24, avoiding large fluctuations in the liquid surface 24A of the mercury 24 due to bubbling.

更に他の実施例として第4図(ハ)に示すように、前記
した反応管内に更に水銀の供給を安定に行わせるために
、水素ガスの吹き出しノズル23^の先端部の吹き出し
口をジョウロの先端部の構造のように多数の微細な貫通
孔を設けた開放端部25としても良い。
In yet another embodiment, as shown in FIG. 4(c), in order to further stably supply mercury into the reaction tube, the outlet at the tip of the hydrogen gas blowout nozzle 23^ is connected to a watering can. The open end 25 may be provided with a large number of fine through holes like the structure of the tip.

前記した第1図に示すようにこれらの水素ガスのキャリ
アガス導入管23は複数本設けられており、この中を流
れるキャリアガスの流量調節により反応管に水銀を均一
に供給するため、各キャリアガス導入管23ごとにフロ
ーメータ等の流量調節手段26を取りつけている。
As shown in FIG. 1 described above, a plurality of these hydrogen gas carrier gas introduction tubes 23 are provided, and in order to uniformly supply mercury to the reaction tube by adjusting the flow rate of the carrier gas flowing therein, each carrier gas is A flow rate adjusting means 26 such as a flow meter is attached to each gas introduction pipe 23.

また第5図(a)および第5図(ロ)に第1図で示した
有機金属ガス導入管のガス吹き出し口の配置図を示す。
Further, FIGS. 5(a) and 5(b) show the layout of the gas outlet of the organometallic gas introduction tube shown in FIG. 1.

第5図(a)は該ガス導入管のガス吹き出し口の側面図
で、第5図(ロ)はその平面図である。
FIG. 5(a) is a side view of the gas outlet of the gas introduction pipe, and FIG. 5(b) is a plan view thereof.

図示するように有機金属ガス導入管21のガス吹き出し
口21−1は、を機金属ガスの種類が異なるごとに、基
板設置台13の中心に設けた第1図に示す回転軸16を
軸とする回転対称な位置に配置する。
As shown in the figure, the gas outlet 21-1 of the organometallic gas inlet pipe 21 is connected to the rotating shaft 16 shown in FIG. Place it in a rotationally symmetrical position.

例えば図で2l−IAはジエチルテルルガス導入管のガ
ス吹き出し口であり、2l−IBはジメチルカドミウム
ガス導入管のガス吹き出し口である。
For example, in the figure, 2l-IA is the gas outlet of the diethyl tellurium gas inlet pipe, and 2l-IB is the gas outlet of the dimethyl cadmium gas inlet pipe.

このようにすれば、水銀蒸気にCd、或いはTeを含む
有機金属ガスが均一な濃度で混合される。
In this way, the organometallic gas containing Cd or Te is mixed with mercury vapor at a uniform concentration.

また第1図の水銀の液溜12に連通管27で接続して水
銀供給槽28を設け、この水銀供給槽にて水銀の液溜1
2に水銀を供給して液溜12の水銀液面を一定に保って
いる。この水銀の液溜12の温度は比較−21= 的高いので水銀の液溜12からの熱の伝導はあるが、対
流等で、連通管27内の水銀温度が過度に上昇すること
はない。水銀供給槽28も比較的低温の水銀を蓄えるだ
けで良いので、金属の内側に化学的に安定した弗化エチ
レンをコーティングした構造で良い。
Further, a mercury supply tank 28 is provided by connecting to the mercury liquid reservoir 12 shown in FIG.
2 is supplied with mercury to keep the mercury liquid level in the liquid reservoir 12 constant. Since the temperature of this mercury liquid reservoir 12 is comparatively high by -21=, heat is conducted from the mercury liquid reservoir 12, but the mercury temperature in the communication pipe 27 does not rise excessively due to convection or the like. Since the mercury supply tank 28 only needs to store relatively low-temperature mercury, it may have a structure in which the inside of the metal is coated with chemically stable ethylene fluoride.

この水銀の液溜12の水銀液面の高さを一定に保つため
には、水銀供給槽28の水銀液面の高さを一定に保つこ
とが必要である。
In order to keep the mercury liquid level in the mercury reservoir 12 constant, it is necessary to keep the mercury liquid level in the mercury supply tank 28 constant.

