JPH0489998A - Instruction device of propelling direction of small bore pipe - Google Patents

Instruction device of propelling direction of small bore pipe

Info

Publication number
JPH0489998A
JPH0489998A JP20391490A JP20391490A JPH0489998A JP H0489998 A JPH0489998 A JP H0489998A JP 20391490 A JP20391490 A JP 20391490A JP 20391490 A JP20391490 A JP 20391490A JP H0489998 A JPH0489998 A JP H0489998A
Authority
JP
Japan
Prior art keywords
propulsion
pipe
small
information
history
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20391490A
Other languages
Japanese (ja)
Inventor
Masaaki Tanabe
田辺 雅秋
Satoshi Kuwabara
敏 桑原
Yoshihiko Nojiri
野尻 吉彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20391490A priority Critical patent/JPH0489998A/en
Publication of JPH0489998A publication Critical patent/JPH0489998A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To operate properly the correction amount of a direction correcting mechanism by determining the correction amount obtained by actual operation of the mechanism by reference to a higher probability direction correcting mechanism correction amount which is presented by a small bore pipe propelling direction indicating device. CONSTITUTION:The i'th measuring information about the position and attitude angle of a frontier device obtained by various measuring instruments for a small bore pipe propelling machine is received through an input interface part 11 and transformed into the input data form for a neural circuit network 40 by a data normalization part 21, and the result is entered in a shift register 31. The direction correcting amount obtained by actual operation of a direction correcting mechanism for the small bore pipe propelling machine is transformed into the input data form for the neural circuit network 40 by another data normalization part 22 through an input interface part 12, and the result is entered into a shift register 32. The neural circuit network 40 is fed with information at different stages of shift registers 31, 32, and the amount corresponding to the i'th direction correction is emitted. The outputting result is converted by a data matching part 50 into the form of operation amount of the direction correcting mechanism, and the result from converting is presented as output of a small bore pipe propelling direction indicating device to the executor of pipe burying works by an appropriate data indicating device through an output interface part 60.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、非開削でトンネルを築造して管体を地中に埋
設する小口径管推進機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a small-diameter tube propulsion device for constructing a tunnel without excavating and burying a tube body underground.

[従来の技術] 小口径管推進機を用いて、非開削のトンネル式で管体を
埋設する管体埋設工事は、第3図の動作手順に示すよう
に、小口径管推進基本動作を繰返して実施される。この
小口径管推進基本動作において、小口径管推進機の推進
方向の修正はその先端装置の傾斜角や方位角などの姿勢
角と、垂直位置や水平位置などの位置の情報を基に行な
われる。先端装置の姿勢角や位置の情報は、小口径管推
進機に設けられた各種計測器によって直接に、あるいは
先端装置に後続された管体との相対的折れ角の計測結果
から計算によって間接的に得ることができる。このよう
な計測結果から得られた位置情報と管体埋設の予定位置
を示す工事計画線と比較して、その相対的な偏差がなく
なるように推進方向を決定し、さらに、先端装置の姿勢
角を考慮して、方向修正機構の修正量を操作することに
よって実施する(特願昭58−91088号参照)。
[Prior art] Pipe burying work using a small-diameter pipe propulsion machine to bury the pipe in a trenchless tunnel method involves repeating the basic small-diameter pipe propulsion operation, as shown in the operating procedure in Figure 3. will be implemented. In this basic operation of small-diameter tube propulsion, the propulsion direction of the small-diameter tube propulsion device is corrected based on the attitude angle such as the inclination angle and azimuth angle of the tip device, and the position information such as the vertical position and horizontal position. . Information on the attitude angle and position of the tip device can be obtained directly by various measuring instruments installed in the small diameter tube propulsion machine, or indirectly by calculation from the measurement results of the relative bending angle with the tube body following the tip device. can be obtained. The positional information obtained from such measurement results is compared with the construction plan line indicating the planned position of the buried pipe, and the propulsion direction is determined so that there is no relative deviation, and the attitude angle of the tip device is determined. This is carried out by controlling the amount of correction of the direction correction mechanism in consideration of the above (see Japanese Patent Application No. 58-91088).

