JPH049084B2 - - Google Patents

Info

Publication number
JPH049084B2
JPH049084B2 JP58163186A JP16318683A JPH049084B2 JP H049084 B2 JPH049084 B2 JP H049084B2 JP 58163186 A JP58163186 A JP 58163186A JP 16318683 A JP16318683 A JP 16318683A JP H049084 B2 JPH049084 B2 JP H049084B2
Authority
JP
Japan
Prior art keywords
filtration
membrane
filtration membrane
air
backwashing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58163186A
Other languages
Japanese (ja)
Other versions
JPS6058222A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16318683A priority Critical patent/JPS6058222A/en
Publication of JPS6058222A publication Critical patent/JPS6058222A/en
Publication of JPH049084B2 publication Critical patent/JPH049084B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の分野) 本発明は多孔質濾過膜の再生方法に関し、詳し
くは懸濁物質含有液を多孔質濾過膜で濾過する際
に、該濾過膜に付着する懸濁物質等の微粒子をオ
ゾン化加圧空気により逆洗する多孔質濾過膜の再
生方法に関する。 (発明の背景) 水中の懸濁物質を多孔質濾過膜により濾過する
場合、濾過膜の表面に懸濁物質の微粒子が付着し
て次第に濾過効率が低下する。 そのために従来、濾過膜の再生方法として酸、
アルカリによる化学洗浄法あるいは濾過時と逆の
経路で空気あるいは濾過液を連続的に導入する物
理洗浄法により、膜上に付着した懸濁物質を除去
する方法が知られている(例えば圧縮空気による
物理洗浄法として特開昭53−108882号公報)。 しかし、これら再生方法を施しても逆洗性が低
下し易いという傾向がある。 本発明者等はその原因について種々検討した結
果、濾過原液中に例えば微生物が含まれており、
それらが濾過表面に捕捉された場合、粘着性を有
するために、逆洗の際の剥離性が悪く、逆洗性を
低下させて濾過差圧の上昇を招くと共に、濾過運
転が長期に亘る場合には、捕捉された微生物が膜
面で繁殖し、この現象が一層顕著になり易いこと
を知つた。 (発明の目的) 本発明者等はこのような事情に鑑み微生物ある
いはその他の粘着性物質の逆洗時における剥離性
を向上させ、逆洗性の向上ないしはその低下を防
止することを目的として鋭意検討した結果、オゾ
ンが殺菌作用および酸化剤としての効果があるこ
とに着目し、オゾン化された加圧空気で多孔質濾
過膜を逆洗することにより、その目的が充足され
ることを知見して本発明をなすに至つた。 (発明の構成および効果) すなわち、本発明は懸濁物質含有液を多孔質濾
過膜で濾過後、該濾過膜をオゾン化加圧空気によ
り逆洗すると共に、更に必要により逆洗後の空気
中の残存オゾンを吸着又は分解処理することから
なる多孔質濾過膜の再生方法である。 本発明で言う懸濁物質含有液としては、液中に
粘着性または付着性を有するバクテリア等の微生
物あるいはその他の粘着性物質を含有するもの
で、その種類、含有量等については特に制限され
ない。具体的には、例えば原子力施設等からの放
射性懸濁物質含有液(放射性廃液)、食品、医薬、
化学工業等からの懸濁物質を含む水性廃液等を挙
げることができる。特に放射性廃液の濾過処理に
適している。懸濁物質含有溶液中の微生物以外の
粘着性物質としては、例えば有機物あるいは水酸
化鉄等の金属化合物を挙げることができるが、本
発明は微生物を多く含有する懸濁物質含有液を処
理する多孔質濾過膜において特に効果を発揮す
る。 多孔質濾過膜としては、中空糸濾過膜、セラミ
ツクフイルター、焼結金属膜、金属メツシユフイ
ルター等のあらゆる種類の多孔質濾過膜を挙げる
ことができる。特に中空糸濾過膜が好ましい。中
空糸濾過膜は外径300〜3000μm、膜圧50〜500μ
m程度のものを数十〜数十万本束ねた集束体を、
望ましくは円筒などの保護外筒に収めて使用す
る。 本発明においては、これら濾過膜に濾過時と逆
の経路でオゾン化された加圧空気を導通し、その
気泡および/または振動等により膜上に堆積した
懸濁物質を除去して膜の濾過性能を再生すると共
に、その際膜上に付着した微生物あるいはその他
の粘着性物質をオゾンにより不活化あるいは酸化
して剥離し易くする。 オゾン化加圧空気は通常のオゾン発生器等から
得られるものでよく、オゾンの含有量は多いほど
微生物を不活化するうえで好ましいが、反面、濾
過膜の材質によつては、劣化し易い等の悪影響が
あるので、一般にはオゾン含有量が0.01〜2.0容
量%程度のものが好ましい。 また該オゾン化加圧空気の圧力は濾過膜面より
多数の気泡が生ずるような圧力を有することが好
ましく、これは膜及びその細孔等に応じて異なる
が、例えば中空糸濾過膜の場合、0.1〜20気圧、
好ましくは2.0〜5.0気圧が適当である。 逆洗の時間は濾過原液、濾過膜、オゾン量、そ
の他の条件に応じて、逆洗後の初期圧の復帰率を
みて、適宜決定し得る。 このようなオゾン化加圧空気による再生は定流
量または定圧あるいは両者を組み合せた逆洗空気
制御のもとに行なわれるが、更に必要により、逆
洗後の残存オゾンを活性炭等に吸着するか熱分解
により除去することが好ましい。 本発明の再生方法は、従来の空気逆洗を行なつ
ているシステムに容易に適用でき、従来の気体逆
洗法と殆ど変らないシステムにおいて容易に実施
できることに大きな特徴を有する。また、微生物
が付着し易い0.01〜3.0μmの微細孔を有する濾過
膜の再生に特に有効である。 以下に、本発明を図面に基づいて更に詳細に説
明する。 第1図は本発明方法に係る装置を用いた多孔質
濾過膜の再生方法の一例を示すプロセスシート
で、膜として中空糸多孔質濾過膜を用いる場合の
例を示したものである。 第1図中、1は中空糸多孔質濾過膜2を内蔵し
た濾過容器、3は濾過容器1からの逆洗液を受け
るタンクで、4は逆洗空気を浄化するためのオゾ
ン吸着塔である。 濾過容器1は上方部は濾過液帯部A、下方部は
原液帯部Bに仕切られており、その仕切板を通し
て、下端を封じた中空糸濾過膜の集束体2を保護
円筒に収納して、1〜複数個配置取付けてある。 懸濁物質を含む濾過用原液は濾過原液供給ライ
ン5から濾過容器1の原液帯部Bに導入される。
導入された原液は中空糸多孔質濾過膜2で濾過さ
れ、その原液中に含まれる懸濁物質は膜面上に捕
捉除去される。浄化された濾過液は膜の中空糸内
を通り、濾過液帯部Aに導かれ、更に濾過液排出
ライン6から濾過容器1外に導出され、浄化液と
して再使用または系外に放出される。中空糸多孔
質濾過膜2表面に懸濁物質が堆積して濾過性能が
低下した場合、濾過液排出ライン6を閉じ、中空
糸多孔質濾過膜2が液中に浸漬されている状態で
逆洗用空気を送つて、中空糸多孔質濾過膜2の機
能を回復させるわけであるが、本発明の場合は、
逆洗空気供給ライン7からオゾン化加圧空気を濾
過容器1の濾過液帯部Aを経て中空糸多孔質濾過
膜2の中空糸内に圧入し、その膜表面から無数の
気泡を発生させ、中空糸多孔質濾過膜2の表面に
堆積および付着した懸濁物質および微生物やその
他の粘着性物質を剥離除去する。 その逆洗空気は逆洗空気出口ライン8から濾過
容器1外に導出されるが、これは微量の懸濁物質
を有するミストを含んでいるので一時的に逆洗液
受タンク3に導く。 この逆洗液受タンク3でミスト中の微量の懸濁
物質を落し、さらに逆洗空気排出ライン9から活
性炭を内蔵したオゾン吸着塔4に導き、残存オゾ
ンおよびミスト中の残りの懸濁物質を完全に除去
した後、その浄化空気を浄化空気放出ライン10
から放出する。 濾過容器1内の濃縮懸濁物質を含む逆洗液は、
逆洗液排出ライン11から逆洗液受タンク3に集
められる。このタンク3の逆洗液はライン12よ
り取出される。 以上のごとき本発明の再生方法によれば次のよ
うな効果が得られる。 微生物等の粘着性物質の剥離性を向上させ、
逆洗性の向上または維持を図ることができる。 濾過圧上昇が少ないため、逆洗回数を少くで
きる。 濾過圧の復帰性が良好なため、膜寿命が長く
経済的であり、2次廃棄物発生量が減少する。 膜寿命が長くなることにより、濾過膜交換回
数が減少し、懸濁物質含有液として放射性廃棄
液を用いる等の原子力分野に適用した場合、作
業者の被曝量が減少する。 従来の空気逆洗を採用しているシステムに簡
単な改造を加えるだけで良好な逆洗性を得るこ
とができる。 酸、アルカリ等の薬剤を用いる化学洗浄法に
比較して、材料の腐食、薬剤の処理、プロセス
の複雑化等の問題が生じない。 以下、実施例および比較例に基づき本発明を説
明する。 実施例1および比較例1 第1図に示したと同様の試験装置を用いて実験
を行なつた。すなわち、原液タンクに平均粒径
0.6μmの水酸化鉄を含む腐敗した水(コロニーカ
ウント法で測定した微生物濃度106〜107個/)
を満たし、一方濾過容器1には、ポリビニルアル
コール系ポリマーから作られた0.01〜0.5μmの微
細孔を有する外径900μ、内径450μおよび純水の
透過速度(K)200/hr.am・m2(膜面積は外