第6図は水銀供給槽28の水銀液面の高さを一定に保つ
ために必要な水銀の液面レベル計29の一実施例であり
、変調された光線を放射するレーザー等の光源31とア
レイ構造を持つ光検知器33を組み合わせている。アレ
イ構造の光検知器中の光検知素子33^の内の何れの光
検知素子に水銀の液面24Aで反射した反射光線32が
入射するかによって、水銀の液面24^の高さを検出す
るものである。
FIG. 6 shows an embodiment of a mercury level meter 29 necessary for keeping the level of the mercury liquid level in the mercury supply tank 28 constant. A photodetector 33 having an array structure is combined. The height of the mercury liquid level 24^ is detected depending on which of the photodetecting elements 33^ in the array-structured photodetector the reflected light beam 32 reflected from the mercury liquid level 24A is incident on. It is something to do.

この水銀の液面レベル計29からの信号をフィードバッ
クして、前記した第1図に示す水銀供給槽28の水銀液
面の高さを一定に保つ方法としては、水銀供給槽28に
水銀補給装置34を接続し、前記した液面レベル計から
の信号に依って水銀供給槽28と水銀補給装置34の水
銀導入管35のパルプを適当量開閉すると良い。
As a method of feeding back the signal from the mercury level meter 29 to maintain a constant height of the mercury liquid level in the mercury supply tank 28 shown in FIG. 34 is connected, and appropriate amounts of pulp in the mercury supply tank 28 and the mercury inlet pipe 35 of the mercury replenishment device 34 are opened and closed in accordance with the signal from the liquid level meter.

また他の実施例として上記水銀補給装置を使用する以外
に前記した連通管27を弗化エチレン製あるいは金属ベ
ローズの内側に弗化エチレン製の管を入れた管等の変形
可能な管で構成して、水銀供給槽28に第7図に示すよ
うに片面に歯を刻んだ固定棒42と該固定棒に噛み合う
歯車43と該歯車に連動して移動するガイドロール44
と、このガイドロールに依って移動する設置台45に前
記した原料液体供給槽28を設置し、前記設置台45を
歯車43を回転させるモータ46で回転させ、前記設置
台を上下に移動させ、原料液体供給槽28の高さを変え
る構造としても良い。
As another embodiment, in addition to using the mercury replenishment device, the communication pipe 27 may be made of fluoroethylene or a deformable pipe such as a pipe made of fluoroethylene with a fluoroethylene pipe inside a metal bellows. As shown in FIG. 7, the mercury supply tank 28 is equipped with a fixed rod 42 with teeth cut into one side, a gear 43 that meshes with the fixed rod, and a guide roll 44 that moves in conjunction with the gear.
Then, the above-mentioned raw material liquid supply tank 28 is installed on the installation stand 45 that moves according to this guide roll, and the installation stand 45 is rotated by a motor 46 that rotates the gear 43 to move the installation stand up and down, It is also possible to have a structure in which the height of the raw material liquid supply tank 28 is changed.

以上述べたように本発明の結晶製造装置によれば、縦型
の反応管11の底部に水銀の液溜12を配置して、反応
管と水銀の液溜を加熱する構造を備えることにより、水
銀蒸気は重く、下方程、水銀濃度が高くなる傾向がある
ので、下方側から基板18に水銀を供給すると、水銀濃
度分布が安定し、エピタキシャル成長用の基板18の表
面の水銀分圧を精度良く制御できる。
As described above, according to the crystal manufacturing apparatus of the present invention, the mercury reservoir 12 is disposed at the bottom of the vertical reaction tube 11, and by providing a structure for heating the reaction tube and the mercury reservoir, Mercury vapor is heavy, and the mercury concentration tends to increase as it goes downward. Therefore, supplying mercury to the substrate 18 from the downward side stabilizes the mercury concentration distribution and accurately controls the mercury partial pressure on the surface of the substrate 18 for epitaxial growth. Can be controlled.

