JPH049002A - Laser microscope - Google Patents

Laser microscope

Info

Publication number
JPH049002A
JPH049002A JP11153690A JP11153690A JPH049002A JP H049002 A JPH049002 A JP H049002A JP 11153690 A JP11153690 A JP 11153690A JP 11153690 A JP11153690 A JP 11153690A JP H049002 A JPH049002 A JP H049002A
Authority
JP
Japan
Prior art keywords
light
measured
incident
reflected
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11153690A
Other languages
Japanese (ja)
Inventor
Yoshihisa Imai
今井 義久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP11153690A priority Critical patent/JPH049002A/en
Publication of JPH049002A publication Critical patent/JPH049002A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the contrast of an obtained image high by irradiating a body to be measured with laser light twice. CONSTITUTION:The incident light has its wave front shaped through a pinhole 3 and is transmitted through a half-mirror 4 and a polarization beam splitter 5 and collimated by a collimator lens 6 into parallel light, which is made incident on a 1/4-wavelength plate 7 becomes circular polarized light; and this light is made incident on an objective lens 8 and focused on the body 9 to be measured. The 1st time reflected light from the body 9 to be measured is reflected by the polarization beam splitter 5, reflected by a phase conjugate mirror 10, and the polarization beam splitter 5 in order, and focused on the body 9 to be measured, and the 2nd reflected light, on the other hand, is reflected by a half-mirror 4, and made incident on a photodetector 11 and converted photoelectrically to extract an image of the object body 9. Thus, the body 9 to be measured is irradiated with the laser light twice to increase the contrast of the obtained image.

Description

【発明の詳細な説明】 〈産業−にの利用分野〉 本発明は、レーザ光を照明に用いて微小物体の拡大像を
得るために使用されるレーザ顕微鏡のコンI〜ラス1〜
と分解能の改善に関する。
Detailed Description of the Invention <Industrial Field of Application> The present invention relates to a laser microscope controller used for obtaining an enlarged image of a minute object using laser light for illumination.
and regarding improved resolution.

〈従来の技術〉 近年、レーザの進歩と共にレーザの有する優れたコヒー
レンスを利用した顕微鏡が考案されている。コヒーレン
スが優れていると、−1−分に小さいスポットに集束で
き、したがって、かなり強い光強度が得られるという利
点がある。
<Prior Art> In recent years, with the advancement of lasers, microscopes have been devised that utilize the excellent coherence of lasers. The advantage of good coherence is that it can be focused to a spot as small as -1 min, and therefore a fairly strong light intensity can be obtained.

第2図はこのようなレ−=す光がコヒーレントで強力で
あることを利用して、それを走査型の光学顕微鏡の照明
光源として用いたレーザ顕微鏡の一例を示す構成図であ
る。図において、レーザ光源1の出力光は、対物レンズ
2に入射され、ビンホル3に集光される。ピンホール3
を通過した光は波面を整形され、ハーフミラ−4を透過
して対物レンズ8に入射される。入射された光は回折限
界まで絞られ、微小輝点て被測定物9を照射する。
FIG. 2 is a configuration diagram showing an example of a laser microscope that takes advantage of the fact that such laser light is coherent and powerful and uses it as an illumination light source for a scanning optical microscope. In the figure, output light from a laser light source 1 enters an objective lens 2 and is focused on a binhole 3. pinhole 3
The wavefront of the light that has passed is shaped, passes through the half mirror 4, and enters the objective lens 8. The incident light is focused to the diffraction limit and illuminates the object 9 to be measured as a minute bright spot.

被測定物9からの反射光は、対物レンズ8を通ってハー
フミラ−4で反射され、光検出器1jに導かれる。光検
出器11では、光電変換され、電気的出力として被測定
物9の像が取り出される。又、被測定物駆動部12によ
り被測定物9をχV力方向走査することにより、被測定
物9の2次元像を得ることができる。
The reflected light from the object to be measured 9 passes through the objective lens 8, is reflected by the half mirror 4, and is guided to the photodetector 1j. The photodetector 11 performs photoelectric conversion and takes out an image of the object to be measured 9 as an electrical output. Further, by scanning the measured object 9 in the χV force direction by the measured object driving section 12, a two-dimensional image of the measured object 9 can be obtained.