壁面で計算)、バブルポイント1.5atm.、有効長25
cmの中空糸、150本が、上端部はシール固定され、
下端部は各々の中空糸開口部が接着剤で封止され
かつ中空糸同志は固定されず自由端を形成する構
造の濾過膜集束体2(膜面積0.1m2)1個装着し、
ライン5より上記原液を通入して濾過を行ない、
濾液はライン6より抜出した。 10日後に濾過を中止し、濾過時の液が充満した
ままの状態でオゾン化加圧空気をライン7より濾
過容器1に通入し、ライン8より排出することに
より、上記膜の逆洗を行なつた(実施例1)。な
お、逆洗液はライン11より抜出した。 この試験条件は以下の通りであつた。 濾過流量:1m3/hr 逆洗流量:3Nm3/hr 濾過時間:10日 逆洗時間:30分 温 度:20℃ O3濃度:0.5容量% オゾン化加圧空気圧力:3.5Kg/cm2 一方、比較としてオゾン化加圧空気の代りに、
単に空気を用いて同様に試験し(比較例1)、逆
洗後の初期圧の復帰性を比較した。 それぞれの試験結果を第1表に示した。
(Field of the Invention) The present invention relates to a method for regenerating a porous filtration membrane, and more specifically, when a liquid containing suspended matter is filtered through a porous filtration membrane, fine particles such as suspended matter adhering to the filtration membrane are ozonated. The present invention relates to a method for regenerating a porous filtration membrane by backwashing with pressurized air. (Background of the Invention) When suspended solids in water are filtered using a porous filtration membrane, fine particles of the suspended solids adhere to the surface of the filtration membrane, gradually reducing the filtration efficiency. For this purpose, acid,
There are known methods for removing suspended solids deposited on membranes using chemical cleaning methods using alkali or physical cleaning methods in which air or filtrate is continuously introduced in the reverse path to the filtration process (e.g., using compressed air). (Japanese Patent Application Laid-open No. 108882/1982 as a physical cleaning method). However, even if these regeneration methods are applied, there is a tendency that backwashing performance tends to deteriorate. As a result of various studies on the causes, the present inventors found that, for example, microorganisms were contained in the filtration stock solution.
If they are captured on the filtration surface, their adhesiveness makes it difficult to remove them during backwashing, reducing backwashing performance and causing an increase in filtration differential pressure. We learned that captured microorganisms proliferate on the membrane surface, and this phenomenon tends to become more pronounced. (Purpose of the Invention) In view of the above circumstances, the present inventors have made efforts to improve the removability of microorganisms or other sticky substances during backwashing, and to improve the backwashability or prevent its decline. As a result of their investigation, they focused on the fact that ozone has a bactericidal effect and is effective as an oxidizing agent, and discovered that this purpose could be achieved by backwashing the porous filtration membrane with ozonized pressurized air. As a result, the present invention was completed. (Structure and Effects of the Invention) That is, the present invention filters a suspended matter-containing liquid through a porous filtration membrane, backwashes the filtration membrane with ozonized pressurized air, and, if necessary, removes water from the air after backwashing. This is a method for regenerating a porous filtration membrane, which comprises adsorbing or decomposing residual ozone. The suspended matter-containing liquid referred to in the present invention is one that contains microorganisms such as bacteria or other sticky substances that are sticky or adhesive, and there are no particular restrictions on the type, content, etc. Specifically, for example, liquids containing radioactive suspended substances (radioactive waste liquids) from nuclear facilities, etc., foods, pharmaceuticals,
Examples include aqueous waste liquids containing suspended substances from chemical industries and the like. It is particularly suitable for filtration treatment of radioactive waste liquid. Examples of sticky substances other than microorganisms in a solution containing suspended matter include organic substances or metal compounds such as iron hydroxide. It is particularly effective for quality filtration membranes. Examples of the porous filtration membrane include all kinds of porous filtration membranes such as hollow fiber filtration membranes, ceramic filters, sintered metal membranes, and metal mesh filters. Hollow fiber filtration membranes are particularly preferred. Hollow fiber filtration membrane has an outer diameter of 300 to 3000 μm and a membrane pressure of 50 to 500 μm.