そして、ガスの排出側のフランジ15には、狭い間隔を
持って反応管11の内壁に内接するスペーサ17と、こ
のスペーサを加熱するヒータ14Aを備えることにより
、ガスの逆流を少なくでき、反応管11内の全体を高温
に上げたと同様な効果がもたらされ、反応管11内の水
銀分圧を一定に保つことができる。
The flange 15 on the gas discharge side is provided with a spacer 17 that is inscribed in the inner wall of the reaction tube 11 with a narrow interval and a heater 14A that heats this spacer, thereby reducing the backflow of gas. The same effect as when the entire inside of reaction tube 11 is raised to a high temperature is brought about, and the mercury partial pressure inside reaction tube 11 can be kept constant.

そして、水素ガスのキャリアガス導入管23の先端部の
吹き出しノズル23Aを水銀の液溜12の液面下に浸漬
させて、水素でバブリングさせることにより、或いは水
銀表面に水素を吹きつける構造にすることにより、水銀
の供給を確実かつ安定に行うことができる。更に水素ガ
スのキャリアガス導入管23を複数本にして、各キャリ
アガス導入管ごとに流量調節手段26を備えることによ
り、反応管に水銀を均一に供給できる。
Then, the blowing nozzle 23A at the tip of the carrier gas introduction pipe 23 for hydrogen gas is immersed below the liquid surface of the mercury liquid reservoir 12, and hydrogen is bubbled or hydrogen is sprayed onto the mercury surface. By doing so, mercury can be supplied reliably and stably. Furthermore, by providing a plurality of hydrogen gas carrier gas introduction tubes 23 and providing a flow rate adjustment means 26 for each carrier gas introduction tube, mercury can be uniformly supplied to the reaction tube.

また水銀の液溜12の底から連通管27で接続された水
銀供給槽28を設け、反応管11の外部から水銀の液溜
12に水銀を供給して液溜の水銀液面を一定に保てるよ
うにしたことにより、液溜からの水銀蒸発量も安定させ
ることができる。特に、光源と光検知器を用いた液面レ
ベル計29を用いることにより、非接触で水銀の液面の
高さが測定できて、水銀の汚染が防げる。
Furthermore, a mercury supply tank 28 is provided which is connected to the bottom of the mercury reservoir 12 through a communication pipe 27, and mercury is supplied from the outside of the reaction tube 11 to the mercury reservoir 12 to keep the mercury liquid level in the reservoir constant. By doing so, the amount of mercury evaporated from the liquid reservoir can also be stabilized. In particular, by using the liquid level meter 29 that uses a light source and a photodetector, the height of the mercury liquid level can be measured without contact, and mercury contamination can be prevented.

また水銀供給槽28の水銀の液面の高さを一定に保つ方
法として、上下に移動する移動機構41に水銀供給槽2
8を取りつけ、水銀供給槽の高さを変える構造を取るこ
とにより、水銀の汚染が防げる。
In addition, as a method of keeping the level of mercury in the mercury supply tank 28 constant, the mercury supply tank 2 is connected to a moving mechanism 41 that moves up and down.
By installing 8 and changing the height of the mercury supply tank, mercury contamination can be prevented.

またエピタキシャル成長用の基板18の結晶成長面を水
銀の液溜12に対向して、下向きに保持することにより
、水銀が下から供給され、反応管11中の水銀濃度は高
さによって決まる構造を備えたこととあいまって、成長
用基板の表面の水銀濃度を一定に保つことが容易になる
。また基板設置台13を回転することにより、成長用基
板の表面の水銀濃度を更に均一にすることができる。
Furthermore, by holding the crystal growth surface of the substrate 18 for epitaxial growth facing downward and facing the mercury reservoir 12, mercury is supplied from below, and the mercury concentration in the reaction tube 11 is determined by the height. Combined with this, it becomes easier to maintain a constant mercury concentration on the surface of the growth substrate. Furthermore, by rotating the substrate mounting table 13, the mercury concentration on the surface of the growth substrate can be made more uniform.

また水銀以外の結晶成分を反応管に供給する有機金属ガ
ス導入管21のガス吹き出し口21−1を、水銀の液溜
12と基板設置台13との間に設けることにより、水銀
の液溜12の有機金属による汚染を減らすことができる
Furthermore, by providing the gas outlet 21-1 of the organometallic gas introduction tube 21 for supplying crystalline components other than mercury to the reaction tube between the mercury liquid reservoir 12 and the substrate installation stand 13, the mercury liquid reservoir 12 can reduce organometallic contamination.