上記の方向修正結果は、先端装置に取り付けられた穿孔
ヘッドの土中への圧入推進と、発進立坑内に設置された
元押装置による押管推進とからなる、−回の小口径管推
進基本動作を完了した後に再度計測して得られる先端装
置の位置や姿勢角の情報に反映される。小口径管推進機
を用いた管体埋設工事は、このような計測、方向修正、
推進からなる一連の小口径管推進基本動作を動作単位と
し、その繰返しにより順次管体を土中に推進させ、その
結果として総合的に工事計画線に沿った管体の埋設を実
現する。このように工事計画線に沿った管体の埋設を実
現するには、計測に基づいた方向修正機構の方向修正量
の決定か重要なポイントとなる。
The above direction correction results are based on - times of small-diameter pipe propulsion, which consists of press-fitting the drilling head attached to the tip device into the soil and push-pipe propulsion by the main push device installed in the starting shaft. This is reflected in the position and attitude angle information of the tip device obtained by measuring it again after the operation is completed. Pipe burying work using a small-diameter pipe propulsion machine requires such measurement, direction correction,
The unit of operation is a series of basic small-diameter pipe propulsion operations, which are repeated to propel the pipe into the soil in sequence, and as a result, the pipe is buried in accordance with the construction plan line. In order to bury the pipe along the construction plan line, an important point is determining the direction correction amount of the direction correction mechanism based on measurements.

一方、この小口径管推進基本動作は土中に管体や穿孔ヘ
ットを推進するものであり土庄の影響を受けるため、−
回の小口径管推進基本動作で方向修正効果が理想的に現
れることはなく、複数回の小口径管推進基本動作が必要
となる。したかつて、方向修正効果が明確に現れるまで
、複数回の小口径管推進基本動作にわたって方向修正を
連続して実施すると、過度の方向修正を施すことになる
。その結果、工事計画線に対して大きく蛇行した管体を
敷設することになったり、最悪の場合は、元押装置によ
る管体の押管推進範囲を逸脱して工事の続行が不可能に
なることがあった。
On the other hand, the basic movement of this small diameter pipe is to propel the pipe body and drilling head into the soil and is affected by Tonosho, so -
The direction correction effect will not ideally appear in the small-diameter tube propulsion basic operation once, and multiple small-diameter tube propulsion basic operations are required. Previously, if the direction correction was performed continuously over multiple small-diameter tube propulsion basic operations until the direction correction effect clearly appeared, excessive direction correction would be performed. As a result, the pipe body may be laid in a large meandering direction with respect to the construction plan line, or in the worst case, the pipe body may be pushed out of the pushing range by the main pushing device, making it impossible to continue the construction work. Something happened.

また、管体を敷設している土質によっては、先端装置自
体の重量のため常に先端装置が地中深部方向に沈下して
いく傾向があり、それらを考慮した方向修正も必要であ
った。
Furthermore, depending on the soil quality in which the pipe is laid, the weight of the tip device itself tends to cause the tip device to always sink deeper into the ground, and it was necessary to take this into consideration when adjusting the direction.

[発明が解決しようとする課題] 以上説明したように、先端装置の位置、姿勢角の計測結
果に基づいて方向修正機構の修正量を操作する、従来の
小口径管推進機の推進方向の修正方法は、管体埋設工事
の実施者がその専門家としての知識と経験により方向修
正効果を予測しながら行なっているため、経験の乏しい
実施者による管体埋設工事と熟練した実施者による管体
埋設工事とでは、その工事品質に大きな隔たりが生じる
という欠点があった。
[Problems to be Solved by the Invention] As explained above, the propulsion direction of a conventional small-diameter tube propulsion machine can be corrected by controlling the correction amount of the direction correction mechanism based on the measurement results of the position and attitude angle of the tip device. In this method, the person carrying out the pipe burying work predicts the direction correction effect based on his/her knowledge and experience as an expert, so there is a difference between the pipe burying work by an inexperienced person and the pipe burying work by an experienced person. There was a drawback that there was a large difference in the quality of the work compared to underground construction.

また、上記から明らかなように小口径推進機を用いた管
体埋設工事の実施者には、専門家としてのある程度の知
識と経験が必要となり、小口径管推進機を用いた管体埋
設工事の普及には、専門家養成訓練が重要な課題となっ
ている。
In addition, as is clear from the above, those who carry out pipe burying work using a small-diameter pipe propulsion machine need a certain level of knowledge and experience as an expert. Expert training is an important issue for the dissemination of the technology.

本発明の目的は、経験の乏しい実施者でも方向修正機構
の修正量を適切に操作することができ、したがって管体
埋設工事の経験の有無にかかわらず、小口径管推進機を
用いた品質の高い管体埋設工事を実施できる小口径管推
進方向指示装置を提供することである。
The purpose of the present invention is to enable even an inexperienced person to appropriately operate the amount of correction of the direction correction mechanism, and therefore, regardless of whether or not he or she has experience in pipe burying work, the quality of the work using a small-diameter pipe propulsion machine can be improved. An object of the present invention is to provide a small-diameter pipe propulsion direction indicating device capable of carrying out high-pitched pipe burying work.