A bundle made up of tens to hundreds of thousands of pieces of about m size is bundled together.
It is preferably used by encasing it in a protective outer case such as a cylinder. In the present invention, ozonized pressurized air is passed through these filtration membranes in the reverse path to the filtration process, and suspended substances deposited on the membranes are removed by bubbles and/or vibration, etc., and the membranes are filtered. In addition to regenerating the performance, ozone inactivates or oxidizes microorganisms or other sticky substances adhering to the membrane, making it easier to peel off. Ozonized pressurized air can be obtained from a normal ozone generator, etc., and the higher the ozone content, the better for inactivating microorganisms, but on the other hand, depending on the material of the filtration membrane, it may easily deteriorate. Generally, it is preferable that the ozone content is about 0.01 to 2.0% by volume. Further, the pressure of the ozonized pressurized air is preferably such that a large number of bubbles are generated from the surface of the filtration membrane, and although this varies depending on the membrane and its pores, for example, in the case of a hollow fiber filtration membrane, 0.1~20 atm,
Preferably, 2.0 to 5.0 atmospheres is appropriate. The backwashing time can be appropriately determined depending on the filtration stock solution, the filtration membrane, the amount of ozone, and other conditions, and by looking at the initial pressure recovery rate after backwashing. Such regeneration using ozonized pressurized air is performed under backwash air control with a constant flow rate, constant pressure, or a combination of both. Preferably, it is removed by decomposition. A major feature of the regeneration method of the present invention is that it can be easily applied to a system that performs conventional air backwashing, and that it can be easily implemented in a system that is almost the same as the conventional gas backwashing method. Moreover, it is particularly effective for regenerating filter membranes having micropores of 0.01 to 3.0 μm to which microorganisms easily adhere. Below, the present invention will be explained in more detail based on the drawings. FIG. 1 is a process sheet showing an example of a method for regenerating a porous filtration membrane using the apparatus according to the method of the present invention, and shows an example in which a hollow fiber porous filtration membrane is used as the membrane. In Figure 1, 1 is a filtration container containing a hollow fiber porous filtration membrane 2, 3 is a tank that receives backwash liquid from the filtration container 1, and 4 is an ozone adsorption tower for purifying the backwash air. . The filtration container 1 is divided into a filtrate zone A in the upper part and a stock solution zone B in the lower part, and a bundle 2 of hollow fiber filtration membranes with the lower end sealed is housed in a protective cylinder through the partition plate. , one or more are installed. The stock solution for filtration containing suspended matter is introduced into the stock solution zone B of the filtration container 1 from the stock solution supply line 5 for filtration.
The introduced stock solution is filtered through the hollow fiber porous filtration membrane 2, and suspended substances contained in the stock solution are captured and removed on the membrane surface. The purified filtrate passes through the hollow fibers of the membrane, is led to the filtrate zone A, and is further led out of the filtration container 1 from the filtrate discharge line 6, where it is reused as a purified solution or discharged outside the system. . When suspended matter accumulates on the surface of the hollow fiber porous filtration membrane 2 and the filtration performance deteriorates, the filtrate discharge line 6 is closed and the hollow fiber porous filtration membrane 2 is backwashed while immersed in the liquid. The function of the hollow fiber porous filtration membrane 2 is restored by sending fresh air, but in the case of the present invention,