更に水銀の液溜12と有機金属ガス導入管のガス吹き出
し口の間に複数の穴をあけた柱状の逆流防止隔壁22等
を取りつけて、反応管の断面積を低減する手段を設ける
ことにより、有機金属ガスの逆流が防げて水銀溜の有機
金属による汚染を減らすことができる。
Furthermore, by installing a pillar-shaped backflow prevention partition 22 with a plurality of holes between the mercury liquid reservoir 12 and the gas outlet of the organometallic gas introduction tube, a means for reducing the cross-sectional area of the reaction tube is provided. The backflow of organometallic gas can be prevented and the contamination of the mercury reservoir by organometals can be reduced.

有機金属ガス導入管の吹き出し口を、エピタキシャル成
長用基板の成長面にガスが吹きつけられる方向に向け、
複数の有機金属ガスの導入管のそれぞれに流量調節手段
26を取りつけることにより、成長用基板への有機金属
の供給量の分布が調節できる。更に基板設置台13を回
転させることににより、エピタキシャル成長用の基板1
8表面への有機金属ガスの均一供給が可能になる。
Aim the outlet of the organometallic gas introduction tube in the direction in which the gas will be blown onto the growth surface of the epitaxial growth substrate.
By attaching the flow rate adjusting means 26 to each of the plurality of organometallic gas introduction tubes, the distribution of the amount of organometallic gas supplied to the growth substrate can be adjusted. By further rotating the substrate mounting table 13, the substrate 1 for epitaxial growth is
8. Uniform supply of organometallic gas to the surface becomes possible.

特に異なる種類の有機金属ガス導入管の吹出し口を基板
設置台の回転軸を軸とする回転対称な位置に配置するこ
とにより、エピタキシャル成長用の基板の表面で、それ
ぞれの有機金属成分ごとに供給量の分布が調節できるよ
うになり、成長用基板の表面への有機金属の均一供給が
可能になる。
In particular, by arranging the outlets of different types of organometallic gas introduction tubes in rotationally symmetrical positions around the rotation axis of the substrate installation table, the supply amount for each organometallic component can be adjusted to the surface of the substrate for epitaxial growth. This makes it possible to control the distribution of organic metals, and it becomes possible to uniformly supply the organic metal to the surface of the growth substrate.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、組成が
均一な水銀を台む化合物半導体結晶が再現性良く製造で
きるようになる。
As is clear from the above description, according to the present invention, a mercury-based compound semiconductor crystal having a uniform composition can be manufactured with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の結晶製造装置の一実施例の構成図、 第2図(a)および第2図(ハ)は本発明のスペーサの
側面図、および断面図、 第3図(a)および第3図(ロ)は本発明の逆流防止隔
壁の側面図、および断面図、 第4図(a)および第4図(ロ)は液溜のキャリアガス
導入管の先端部構造の説明図、 第5図(a)および第5図(ハ)は有機金属ガス導入管
のガス吹き出し口の配置図、 第6図は本発明の液面レベル計の説明図、第7図は原料
液体供給槽の移動機構の説明図、第8図および第9図は
従来の結晶製造装置の説明図である。 46はモータを示す。 図において、 11は反応管、12は液溜、13は基板設置台、14,
14Aはヒータ、15はフランジ、16は回転軸、17
はスペーサ、1Bは基板、19は貫通孔、21は有機金
属ガス導入管、21−1.2l−IA 、 2l−IB
はガス吹き出し口、22は逆流防止隔壁、23はキャリ
アガス導入管、23Aは吹き出しノズル、24は水銀、
24Aは液面、25は開放端部、26は流量調節手段、
27は連通管、28は原料液体(水1)供給槽、29は
液面レベル針、31は光源、32は反射光線、33は光
検知器、33^は光検知素子、34は原料液体(水銀)
補給装置、35は水銀導入管、36はバルブ、41は移
動機構、42は固定棒、43は歯車、44はガイドロー
ル、45は設置台、9袂
FIG. 1 is a configuration diagram of an embodiment of the crystal manufacturing apparatus of the present invention, FIG. 2(a) and FIG. 2(c) are side views and cross-sectional views of the spacer of the present invention, and FIG. 3(a) 3(b) is a side view and a sectional view of the backflow prevention partition of the present invention, and FIG. 4(a) and 4(b) are explanatory diagrams of the structure of the tip of the carrier gas introduction pipe of the liquid reservoir. , Figures 5(a) and 5(c) are arrangement diagrams of the gas outlet of the organometallic gas inlet pipe, Figure 6 is an explanatory diagram of the liquid level meter of the present invention, and Figure 7 is the raw material liquid supply. An explanatory diagram of a tank moving mechanism, and FIGS. 8 and 9 are explanatory diagrams of a conventional crystal manufacturing apparatus. 46 indicates a motor. In the figure, 11 is a reaction tube, 12 is a liquid reservoir, 13 is a substrate installation stand, 14,
14A is a heater, 15 is a flange, 16 is a rotating shaft, 17
is a spacer, 1B is a substrate, 19 is a through hole, 21 is an organic metal gas introduction tube, 21-1.2l-IA, 2l-IB
is a gas outlet, 22 is a backflow prevention partition, 23 is a carrier gas introduction pipe, 23A is a blowout nozzle, 24 is mercury,
24A is a liquid level, 25 is an open end, 26 is a flow rate adjusting means,
27 is a communication pipe, 28 is a raw material liquid (water 1) supply tank, 29 is a liquid level needle, 31 is a light source, 32 is a reflected light beam, 33 is a photodetector, 33^ is a photodetecting element, 34 is a raw material liquid ( mercury)
Replenishment device, 35, mercury introduction tube, 36, valve, 41, moving mechanism, 42, fixed rod, 43, gear, 44, guide roll, 45, installation stand, 9 legs