[課題を解決するための手段] 上記目的を達成するために、本発明の小口径管推進方向
指示装置は、 計測手段で計測した計測情報と方向修正機構の操作情報
とを順次保持する保持手段と、一連の動作の繰返しでな
る管体埋設工事における過去の成功事例から該計測情報
の履歴と該操作情報の履歴との関係をあらかじめ学習さ
せてあり、保持手段により保持されている該計測情報の
履歴と該操作情報の履歴とを入力し、当該実施中の管体
埋設工事の該計測情報の履歴と該操作情報の履歴とから
方向修正機構の次回の操作指示量を該学習結果に対応し
て出力する神経回路網を有している。
[Means for Solving the Problems] In order to achieve the above object, the small diameter tube propulsion direction indicating device of the present invention includes a holding means that sequentially holds measurement information measured by the measuring means and operation information of the direction correction mechanism. The relationship between the history of the measurement information and the history of the operation information is learned in advance from past successful cases in pipe burying work, which consists of a series of repeated operations, and the measurement information is held by the holding means. and the history of the operation information, and from the history of the measurement information of the pipe burial work in progress and the history of the operation information, the next operation instruction amount of the direction correction mechanism is made to correspond to the learning result. It has a neural network that outputs

[作用] 本発明は、熟練した実施者による小口径管推進機を用い
た管体埋設工事の成功事例を学習した神経回路網を備え
た小口径管推進方向指示装置により方向修正機構の修正
量を管体埋設工事実施者に提示するものである。この神
経回路網は、熟練した実施者による小口径管推進機を用
いた管体埋設工事の成功事例における方向修正機構の修
正量を教師データとし、その方向修正操作にかかわる先
端装置の位置、姿勢角の計測情報と更にその操作に先立
つ過去数回分の計測情報の履歴と方向修正機構の操作情
報の履歴とを事例学習入力としており、小口径管推進機
を用いた管体埋設工事におし)で、熟練した実施者によ
る成功事例と同等な方向修正量を出力する。
[Function] The present invention uses a small-diameter pipe propulsion direction indicating device equipped with a neural network that has learned from successful cases of pipe burying work using small-diameter pipe propulsion machines by skilled workers to adjust the amount of correction of the direction correction mechanism. This is to be presented to the person carrying out the pipe burying work. This neural network uses as training data the amount of correction of the direction correction mechanism in a successful case of pipe burying work using a small-diameter pipe propulsion machine by an experienced worker, and uses the position and posture of the tip device involved in the direction correction operation as training data. The measurement information of the corner, the history of the past several measurements prior to the operation, and the history of the operation information of the direction correction mechanism are used as case study inputs, and this is useful for pipe burial work using a small-diameter pipe propulsion machine. ) outputs the amount of direction correction equivalent to a successful example by a skilled practitioner.

したがって、本発明によれば、小口径管推進機を用いた
管体埋設工事の実施者は、小口径管推進方向指示装置の
提示する確実性の高い方向修正機構の方向修正量を参考
にして、実際に操作する方向修正機構の修正量を決定で
きるので、専門家としての高度な知識や深い経験を必要
としなくなる。
Therefore, according to the present invention, a person carrying out pipe burying work using a small diameter pipe propulsion device can refer to the direction correction amount of the highly reliable direction correction mechanism presented by the small diameter pipe propulsion direction indicating device. Since the amount of correction of the direction correction mechanism to be actually operated can be determined, advanced knowledge and deep experience as an expert is not required.

[実施例] 次に、本発明の実施例について図面を参照して説明する
[Example] Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例を示す小口径管推進方向
指示装置のブロック図である。
FIG. 1 is a block diagram of a small diameter tube propulsion direction indicating device showing a first embodiment of the present invention.