Ozonized pressurized air is forced into the hollow fibers of the hollow fiber porous filtration membrane 2 from the backwash air supply line 7 through the filtrate zone A of the filtration container 1, and countless air bubbles are generated from the membrane surface. Suspended substances, microorganisms, and other sticky substances deposited and attached to the surface of the hollow fiber porous filtration membrane 2 are peeled off and removed. The backwash air is led out of the filtration container 1 from the backwash air outlet line 8, but since it contains mist with a small amount of suspended matter, it is temporarily led to the backwash liquid receiving tank 3. This backwash liquid receiving tank 3 removes a small amount of suspended solids in the mist, and the backwash air discharge line 9 leads it to an ozone adsorption tower 4 containing activated carbon to remove residual ozone and the remaining suspended solids in the mist. After complete removal, the purified air is passed through the purified air discharge line 10.
released from. The backwash liquid containing concentrated suspended solids in the filtration container 1 is
The backwash liquid is collected from the backwash liquid discharge line 11 into the backwash liquid receiving tank 3. The backwash liquid in the tank 3 is taken out through a line 12. According to the regeneration method of the present invention as described above, the following effects can be obtained. Improves the removability of sticky substances such as microorganisms,
It is possible to improve or maintain backwash performance. Since the increase in filtration pressure is small, the number of times of backwashing can be reduced. Since the filtration pressure returns well, the membrane has a long service life and is economical, reducing the amount of secondary waste generated. The longer membrane life reduces the number of filter membrane replacements, and when applied to the nuclear field, such as when radioactive waste liquid is used as a suspended solids-containing liquid, the amount of radiation exposure for workers is reduced. Good backwashing performance can be obtained by simply making a simple modification to a conventional air backwashing system. Compared to chemical cleaning methods that use chemicals such as acids and alkalis, problems such as material corrosion, chemical treatment, and process complexity do not occur. The present invention will be explained below based on Examples and Comparative Examples. Example 1 and Comparative Example 1 Experiments were conducted using a test apparatus similar to that shown in FIG. In other words, the average particle size is
Putrid water containing iron hydroxide of 0.6 μm (microbial concentration 10 6 to 10 7 / measured by colony counting method)
On the other hand, the filtration container 1 is made of polyvinyl alcohol polymer and has micropores of 0.01 to 0.5 μm, an outer diameter of 900 μm, an inner diameter of 450 μm, and a pure water permeation rate (K) of 200/hr.am・m 2 (Membrane area is calculated based on the outer wall surface), bubble point 1.5 atm., effective length 25
150 cm hollow fibers, the upper end is fixed with a seal,
At the lower end, one filtration membrane bundle 2 (membrane area 0.1 m 2 ) was attached, in which each hollow fiber opening was sealed with adhesive and the hollow fibers were not fixed to each other to form a free end.
The above stock solution is introduced through line 5 and filtered,
The filtrate was extracted from line 6. After 10 days, the filtration is stopped, and the membrane is backwashed by passing ozonized pressurized air into the filtration container 1 through line 7 and discharging it through line 8 while it is still filled with the liquid at the time of filtration. (Example 1). Note that the backwash liquid was extracted from line 11. The test conditions were as follows. Filtration flow rate: 1m3 /hr Backwash flow rate: 3Nm3 /hr Filtration time: 10 days Backwash time: 30 minutes Temperature: 20℃ O3 concentration: 0.5% by volume Ozonation pressurized air pressure: 3.5Kg/ cm2 On the other hand, as a comparison, instead of ozonated pressurized air,
A similar test was conducted simply using air (Comparative Example 1), and the returnability of the initial pressure after backwashing was compared. The results of each test are shown in Table 1.