〈発明が解決しようとする課題〉 しかしながら、上記従来技術に示すレーザ顕微鏡におい
ては、レーザ光源1からの出力光は、被測定物9に1度
照射されるたけで、光検出器11にて被測定物9の像が
取り出されるような光学系の構成とされている。そのた
め、光検出器11にて取り出された被測定物9の像のコ
ントラストが低く、又、光学系に使用されている対物レ
ンズ等の収差の影響を受けるという課題があった。
<Problems to be Solved by the Invention> However, in the laser microscope shown in the above-mentioned prior art, the output light from the laser light source 1 is irradiated onto the object to be measured 9 only once, and the output light is not detected by the photodetector 11. The optical system is configured such that an image of the object 9 to be measured is taken out. Therefore, there was a problem that the contrast of the image of the object to be measured 9 taken out by the photodetector 11 was low, and it was also affected by aberrations of the objective lens used in the optical system.

本発明は上記従来技術の課題を踏まえて成されたもので
あり、その目的は、得られる像のコントラストを高める
と共に光学系の収差の影響を除去できるレーザ顕微鏡を
提供することにある。
The present invention has been made in view of the problems of the prior art described above, and its purpose is to provide a laser microscope that can enhance the contrast of an obtained image and eliminate the influence of aberrations of the optical system.

く課題を解決するための手段〉 上記課題を解決するための本発明の構成は、レーザ光源
と、このレーザ光源の出力光が入射される第1の対物レ
ンズと、この対物レンズにより集光された光が入射され
るピンホ一ルと、このピンホールにより波面を整形され
た光が入射される光学要素と、この光学要素を透過した
光が入射される偏光ビームスプリッタと、この偏光ビー
ムスプリッタを透過した光が入射されるコリメータレン
ズと、このコリメータレンズにより平行光とされた光が
入射される1/4波長板と、この1/4波長板により偏
光性を変えられた光を被測定物上に集光する第2の対物
レンズと、前記被測定物からの1度目の反射光が前記偏
光ビームスプリッタで反射されて入射される位相共役鏡
と、この位相共役鏡で反射された光が再び前記被測定物
に入射された後2度目の反射光となって前記光学要素で
反射されて入射される光検出器と、前記被測定物をχV
力方向動かす被測定物駆動部とを備え、前記位相共役鏡
を用いて前記被測定物にレーザ光を2度照射させるよう
な構成としたことを特徴とするものである。
Means for Solving the Problems> The configuration of the present invention for solving the above problems includes a laser light source, a first objective lens into which the output light of the laser light source is incident, and a light beam condensed by the objective lens. A pinhole into which light is incident, an optical element into which light whose wavefront has been shaped by this pinhole is incident, a polarizing beam splitter into which light transmitted through this optical element is incident, and this polarizing beam splitter. A collimator lens into which the transmitted light enters, a quarter-wave plate into which the light parallelized by the collimator lens enters, and a light whose polarization has been changed by the quarter-wave plate into the object to be measured. a second objective lens that focuses light upward; a phase conjugate mirror through which the first reflected light from the object to be measured is reflected by the polarization beam splitter and enters; and a phase conjugate mirror through which the light reflected by the phase conjugate mirror is incident. After being incident on the object to be measured again, the second reflected light is reflected by the optical element and enters the photodetector, and the object to be measured is detected at χV.
The object to be measured is driven by a drive section for moving the object in the force direction, and the object to be measured is irradiated with laser light twice using the phase conjugate mirror.

く作用〉 本発明によれば、レーザ光を被測定物に2度照射させて
おり、得られる像のコントラストを高めることができる
。又、その光学系に位相共役鏡を用いた構成としており
、光学系の収差と被測定物の反射による位相乱れを除去
できる。
Effect> According to the present invention, the object to be measured is irradiated with laser light twice, and the contrast of the obtained image can be increased. In addition, the optical system uses a phase conjugate mirror, so that aberrations in the optical system and phase disturbances caused by reflection from the object to be measured can be removed.

〈実施例〉 以下、本発明を図面に基づいて説明する。<Example> Hereinafter, the present invention will be explained based on the drawings.