この小口径管推進方向指示装置は、小口径管推進機の各
種計測器等によって得られた先端装置の位置と姿勢角の
計測情報を受信する入力インタフェース部11と、小口
径管推進機の方向修正機構の修正量である操作情報を受
信する入力インタフェース部12と、それぞれ入力イン
タフェース部11.12において受信した計測情報、操
作情報を正規化するデータ正規化部21および22と、
それぞれデータ正規化部21.22によって正規化され
た計測情報、操作情報を保持するシフトレジスタ31お
よび32と、一連の動作の繰返しでなる管体埋設工事に
おける過去の成功事例から該計測情報の履歴と該操作情
報の履歴との関係をあらかじめ学習させてあり、シフト
レジスタ31.32にそれぞれ保持されている該計測情
報の履歴と該操作情報の履歴とを入力とし、当該実施中
の管体埋設工事の該計測情報の履歴と該操作情報の履歴
とから方向修正機構の次回の操作指示量を該学習結果に
対応して出力する神経回路網40と、神経回路網40の
出力結果を小口径管推進機の方向修正機構の修正量のデ
ータ形式に変換するデータ整合部50と、データ整合部
50の出力である神経回路網40の出力結果を管体埋設
工事の実施者に提示する表示装置等に送信するための出
力インタフェース部60とによって構成されている。こ
こで、神経回路網40は、入力層401、出力層403
および一層以上の中間層402から構成される多層構成
である。入力層401の各ユニット400はシフトレジ
スタ31および32のレジスタ各段に接続されている。
This small diameter tube propulsion direction indicating device includes an input interface section 11 that receives measurement information of the position and attitude angle of the tip device obtained by various measuring instruments of the small diameter tube propulsion device, and a direction indicating device for the small diameter tube propulsion device. an input interface section 12 that receives operation information that is the amount of correction of the correction mechanism; and data normalization sections 21 and 22 that normalize the measurement information and operation information received at the input interface sections 11 and 12, respectively;
Shift registers 31 and 32 hold measurement information and operation information normalized by data normalization units 21 and 22, respectively, and a history of the measurement information from past successful cases in pipe burial work that consists of repeating a series of operations. The relationship between the measurement information and the history of the operation information is learned in advance, and the history of the measurement information and the history of the operation information held in the shift registers 31 and 32, respectively, are input, A neural network 40 outputs the next operation instruction amount of the direction correction mechanism based on the history of the measurement information of the construction work and the history of the operation information, and outputs the output result of the neural network 40 with a small diameter. A data matching section 50 that converts the correction amount of the direction correction mechanism of the tube propulsion device into a data format, and a display device that presents the output result of the neural network 40, which is the output of the data matching section 50, to the person carrying out the pipe burying work. and an output interface section 60 for transmitting data to, etc. Here, the neural network 40 includes an input layer 401, an output layer 403
It has a multilayer structure including one or more intermediate layers 402 and one or more intermediate layers 402 . Each unit 400 of the input layer 401 is connected to each stage of the shift registers 31 and 32.

また、シフトレジスタ31.32はそれぞれ(n+1)
段、n段構成である。
In addition, the shift registers 31 and 32 are each (n+1)
It has an n-stage configuration.

第1図に示す小口径管推進方向指示装置によって、小口
径管推進機の方向修正機構の修正量を管体埋設工事の実
施者に提示する過程を第3図の動作手順に基づいて説明
する。
The process of presenting the correction amount of the direction correction mechanism of a small diameter pipe propulsion machine to the person carrying out the pipe burying work using the small diameter pipe propulsion direction indicating device shown in Fig. 1 will be explained based on the operating procedure shown in Fig. 3. .

いま仮に、第1回目の小口径管推進基本動作を実施し始
めたとしよう。小口径管推進方向指示装置は、小口径管
推進機の各種計測器等によって得らtだ先端装置の位置
と姿勢角の第1回目の計測情報を入力インタフェース部
11を介して受信する。この第1回目の計測情報は、デ
ータ正規化部21により神経回路網40の入力データ形
式に変形され、シフトレジスタ31に入力される。この
シフトレジスタ31は、前述したように(n+1)膜構
成であり、最新計測情報である第1回目の計測情報が人
力されると、保持している情報を順次シフトさせ、(n
+1)段目からあふれた最も古い第(i−n−1)回目
の計測情報を廃棄し、結果として過去(n+1)回分の
計測情報を順次保持することになる。この時点において
、小口径管推進機の方向修正機構を実際に操作した方向
修正量は、前回の第(i−1)回目の小口径管推進基本
動作で入力インタフェース部12を介して小口径管推進
方向指示装置に受信され、データ正規化部22により神
経回路網40の入力データ形式に変形され、シフトレジ
スタ32に入力されている。シフトレジスタ32は、前
述したようにn段構成であり、シフトレジスタ31の動
作と同様にして、前回までの過去n回分の操作情報を順
次保持している。このようにして、第i回目の小口径管
推進基本動作の方向修正量の決定にあたって、神経回路
網40には、シフトレジスタ31゜32の各段の情報、
すなわち、最新の第i回目の計測情報および第(i−1
)回目から過去n回分の計測情報と操作情報が入力され
る。神経回路網40では、これらの情報を入力として、
まえもって施された学習に基づいて、第i回目の方向修
正に対応した量を出力する。この出力結果は、データ整
合部50によって方向修正機構の操作量の形式に変換さ
れ、出力インタフェース部6oを介して、適当なデータ
表示装置等により小口径管推進方向指示装置の出力とし
て管体埋設工事の実施者に提示される。管体埋設工事の
実施者は、この提示された出力値を参考にして、実際の
方向修正量を決定することが可能となる。
Let us now assume that we have begun to carry out the first small-diameter tube propulsion basic operation. The small diameter tube propulsion direction indicating device receives first measurement information of the position and attitude angle of the tip device obtained by various measuring instruments of the small diameter tube propulsion device via the input interface section 11. This first measurement information is transformed into an input data format for the neural network 40 by the data normalization unit 21 and input to the shift register 31. As mentioned above, this shift register 31 has an (n+1) film configuration, and when the first measurement information, which is the latest measurement information, is manually input, it sequentially shifts the held information and (n
The oldest (i-n-1)th measurement information overflowing from the +1) stage is discarded, and as a result, the past (n+1) measurement information is sequentially held. At this point, the amount of direction correction by actually operating the direction correction mechanism of the small-diameter tube propulsion device is determined by the direction correction amount obtained by actually operating the direction correction mechanism of the small-diameter tube propulsion device through the input interface section 12 in the previous (i-1)th small-diameter tube propulsion basic operation. The data is received by the propulsion direction indicating device, transformed into an input data format for the neural network 40 by the data normalization unit 22, and input to the shift register 32. As described above, the shift register 32 has an n-stage configuration, and similarly to the operation of the shift register 31, it sequentially holds information on the past n operations up to the previous one. In this way, in determining the amount of direction correction for the i-th small-diameter tube propulsion basic operation, the neural network 40 contains information on each stage of the shift registers 31 and 32;
That is, the latest i-th measurement information and the (i-1
) Measurement information and operation information for the past n times are input. The neural network 40 receives this information as input,
Based on the learning performed in advance, the amount corresponding to the i-th direction correction is output. This output result is converted by the data matching unit 50 into the format of the operation amount of the direction correction mechanism, and is displayed as the output of the small diameter pipe propulsion direction indicating device via the output interface unit 6o by an appropriate data display device etc. buried in the pipe body. Presented to the person implementing the construction work. The person carrying out the pipe burying work can refer to the presented output value to determine the actual amount of direction correction.