【表】 第1表に示されるごとく、オゾン化加圧空気を
用いて逆洗を行なつた実施例1は、空気を用いて
逆洗を行なつた比較例1に比較して復帰率が著し
く高いことが判る。
[Table] As shown in Table 1, Example 1, in which backwashing was performed using ozonized pressurized air, had a higher recovery rate than Comparative Example 1, in which backwashing was performed using air. It turns out that it is significantly high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の再生方法に係わる一実施例を
示すプロセスシートである。 1……濾過容器、2……中空糸多孔質濾過膜、
3……逆洗液受タンク、4……オゾン吸着塔、5
……濾過原液供給ライン、6……濾過液排出ライ
ン、7……逆洗空気(オゾン化加圧空気)供給ラ
イン、8……逆洗空気(オゾン化加圧空気)出口
ライン、9……逆洗空気排出ライン、10……浄
化空気放出ライン、11……逆洗液排出ライン、
12……逆洗液輸送ライン。
FIG. 1 is a process sheet showing an embodiment of the regeneration method of the present invention. 1...filtration container, 2...hollow fiber porous filtration membrane,
3... Backwash liquid receiving tank, 4... Ozone adsorption tower, 5
...Filtered liquid supply line, 6...Filtrate discharge line, 7...Backwash air (ozonized pressurized air) supply line, 8...Backwash air (ozonized pressurized air) outlet line, 9... Backwash air discharge line, 10...Purified air discharge line, 11...Backwash liquid discharge line,
12... Backwash liquid transport line.