第1図は本発明のレーザ顕微鏡の一実施例を示ず構成図
である。なお、第1図において第2図と同一要素には同
一符号を付して重複する説明は省略する。図において、
5はレーザ光の偏光によって光路を選択する偏光ビーム
スプリッタ、6はレーザ光を平行光にするコリメータレ
ンズ、7はし一ザ光の偏光性を変える1/4波長板、1
0はレザ光を反射させる位相共役鏡である。
FIG. 1 is a block diagram showing one embodiment of a laser microscope according to the present invention. In FIG. 1, the same elements as those in FIG. 2 are given the same reference numerals and redundant explanations will be omitted. In the figure,
5 is a polarizing beam splitter that selects the optical path depending on the polarization of the laser beam; 6 is a collimator lens that converts the laser beam into parallel light; 7 is a quarter-wave plate that changes the polarization of the laser beam; 1
0 is a phase conjugate mirror that reflects laser light.

このような構成において、レーザ光源1から出射された
図面に対して平行な直線偏光は、対物レンズ2で集光さ
れてピンホール3に入射される。
In such a configuration, linearly polarized light parallel to the drawing, emitted from the laser light source 1, is focused by the objective lens 2 and is incident on the pinhole 3.

入射された光はピンポール3で波面を整形され、ハーフ
ミラ−4,偏光ビームスプリッタ5を透過して、コリメ
ータレンズ6に入射される。入射された光はコリメータ
レンズ6で平行光とされ、1/4波長板7に入射して円
偏光となり、対物レンズ8に入射され、被測定物9上に
集光される。被測定物9からの1度目の反射光は、逆回
り円偏光となり、対物レンズ8で平行光とされて、1/
4波長板7に入射される。入射された光は1/4波長板
7で紙面に対して垂直な直線偏光となり、コリメータレ
ンズ6で集光され、1藩光ビームスプリツタ5で反射さ
れて、位相共役鏡10に入射される。入射された光は、
位相共役鏡10.偏光ビームスプリッタ5で順次反射さ
れて、再びコリメータレンズ6に入射される。入射され
た光は、コリメータレンズ6で平行光どされ、1□′4
波長板7で円偏光となり、対物レンズ8に入射され、被
Jll宇物9−1−tに集光される。被測定物9からの
2度目の反射光に、逆回り円面光となり、対物レンズ8
゛ζ゛V行光とされて、] 、、、/4波長板7に入射
される。
The wavefront of the incident light is shaped by a pin pole 3, passes through a half mirror 4 and a polarizing beam splitter 5, and enters a collimator lens 6. The incident light is made into parallel light by the collimator lens 6, and is incident on the 1/4 wavelength plate 7 to become circularly polarized light, and is incident on the objective lens 8, where it is focused on the object to be measured 9. The first reflected light from the object to be measured 9 becomes reversely circularly polarized light, which is converted into parallel light by the objective lens 8 and is 1/
The light is incident on the four-wavelength plate 7. The incident light becomes linearly polarized light perpendicular to the plane of the paper by the quarter-wave plate 7, is condensed by the collimator lens 6, is reflected by the 1-wave beam splitter 5, and is incident on the phase conjugate mirror 10. . The incident light is
Phase conjugate mirror 10. The light is sequentially reflected by the polarizing beam splitter 5 and enters the collimator lens 6 again. The incident light is collimated by the collimator lens 6 and becomes 1□'4
The light becomes circularly polarized by the wavelength plate 7, enters the objective lens 8, and is focused on the target object 9-1-t. The second reflected light from the object to be measured 9 becomes a reverse circular light and is reflected by the objective lens 8.
The light is converted into V-row light and is incident on the /4 wavelength plate 7.

入射された光は】/′4波長板7で紙面に対して平行な
直線偏光となり、コリメータレンズ6で集光され、偏光
ビームスプリッタ5を透過して、ハフミツ 4で反射さ
れ、光検出器11に入射される、光検出器11では、光
電変換され、電気的出1)として被測定物9の像が取り
出される。又、被測定物駆動部12により被測定物9を
χV力方向走だすることにより、被測定物9の2次元像
を得ることができる。
The incident light becomes linearly polarized light parallel to the plane of the paper by the ]/'4 wavelength plate 7, is condensed by the collimator lens 6, passes through the polarizing beam splitter 5, is reflected by the hafumitsu 4, and is sent to the photodetector 11. The light is incident on the photodetector 11, where it is photoelectrically converted and an image of the object to be measured 9 is taken out as an electrical output 1). Further, by moving the measured object 9 in the χV force direction by the measured object driving section 12, a two-dimensional image of the measured object 9 can be obtained.