以上の説明において、シフトレジスタ3132は、過去
の履歴を神経回路網40に取込むための一手法であり、
例えば6段程度のデータを積むことにより、過去の操作
履歴とそのリアクションを伴った計測結果を充分神経回
路網40に取込むことが可能となる。なお、小口径管推
進基本動作の推進動作は、土中に管体や穿孔ヘットを推
進するもので土圧の影響を受けるが、この上圧は管体埋
設工事を実施している場所の土質によって異なってくる
。したがって、神経回路網40には、実際に管体埋設工
事を行なっている場所の土質と同等の土質の場所で実施
された過去の成功事例を学習させておく必要がある。
In the above description, the shift register 3132 is a method for importing past history into the neural network 40,
For example, by accumulating about 6 stages of data, it becomes possible to sufficiently import past operation history and measurement results accompanied by reactions into the neural network 40. The basic propulsion operation for small-diameter pipes propels the pipe body and drilling head into the soil and is affected by earth pressure, but this upper pressure depends on the soil quality at the location where the pipe body burying work is being carried out. It varies depending on the Therefore, it is necessary for the neural network 40 to learn past successful cases in locations where the soil quality is similar to that of the location where the pipe burying work is actually being performed.

なお、出力インタフェース部6oから小口径管推進機の
方向修正機構へ出力データを直接送信することによって
、小口径管推進機の自動方向修正を実現することも可能
となる。
Note that by directly transmitting output data from the output interface section 6o to the direction correction mechanism of the small diameter tube propulsion device, it is also possible to realize automatic direction correction of the small diameter tube propulsion device.

また、入力インタフェース部11は、先端装置に後続さ
れた管体との相対的折れ角の計測結果から計算によって
得られた先端装置の位置と姿勢角の情報を受信するよう
にしてもよい。
The input interface unit 11 may also receive information on the position and attitude angle of the tip device, which are calculated from the measurement results of the relative bending angle with the tube body that follows the tip device.

第2図は本発明の第2の実施例を示す小口径管推進方向
指示装置のブロック図である。
FIG. 2 is a block diagram of a small diameter tube propulsion direction indicating device showing a second embodiment of the present invention.

本実施例は、管体埋設工事を実施した場所の土質対応に
学習を施した神経回路網を複数(n個)用意した例であ
る。データ整合部、出力インタフェース部も神経回路網
に対して各々n個設けられている。第2図では、便宜上
、第1の土質と第nの土質に対応した神経回路網、デー
タ整合部、出力インタフェース部のみが示されている。
This embodiment is an example in which a plurality (n) of neural networks are prepared which are trained to correspond to the soil quality of a place where pipe burying work is performed. N data matching units and n output interface units are also provided for each neural network. In FIG. 2, for convenience, only the neural network, data matching unit, and output interface unit corresponding to the first soil type and the n-th soil type are shown.

神経回路網41は第1の土質に対応しており、ユニット
410を含む入力層411、中間層412および出力層
413で構成されている。神経回路網4nは第nの土質
に対応しており、ユニット4nOを含む入力層4n1、
中間/14n2および中間層4n3で構成されている。
The neural network 41 corresponds to the first soil type and is composed of an input layer 411 including a unit 410, an intermediate layer 412, and an output layer 413. The neural network 4n corresponds to the n-th soil type, and includes an input layer 4n1 including a unit 4nO,
It is composed of an intermediate layer/14n2 and an intermediate layer 4n3.