Claims (1)

【特許請求の範囲】 1 懸濁物質含有液を多孔質濾過膜で濾過後、該
濾過膜をオゾン化加圧空気により逆洗することを
特徴とする多孔質濾過膜の再生方法。 2 前記懸濁物質含有液が微生物を含む放射性懸
濁物質含有液である特許請求の範囲第1項記載の
再生方法。 3 前記濾過膜が中空糸多孔質濾過膜である特許
請求の範囲第1項または第2項記載の再生方法。 4 前記逆洗後の空気中の残存オゾンを吸着また
は分解処理する特許請求の範囲第1項、第2項ま
たは第3項記載の再生方法。
[Scope of Claims] 1. A method for regenerating a porous filtration membrane, which comprises filtering a liquid containing suspended matter through a porous filtration membrane, and then backwashing the filtration membrane with ozonized pressurized air. 2. The regeneration method according to claim 1, wherein the suspended solids-containing liquid is a radioactive suspended solids-containing liquid containing microorganisms. 3. The regeneration method according to claim 1 or 2, wherein the filtration membrane is a hollow fiber porous filtration membrane. 4. The regeneration method according to claim 1, 2, or 3, which adsorbs or decomposes residual ozone in the air after the backwashing.
JP16318683A 1983-09-07 1983-09-07 Regeneration of porous filter membrane Granted JPS6058222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16318683A JPS6058222A (en) 1983-09-07 1983-09-07 Regeneration of porous filter membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16318683A JPS6058222A (en) 1983-09-07 1983-09-07 Regeneration of porous filter membrane