この実施例では、被測定物9にL−ザ光を2疫照射して
おり、得られる像のコンI・ラストを高く憚ることかで
きる。又、光学系に位相共役鏡10を用いており、位相
共役鏡10に入射したレーザ光の位相を時間反転させて
反射している。したかって、=lリメータレンズ6.1
./4波長板7.対物レンズ8の収差をな・くずことか
でき、被測定物9からの反射の際の位相乱れを補止する
ことができる。
In this embodiment, the object to be measured 9 is irradiated with two L-ray beams, and the contrast of the obtained image can be greatly reduced. Further, a phase conjugate mirror 10 is used in the optical system, and the phase of the laser light incident on the phase conjugate mirror 10 is time-reversed and reflected. Therefore, = l remeter lens 6.1
.. /4 wavelength plate7. It is possible to eliminate the aberration of the objective lens 8 and correct the phase disturbance upon reflection from the object to be measured 9.

なお、」二層実施例においては、被測定物の2次元1象
を得るために、被測定物駆動部12により被測定物をχ
V力方向走査させているが、ポリゴンミラー等によりレ
ーザ光を走査させることも可能であり、走査速度を1=
けることができる。又、偏光ピーノ\スプリッタを1/
4波長板7と対物レンズ8の間に設けることにより、f
両光ビ−ノ\スプリッタの偏光特性による影響を少なく
することも可能である、更に、1/4波長板7はファラ
デー偏光子でも良い。
In the two-layer embodiment, in order to obtain a two-dimensional image of the object to be measured, the object to be measured is driven by the object driving section 12.
Although the laser beam is scanned in the V force direction, it is also possible to scan the laser beam using a polygon mirror, etc., and the scanning speed can be set to 1 =
can be used. Also, polarized Pino \ splitter 1/
By providing between the four-wavelength plate 7 and the objective lens 8, f
It is also possible to reduce the influence of the polarization characteristics of the dual optical beam splitter.Furthermore, the 1/4 wavelength plate 7 may be a Faraday polarizer.

〈発明の効果〉 以上1、実施例と共に具体的に説明したように、本発明
によれば、被311定物に2疫レーサ光を照射している
ため、得られる像のコン1ヘラス1へを高くすることが
できる。又、光学系に位相共役鏡を用いて、波面を反転
させた光を再び元の光路に導いているため、1字系の収
差と被a+、宝物による位M1乱れを除去することがで
き、分解能を向上させることかできる等の利点を有する
し=ザ顕微鏡を実現する、二とができる。
<Effects of the Invention> As specifically explained in 1 above and in conjunction with the embodiments, according to the present invention, since the object 311 is irradiated with two laser beams, the obtained image has can be made higher. In addition, since a phase conjugate mirror is used in the optical system to guide the light whose wavefront has been inverted back to the original optical path, it is possible to eliminate the aberration of the 1-character system, the a+ a+, and the disturbance of the position M1 caused by the treasure. It has advantages such as improved resolution and the ability to realize the microscope.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のレーザ顕微鏡の一実施例を示す構成図
、第2図は従来のし一ザ顕81鏡の一例を示ず構成図で
ある。 1・・・レーリ゛光源、2.8・・・対物レンズ、3・
・・ピンポール、4・・ハーフミラ−15・・・偏光ビ
ームスフ゛′リッタ、6・・・二rリメータレン′ズ、
7・・4/4波長板、0・・・被測定物、10・・・位
相共役鏡、11・・・光検出器、12・・・被測定物駆
動部。 =11−
FIG. 1 is a block diagram showing an embodiment of a laser microscope according to the present invention, and FIG. 2 is a block diagram showing an example of a conventional laser microscope 81. 1... Rayleigh light source, 2.8... Objective lens, 3.
...Pin pole, 4.Half mirror 15...Polarizing beam filter, 6.2R meter lens,
7... 4/4 wavelength plate, 0... Measured object, 10... Phase conjugate mirror, 11... Photodetector, 12... Measured object drive unit. =11-

Claims (1)