Claims (11)

【特許請求の範囲】[Claims] (1)底部にエピタキシャル成長用の原料液体を収容す
る液溜(12)を設けた縦型の反応管(11)と、該原
料液体の液面に対向して基板が設置可能で、かつ回転可
能な基板設置台(13)と、 前記基板設置台(13)に接続され、回転手段(20)
の回転を伝達する回転軸(16)と、 前記反応管(11)内に挿入され、前記原料液体を蒸発
させるキャリアガスを導入するキャリアガス導入管(2
3)と、 前記基板設置台(13)と、前記液溜(12)の間の反
応管(11)内に挿入され、有機金属ガスを導入する有
機金属ガス導入管(21)と、 前記反応管(11)と前記液溜(12)を加熱する加熱
手段(14)とを設けたことを特徴とする結晶製造装置
(1) A vertical reaction tube (11) with a liquid reservoir (12) at the bottom containing a raw material liquid for epitaxial growth, and a substrate that can be installed facing the surface of the raw material liquid and can be rotated. a board installation stand (13); and a rotation means (20) connected to the board installation stand (13).
a rotating shaft (16) that transmits the rotation of the reaction tube (11), and a carrier gas introduction tube (2) that is inserted into the reaction tube (11) and introduces a carrier gas that evaporates the raw material liquid.
3); and an organometallic gas introduction tube (21) inserted into the reaction tube (11) between the substrate installation stand (13) and the liquid reservoir (12) to introduce an organometallic gas; A crystal manufacturing apparatus characterized in that a pipe (11) and a heating means (14) for heating the liquid reservoir (12) are provided.
(2)反応管(11)の基板上部で該反応管の内壁に所
定の間隔を隔てて挿通自在に内接し、中心に基板設置台
(13)を支持し、回転させるための回転軸(16)を
挿通するための貫通孔(19)を有し、前記反応管(1
1)の側面の加熱手段(14A)で加熱されるスペーサ
(17)を備えたことを特徴とする請求項(1)記載の
結晶製造装置。
(2) The rotation shaft (16) is inscribed in the upper part of the substrate of the reaction tube (11) so that it can be inserted freely into the inner wall of the reaction tube at a predetermined interval, and supports and rotates the substrate installation stand (13) at the center. ) has a through hole (19) for inserting the reaction tube (1
The crystal manufacturing apparatus according to claim 1, further comprising a spacer (17) heated by the side heating means (14A) of claim 1).
(3)液溜(12)と有機金属ガス導入管(21)の間
に前記反応管(11)の内部断面積を低減する複数の貫
通孔(19)を備えた有機金属ガスの逆流防止隔壁(2
2)を設けたことを特徴とする請求項(1)記載の結晶
製造装置。
(3) An organometallic gas backflow prevention partition comprising a plurality of through holes (19) between the liquid reservoir (12) and the organometallic gas introduction tube (21) to reduce the internal cross-sectional area of the reaction tube (11). (2
2) The crystal manufacturing apparatus according to claim 1, further comprising: 2).
(4)キャリアガス導入管(23)の先端部が、液溜(
12)の原料液体表面にキャリアガスを吹きつける吹き
出しノズル(23A)を備えているか、或いは液溜(1
2)内の原料液体内に浸漬していることを特徴とする請
求項(1)記載の結晶製造装置。
(4) The tip of the carrier gas introduction pipe (23) is connected to the liquid reservoir (
12) is equipped with a blowing nozzle (23A) for blowing carrier gas onto the surface of the raw material liquid, or a liquid reservoir (12) is provided.
2) The crystal manufacturing apparatus according to claim 1, wherein the crystal manufacturing apparatus is immersed in the raw material liquid of claim 2).
(5)キャリアガス導入管(23)の各々にガス流量の
流量調節手段(26)を設けたことを特徴とする請求項
(1)、或いは(4)に記載の結晶製造装置。
(5) The crystal manufacturing apparatus according to claim 1 or 4, wherein each of the carrier gas introduction pipes (23) is provided with a gas flow rate adjusting means (26).
(6)液溜(12)の原料液体表面にキャリアガスを吹
きつける吹き出しノズル(23A)の構造が、ジョウロ
の先端部構造のように複数のキャリアガス吹き出し穴を
備えた開放端部(25)を有することを特徴とする請求
項(1)、或いは(4)に記載の結晶製造装置。