Publications (2)

Publication Number Publication Date
JPS6058222A JPS6058222A (en) 1985-04-04
JPH049084B2 true JPH049084B2 (en) 1992-02-19

Family

ID=15768888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16318683A Granted JPS6058222A (en) 1983-09-07 1983-09-07 Regeneration of porous filter membrane

Country Status (1)

Country Link
JP (1) JPS6058222A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305230A (en) * 1991-04-01 1992-10-28 Kubota Corp Backwashing method for separating membrane of membrane separator
JP4626947B2 (en) * 2004-07-23 2011-02-09 オルガノ株式会社 Filter media processing method and apparatus
JP5431493B2 (en) 2009-10-22 2014-03-05 旭化成ケミカルズ株式会社 Immersion type separation membrane apparatus cleaning method and immersion type separation membrane apparatus cleaning system
EP2777803A1 (en) * 2013-03-15 2014-09-17 KSM Water GmbH System for cleaning a membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161474A (en) * 1974-06-21 1975-12-27
JPS53106389A (en) * 1977-02-28 1978-09-16 Toshiba Corp Washing method for membrane separation apparatus
JPS54162684A (en) * 1978-06-14 1979-12-24 Ebara Infilco Co Ltd Preliminary treating method for contaminated membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161474A (en) * 1974-06-21 1975-12-27
JPS53106389A (en) * 1977-02-28 1978-09-16 Toshiba Corp Washing method for membrane separation apparatus
JPS54162684A (en) * 1978-06-14 1979-12-24 Ebara Infilco Co Ltd Preliminary treating method for contaminated membrane

Also Published As

Publication number Publication date
JPS6058222A (en) 1985-04-04

Similar Documents

Publication Publication Date Title
US10071927B2 (en) Apparatus, systems, and methods for fluid filtration
JP3194684B2 (en) Natural water membrane purification method
JPH06205949A (en) Fluid processing method
JPS61291007A (en) Hollow yarn type separation membrane element
WO2001066238A1 (en) Method of producing purified water
JPS62163708A (en) Method for backwashing hollow yarn filter
JPH11512341A (en) Method and apparatus for removing iron from aqueous liquids
JPH0231200A (en) Backwash method of hollow-string film filter
US20080179256A1 (en) System and method for chemical-free metal particle removal from a liquid media
JPH049084B2 (en)
JPS61181507A (en) Method for washing hollow yarn filter module
JPS6393310A (en) Oil-water separator provided with regeneration function
JPS6342703A (en) Method for regenerating hollow yarn membrane
JPH10323544A (en) Backwashing device for hollow yarn membrane filtration
JP2008183513A (en) Water purifying apparatus
JPH09122654A (en) Drinking water production apparatus
CN211078658U (en) Purified water treatment production line
WO2011108589A1 (en) Method for washing porous membrane module, and fresh water generator
JPH04114722A (en) Filtering method for liquid containing organic substances
JPH04354581A (en) Water treating apparatus
JP2519319B2 (en) Filtration device
JP2001239136A (en) Treating system and operating method therefor
JP3430385B2 (en) Cleaning method of membrane
JPS6058291A (en) Apparatus for purifying suspended substance-containing liquid
JPH11244673A (en) Washing of membrane