データ整合部51と出力インタフェース部61は第1の
土質に対応しており、神経回路網41に順に接続されて
いる。データ整合部5nと出力インタフェース部6nは
第nの土質に対応しており、神経回路1!14nに順に
接続されている。
The data matching section 51 and the output interface section 61 correspond to the first soil type, and are connected to the neural network 41 in order. The data matching section 5n and the output interface section 6n correspond to the n-th soil type, and are connected to the neural circuits 1 to 14n in order.

本実施例は、粘土質や砂土質、あるいはローム土質など
で実施した管体埋設工事の成功事例を各土質対応に分割
し、神経回路網41〜4nに学習を施しておき、それら
複数の神経回路網41〜4nを並列に接続したものであ
る。小口径管推進方向指示装置は、計測情報と操作情報
の入力データに対して、それぞれ粘土質や砂土質、ある
いはローム土質などに相当する方向修正量を出力するこ
とになる。管体埋設工事の実施者は、それらの出力中か
ら最も適切な値を選択することによって方向修正量を決
定することが可能となる。第1図の実施例では、管体埋
設工事を実施する毎に適応土質に対応した学習済み神経
回路網を選択して小口径管推進方向指示装置内に設置す
ることが必須であったが、本実施例ではそのような入替
え作業が不用になる。なお、第2図の装置の各部の動作
は第1図の説明と同様なので省略する。
In this embodiment, successful examples of pipe burying work carried out in clay, sandy, or loamy soils are divided into sections corresponding to each soil type, and neural networks 41 to 4n are trained. The circuit networks 41 to 4n are connected in parallel. The small diameter pipe propulsion direction indicating device outputs direction correction amounts corresponding to clay, sandy soil, loamy soil, etc., in response to input data of measurement information and operation information, respectively. The person carrying out the pipe burying work can determine the amount of direction correction by selecting the most appropriate value from these outputs. In the example shown in Fig. 1, it was necessary to select a learned neural network corresponding to the soil type and install it in the small diameter pipe propulsion direction indicating device each time pipe burying work was carried out. In this embodiment, such replacement work is unnecessary. The operation of each part of the apparatus shown in FIG. 2 is the same as that described in FIG. 1, so a description thereof will be omitted.

[発明の効果] 以上説明したように本発明は、熟練した実施者による小
口径管推進機を用いた管体埋設工事の成功事例を学習し
た神経回路網を備えた小口径管推進方向指示装置により
、方向修正機構の修正量を管体埋設工事実施者に提示す
ることにより、管体埋設工事の実施者は、小口径管推進
機の方向修正機構の操作時に、熟練した実施者による過
去の成功事例から学習した結果に基づいて提示された方
向修正量を得ることかできるので、その値を参考にして
管体埋設工事を進めれば、経験の乏しい実施者であって
も方向修正機構の修正量を適切に操作することか可能と
なり、また、経験の有無にかかわらず、小口径管推進機
を用いて品質の高い管体埋設工事を実施できるようにな
るので、経験者不足に関係なく小口径管推進機の普及を
促進することができる効果がある。
[Effects of the Invention] As explained above, the present invention provides a small diameter pipe propulsion direction indicating device equipped with a neural network that has learned from successful cases of pipe burying work using small diameter pipe propulsion machines by skilled workers. By presenting the amount of correction of the direction correction mechanism to the person carrying out the pipe burying work, the person carrying out the pipe burying work can compare the past work done by a skilled person when operating the direction correction mechanism of a small-diameter pipe propulsion machine. Since it is possible to obtain the proposed direction correction amount based on the results learned from successful cases, even an inexperienced person can easily adjust the direction correction mechanism by referring to this value and proceeding with the pipe burying work. It makes it possible to appropriately control the amount of correction, and it also makes it possible to carry out high-quality pipe burying work using a small-diameter pipe propulsion machine, regardless of the lack of experience. This has the effect of promoting the spread of small diameter tube propulsion machines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ本発明の第1、第2の実施例
を示す小口径管推進方向指示装置のブロック図、第3図
は小口径管推進機を用いた管体埋設工事の動作手順図で
ある。 11・・・計測情報の入力インタフェース部12・・・
操作情報の入力インタフェース部21・・・計測情報の
データ正規化部 22・・・操作情報のデータ正規化部 31・・・計測情報のシフトレジスタ 32・・・操作情報のシフトレジスタ 40・・・神経回路網 41・・・第1の土質に対応した神経回路網4n・・・
第nの土質に対応した神経回路網50・・・データ整合
部 51・・・第1の土質に対応したデータ整合部5n・・
・第nの土質に対応したデータ整合部60・・・出力イ
ンタフェース部 61・・・第1の土質に対応した出力インタフェース部 6n・・・第nの土質に対応した出力インタフェース部 400、410.4nO・・・ユニット401.4]1
.4nl ・−人力層 402、4]2.4n2・・・中間層 403、413.4n3・・・出力層
Figures 1 and 2 are block diagrams of a small diameter pipe propulsion direction indicating device showing the first and second embodiments of the present invention, respectively, and Figure 3 is a block diagram of a pipe burying work using a small diameter pipe propulsion machine. It is an operation procedure diagram. 11...Measurement information input interface section 12...
Operation information input interface section 21... Measurement information data normalization section 22... Operation information data normalization section 31... Measurement information shift register 32... Operation information shift register 40... Neural network 41...Neural network 4n corresponding to the first soil quality...
Neural network 50 corresponding to the n-th soil quality...Data matching section 51...Data matching section 5n corresponding to the first soil quality...
- Data matching section 60 corresponding to the n-th soil quality...Output interface section 61...Output interface section 6n corresponding to the first soil quality...Output interface section 400, 410, corresponding to the n-th soil quality. 4nO...unit 401.4]1
.. 4nl ・-Manpower layer 402, 4] 2.4n2...Middle layer 403, 413.4n3...Output layer