(6) The structure of the blow-off nozzle (23A) that blows the carrier gas onto the surface of the raw material liquid in the liquid reservoir (12) is an open end (25) with a plurality of carrier gas blow-off holes like the tip structure of a watering can. The crystal manufacturing apparatus according to claim 1 or 4, characterized in that it has the following.
(7)有機金属ガス導入管(21)を複数本、流量調節
手段(26)を備えて設けるとともに、該ガス導入管の
先端部のガス吹き出し口(21−1)が、基板の成長面
に向けてガスが吹きつけ可能としたことを特徴とする請
求項(1)記載の結晶製造装置。
(7) A plurality of organometallic gas introduction tubes (21) are provided with flow rate adjustment means (26), and the gas outlet (21-1) at the tip of the gas introduction tube is arranged on the growth surface of the substrate. 2. The crystal manufacturing apparatus according to claim 1, wherein the crystal manufacturing apparatus is capable of blowing gas toward the crystal.
(8)有機金属ガス導入管(21)のガス吹き出し口(
21−1)を、基板設置台(13)の回転軸(16)を
軸とする回転対称な位置に配設したことを特徴とする請
求項(1)、或いは(7)に記載の結晶製造装置。
(8) Gas outlet of organometallic gas inlet pipe (21) (
21-1) is arranged at a rotationally symmetrical position about the rotation axis (16) of the substrate installation table (13), or (7). Device.
(9)液溜(12)に対して連通管(27)で接続され
た原料液体供給槽(28)を反応管(11)の外部に設
け、該原料液体供給槽(28)の原料液体液面に斜めに
光線を入射する光源(31)と、該光線の原料液体液面
での反射光線(32)を検出する光検知器(33)から
構成された原料液体の液面レベル計(29)を備えたこ
とを特徴とする請求項(1)記載の結晶製造装置。
(9) A raw material liquid supply tank (28) connected to the liquid reservoir (12) by a communication pipe (27) is provided outside the reaction tube (11), and the raw material liquid in the raw material liquid supply tank (28) is A liquid level meter (29) for raw material liquid, which is composed of a light source (31) that makes a light beam obliquely incident on the surface, and a photodetector (33) that detects the reflected light beam (32) of the light beam on the liquid surface of the raw material liquid. ) The crystal manufacturing apparatus according to claim 1, further comprising:
(10)連通管(27)が変形可能な可撓性の管で形成
され、原料液体の液面レベル計(29)からの信号によ
って、原料液体供給槽(28)を上下に移動可能とする
移動機構(41)を備えたことを特徴とする請求項(1
)、或いは(9)に記載の結晶製造装置。
(10) The communication pipe (27) is formed of a deformable flexible pipe, and the raw material liquid supply tank (28) can be moved up and down according to the signal from the raw material liquid level meter (29). Claim (1) characterized by comprising a moving mechanism (41).
), or the crystal manufacturing apparatus according to (9).
(11)原料液体供給槽(28)に接続して原料液体補
給装置(34)を設け、原料液体の液面レベル計(29
)からの信号により、原料液体を原料液体供給槽(28
)に送出し、原料液体供給槽(28)内の原料液体の液
面の高さを一定に保つようにしたことを特徴とする請求
項(1)、或いは(9)に記載の結晶製造装置。
(11) A raw material liquid replenishment device (34) is connected to the raw material liquid supply tank (28), and a raw material liquid level meter (29) is provided.
), the raw material liquid is transferred to the raw material liquid supply tank (28
), and the liquid level of the raw material liquid in the raw material liquid supply tank (28) is kept constant. .
JP20717790A 1990-08-02 1990-08-02 Manufacturing apparatus for crystal Pending JPH0491442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20717790A JPH0491442A (en) 1990-08-02 1990-08-02 Manufacturing apparatus for crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20717790A JPH0491442A (en) 1990-08-02 1990-08-02 Manufacturing apparatus for crystal