【特許請求の範囲】[Claims]  レーザ光源と、このレーザ光源の出力光が入射される
第1の対物レンズと、この対物レンズにより集光された
光が入射されるピンホールと、このピンホールにより波
面を整形された光が入射される光学要素と、この光学要
素を透過した光が入射される偏光ビームスプリッタと、
この偏光ビームスプリッタを透過した光が入射されるコ
リメータレンズと、このコリメータレンズにより平行光
とされた光が入射される1/4波長板と、この1/4波
長板により偏光性を変えられた光を被測定物上に集光す
る第2の対物レンズと、前記被測定物からの1度目の反
射光が前記偏光ビームスプリッタで反射されて入射され
る位相共役鏡と、この位相共役鏡で反射された光が再び
前記被測定物に入射された後2度目の反射光となって前
記光学要素で反射されて入射される光検出器と、前記被
測定物をxy方向に動かす被測定物駆動部とを備え、前
記位相共役鏡を用いて前記被測定物にレーザ光を2度照
射させるような構成としたことを特徴とするレーザ顕微
鏡。
A laser light source, a first objective lens into which the output light of the laser light source is incident, a pinhole into which the light focused by the objective lens is incident, and the light whose wavefront has been shaped by the pinhole is incident. a polarizing beam splitter into which the light transmitted through the optical element is incident;
A collimator lens into which the light transmitted through the polarizing beam splitter is incident, a quarter-wave plate into which the light parallelized by the collimator lens is incident, and the polarization property can be changed by this quarter-wave plate. a second objective lens that focuses light onto the object to be measured; a phase conjugate mirror through which the first reflected light from the object to be measured is reflected by the polarizing beam splitter and enters; and this phase conjugate mirror; a photodetector in which the reflected light is incident on the object to be measured again and becomes a second reflected light and is reflected by the optical element; and an object to be measured that moves the object to be measured in x and y directions. A laser microscope, comprising: a driving section, and configured to irradiate the object to be measured with laser light twice using the phase conjugate mirror.
JP11153690A 1990-04-26 1990-04-26 Laser microscope Pending JPH049002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11153690A JPH049002A (en) 1990-04-26 1990-04-26 Laser microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11153690A JPH049002A (en) 1990-04-26 1990-04-26 Laser microscope

Publications (1)

Publication Number Publication Date
JPH049002A true JPH049002A (en) 1992-01-13

Family

ID=14563844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11153690A Pending JPH049002A (en) 1990-04-26 1990-04-26 Laser microscope

Country Status (1)

Country Link
JP (1) JPH049002A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455622U (en) * 1987-09-30 1989-04-06
CN103584834A (en) * 2012-08-16 2014-02-19 中央大学 Reverse focusing microscopic imaging structure and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455622U (en) * 1987-09-30 1989-04-06
CN103584834A (en) * 2012-08-16 2014-02-19 中央大学 Reverse focusing microscopic imaging structure and method

Similar Documents

Publication Publication Date Title
CN107941763B (en) Coaxial three-dimensional stimulated radiation loss super-resolution microscopic imaging method and device
CN110632045B (en) Method and device for generating parallel super-resolution focal spots
JP2603660B2 (en) Scanning microscope
US6151127A (en) Confocal microscopy
JP4047225B2 (en) Microscope with adaptive optics, especially laser scanning microscope
US6134010A (en) Imaging system using polarization effects to enhance image quality
US9658054B2 (en) Optical measuring apparatus
US8405059B2 (en) Method and apparatus for improving the resolution and/or sectioning ability of an imaging system
JP2975719B2 (en) Confocal optics
EP1892499A3 (en) Atomic force microscope for generating a small incident beam spot
US20150092196A1 (en) Optical measurement apparatus
CN111879234B (en) Three-dimensional sub-ten nanometer positioning method and device based on polarization modulation hollow light spot illumination
JP2015096943A (en) Scanning optical microscope
JPH11119106A (en) Laser scanning microscope
JP5699421B2 (en) Microscope equipment
CN111780684B (en) Digital holographic surface three-dimensional morphology measuring system and imager
JP5106369B2 (en) Optical device
JPH049002A (en) Laser microscope
CN111879737A (en) Device and method for generating high-flux super-diffraction limit focal spot
JPH0695172B2 (en) Scanning optical microscope
JPH1195114A (en) Scanning optical microscope device
JP4460690B2 (en) Scanning laser microscope
CN220730056U (en) Detection measurement microscopic system based on 4F double-mirror closed-loop scanning confocal
CN220854654U (en) Microscopic Raman illumination system with eye safety
RU2285279C1 (en) Laser scanning microscope