Claims (1)

【特許請求の範囲】 1、非開削でトンネルを築造して管体を地中に埋設する
小口径管推進機であって、該小口径管推進機の推進方向
を修正する方向修正機構と、前記小口径管推進機の一部
である先端装置の位置と姿勢角または前記先端装置と後
続された管体との間の相対的折れ角を計測する計測手段
とを有し、該計測手段により計測した位置と姿勢角また
は前記相対的折れ角から計算によって得られた先端装置
の位置と姿勢角の計測情報に基づき前記方向修正機構を
操作し推進方向を決定して一回の小口径管推進動作を行
ない、しかる後に該計測手段により新たな計測情報を得
て次回の推進方向を決定するといった一連の動作を繰返
して管体埋設工事を実施する小口径管推機における小口
径管推進方向指示装置であって、 前記計測手段で計測した計測情報と前記方向修正機構の
操作情報とを順次保持する保持手段と、前記一連の動作
の繰返しでなる管体埋設工事における過去の成功事例か
ら該計測情報の履歴と該操作情報の履歴との関係をあら
かじめ学習させてあり、前記保持手段により保持されて
いる該計測情報の履歴と該操作情報の履歴とを入力とし
、当該実施中の管体埋設工事の該計測情報の履歴と該操
作情報の履歴とから前記方向修正機構の次回の操作指示
量を該学習結果に対応して出力する神経回路網を有する
小口径管推進方向指示装置。 2、前記神経回路網を複数個有し、各神経回路網には、
前記管体埋設工事における過去の成功事例を、当該管体
埋設工事を適用した土質対応に分割した成功事例毎に各
々学習を施してあり、これら複数の神経回路網の各出力
値を次回の推進方向を決定するための前記方向修正機構
の操作指示量の候補とする請求項1記載の小口径管推進
方向指示装置。
[Scope of Claims] 1. A small-diameter pipe propulsion machine that constructs a tunnel without excavation and buries the pipe body underground, comprising a direction correction mechanism that corrects the propulsion direction of the small-diameter pipe propulsion machine; a measuring means for measuring the position and attitude angle of the tip device which is a part of the small diameter tube propulsion device or the relative bending angle between the tip device and the following tube body; Based on the measurement information of the position and attitude angle of the tip device obtained by calculation from the measured position and attitude angle or the relative bending angle, the direction correction mechanism is operated to determine the propulsion direction and one small diameter tube propulsion is performed. Direction of small-diameter pipe propulsion in a small-diameter pipe thruster that performs pipe burying work by repeating a series of operations, such as performing the operation and then obtaining new measurement information using the measurement means to determine the next propulsion direction. The apparatus comprises: a holding means for sequentially holding measurement information measured by the measuring means and operation information of the direction correction mechanism; The relationship between the history of the information and the history of the operation information is learned in advance, and the history of the measurement information and the history of the operation information held by the holding means are used as input, and the pipe embedding during the current operation is performed. A small diameter pipe propulsion direction indicating device having a neural network that outputs the next operation instruction amount of the direction correction mechanism based on the history of the measurement information of construction and the history of the operation information in accordance with the learning result. 2. Having a plurality of neural networks, each neural network having:
The past successful cases in the pipe burying work are divided into soil types to which the pipe burying work was applied, and learning is applied to each successful case, and each output value of these multiple neural networks is used for the next promotion. 2. The small-diameter pipe propulsion direction indicating device according to claim 1, wherein the small diameter tube propulsion direction indicating device is used as a candidate for the operation instruction amount of the direction correction mechanism for determining the direction.
JP20391490A 1990-08-02 1990-08-02 Instruction device of propelling direction of small bore pipe Pending JPH0489998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20391490A JPH0489998A (en) 1990-08-02 1990-08-02 Instruction device of propelling direction of small bore pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20391490A JPH0489998A (en) 1990-08-02 1990-08-02 Instruction device of propelling direction of small bore pipe