Publications (1)

Publication Number Publication Date
JPH0491442A true JPH0491442A (en) 1992-03-24

Family

ID=16535516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20717790A Pending JPH0491442A (en) 1990-08-02 1990-08-02 Manufacturing apparatus for crystal

Country Status (1)

Country Link
JP (1) JPH0491442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0770990A2 (en) 1995-10-26 1997-05-02 Sony Corporation Speech encoding method and apparatus and speech decoding method and apparatus
JP2012530852A (en) * 2010-02-23 2012-12-06 サエス・ゲッターズ・エッセ・ピ・ア Method and system for controlled supply of mercury and apparatus manufactured using this method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0770990A2 (en) 1995-10-26 1997-05-02 Sony Corporation Speech encoding method and apparatus and speech decoding method and apparatus
JP2012530852A (en) * 2010-02-23 2012-12-06 サエス・ゲッターズ・エッセ・ピ・ア Method and system for controlled supply of mercury and apparatus manufactured using this method
US8453892B2 (en) 2010-02-23 2013-06-04 Saes Getters S.P.A. Method and system for the controlled dispensing of mercury and devices manufactured through this method

Similar Documents

Publication Publication Date Title
KR920010690B1 (en) Metal organic chemical vapor deposition apparatus and its method
KR100272848B1 (en) Chemical vapor deposition apparatus
US5835678A (en) Liquid vaporizer system and method
JP5619164B2 (en) CVD method and CVD reactor
US20030054099A1 (en) Condensation coating process
CN101423936A (en) Multi-gas spiral channel showerhead
JP2002371361A (en) Apparatus and method for vapor phase epitaxy
JPH04342490A (en) Apparatus for feeding melt
US6475284B1 (en) Gas dispersion head
CN111441015A (en) Deposition apparatus, deposition apparatus and operation method thereof
US20050249873A1 (en) Apparatuses and methods for producing chemically reactive vapors used in manufacturing microelectronic devices
JPH0491442A (en) Manufacturing apparatus for crystal
US4985281A (en) Elemental mercury source for metal-organic chemical vapor deposition
KR101306986B1 (en) Apparatus for forming thin films
US4901670A (en) Elemental mercury source for metal-organic chemical vapor deposition
KR100358727B1 (en) Apparatus and method for depositing organic matter of vapor phase
KR20020084102A (en) Method and device for depositing a precursor on a substrate, said precursor being present in liquid form
JPH0547669A (en) Vapor growth apparatus
JP2002261021A (en) Apparatus and method for vapor-phase growth
KR101060756B1 (en) Chemical vapor deposition apparatus
JPH06316765A (en) Vaporizer for liquid material
JPH01257321A (en) Vapor growth apparatus
EP0757117B1 (en) Method and apparatus for deposition of material on a semiconductor wafer
JPH04196544A (en) Vapor phase epitaxial growth method and device
JP3084881B2 (en) Metal organic chemical vapor deposition equipment