Publications (1)

Publication Number Publication Date
JPH0489998A true JPH0489998A (en) 1992-03-24

Family

ID=16481787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20391490A Pending JPH0489998A (en) 1990-08-02 1990-08-02 Instruction device of propelling direction of small bore pipe

Country Status (1)

Country Link
JP (1) JPH0489998A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7587373B2 (en) 2005-06-24 2009-09-08 Halliburton Energy Services, Inc. Neural network based well log synthesis with reduced usage of radioisotopic sources
US7613665B2 (en) 2005-06-24 2009-11-03 Halliburton Energy Services, Inc. Ensembles of neural networks with different input sets
US8065244B2 (en) 2007-03-14 2011-11-22 Halliburton Energy Services, Inc. Neural-network based surrogate model construction methods and applications thereof
JP2018021402A (en) * 2016-08-05 2018-02-08 清水建設株式会社 Shield excavator operation analysis system, shield excavator operation analysis method and program
JP2019143385A (en) * 2018-02-21 2019-08-29 清水建設株式会社 Estimation device and estimation method
JP2019143388A (en) * 2018-02-21 2019-08-29 清水建設株式会社 Shield machine control system and shield machine control method
JP2019167728A (en) * 2018-03-23 2019-10-03 五洋建設株式会社 Curved drilling method and curved drilling system
JP2020169465A (en) * 2019-04-02 2020-10-15 清水建設株式会社 Control information output device and control information output method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7587373B2 (en) 2005-06-24 2009-09-08 Halliburton Energy Services, Inc. Neural network based well log synthesis with reduced usage of radioisotopic sources
US7613665B2 (en) 2005-06-24 2009-11-03 Halliburton Energy Services, Inc. Ensembles of neural networks with different input sets
US8065244B2 (en) 2007-03-14 2011-11-22 Halliburton Energy Services, Inc. Neural-network based surrogate model construction methods and applications thereof
JP2018021402A (en) * 2016-08-05 2018-02-08 清水建設株式会社 Shield excavator operation analysis system, shield excavator operation analysis method and program
JP2019143385A (en) * 2018-02-21 2019-08-29 清水建設株式会社 Estimation device and estimation method
JP2019143388A (en) * 2018-02-21 2019-08-29 清水建設株式会社 Shield machine control system and shield machine control method
JP2019167728A (en) * 2018-03-23 2019-10-03 五洋建設株式会社 Curved drilling method and curved drilling system
JP2020169465A (en) * 2019-04-02 2020-10-15 清水建設株式会社 Control information output device and control information output method

Similar Documents

Publication Publication Date Title
JPH0489998A (en) Instruction device of propelling direction of small bore pipe
JP4488547B2 (en) Floating rig position holding control method and control apparatus
JP3867025B2 (en) Tunnel control chart, its creation method and system
JP2005146762A (en) Shield jacking and assembly simultaneous construction method
JP7286457B2 (en) Shield excavator control system and shield excavator control method
JP2003262521A (en) Surveying apparatus for pipe jacking method, surveying method, and the pipe jacking method
JP7097191B2 (en) Estimator and estimation method
JP2007303142A (en) Construction management method, construction management device and construction management program for shield tunnel
JP4871163B2 (en) Surveying system for excavator
US11274545B2 (en) Device for the positioning of an electronic unit on a ground drilling device
KR20020055959A (en) Path-control system and method of pipejacking tunneling machine
US20240045434A1 (en) Device and Method for Controlling a Robot
JP2974542B2 (en) Automatic position and attitude control method for a mid-bend shield machine
JP3132730B2 (en) Tail clearance management method for shield machine
JPH0565795A (en) Excavation controlling method for shield tunnel excavator
JP2997205B2 (en) Curve propulsion method for small diameter pipe
JPH03107093A (en) Automatic direction control method for shield drilling machine
JPH07218256A (en) Deviation measurement method and device for propelling work
JP2003254750A (en) Coordinate measurement method for excavation route in pipe jacking excavation method
EP3414426B1 (en) Systems and methods of operating directional drilling rigs
JPH05125895A (en) Excavating direction control method for shield tunnel excavator
JPH07305590A (en) Control device for shield machine
JPH0348116A (en) Measuring apparatus of position and attitude of digging machine of small diameter
JP2630557B2 (en) Pipe propulsion method and propulsion device
JP4071614B2 (en) Surveying equipment