JPH0489400A - Production of acicular gypsum crystal - Google Patents

Production of acicular gypsum crystal

Info

Publication number
JPH0489400A
JPH0489400A JP20357090A JP20357090A JPH0489400A JP H0489400 A JPH0489400 A JP H0489400A JP 20357090 A JP20357090 A JP 20357090A JP 20357090 A JP20357090 A JP 20357090A JP H0489400 A JPH0489400 A JP H0489400A
Authority
JP
Japan
Prior art keywords
gypsum
crystal slurry
crystals
milk
lime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20357090A
Other languages
Japanese (ja)
Inventor
Masatoshi Mizusawa
水沢 正敏
Takashi Sumikama
炭竈 隆志
Minoru Miyake
三宅 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP20357090A priority Critical patent/JPH0489400A/en
Publication of JPH0489400A publication Critical patent/JPH0489400A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain large gypsum crystals by continuously returning a prescribed amt. of a gypsum crystal slurry to an SO2 absorbing process when gaseous SO2 is absorbed in milk of lime and this milk of lime is oxidized to obtain gypsum. CONSTITUTION:Gaseous SO2 is absorbed in milk of lime this milk of lime is oxidized to obtain a gypsum crystal slurry and this slurry is concentrated and dehydrated to produce acicular gypsum crystals. At this time, a gypsum crystal slurry contg. 1-5 times as much gypsum crystals as gypsum crystals formed in the SO2 absorbing process is continuously returned to the SO2 absorbing process.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、針状石膏結晶の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing acicular gypsum crystals.

[従来の技術] 従来の針状石膏結晶の製造方法は、次のように行われる
。まず、石灰乳にSO2ガスを吸収させる。次いて、S
O2ガス吸収後の石灰乳を酸化させて石膏結晶スラリー
を得る。得られた石膏結晶スラリーを濃縮した後、脱水
して針状石膏結晶を得る。
[Prior Art] A conventional method for producing acicular gypsum crystals is carried out as follows. First, milk of lime is made to absorb SO2 gas. Next, S
After absorbing O2 gas, milk of lime is oxidized to obtain gypsum crystal slurry. After concentrating the obtained gypsum crystal slurry, it is dehydrated to obtain acicular gypsum crystals.

従来の方法により得られた針状石膏結晶′は、10〜2
0μmの粒径を有する。
The acicular gypsum crystals obtained by the conventional method have 10 to 2
It has a particle size of 0 μm.

[発明が解決しようとする課題] しかしながら、10〜20μmの粒径を有する石膏結晶
は、粒径が小さく不均一であるので、商品価値が低い。
[Problems to be Solved by the Invention] However, gypsum crystals having a particle size of 10 to 20 μm have a low commercial value because the particle size is small and non-uniform.

このため、20μm以上の比較的大きい粒径を有する石
膏結晶を製造する方法の開発が進められている。従来、
比較的大きい粒径を有する石膏結晶を効率よく製造する
方法は存在しなかった。
For this reason, the development of a method for producing gypsum crystals having a relatively large particle size of 20 μm or more is underway. Conventionally,
There has been no method to efficiently produce gypsum crystals with relatively large particle sizes.

本発明はかかる点に鑑みてなされたものであり、比較的
大きい粒径を有する石膏結晶を効率よく得ることができ
る針状石膏結晶の製造方法を提供することを目的とする
The present invention has been made in view of this point, and an object of the present invention is to provide a method for producing acicular gypsum crystals that can efficiently obtain gypsum crystals having a relatively large particle size.

[課題を解決するための手段] 本発明は、石灰乳にSO2ガスを吸収させるSO2ガス
吸収工程と、前記SO2ガス吸収後の石灰乳を酸化させ
て石膏結晶スラリーを得る酸化工程と、該石膏結晶スラ
リーを濃縮する濃縮工程と、濃縮後の石膏結晶スラリー
を脱水する脱水工程とを具偏する針状石膏結晶の製造方
法において、SO2ガス吸収下程で発生する石膏結晶の
1倍〜5倍量の該石膏結晶を含んた量の石膏結晶スラリ
を前記SO2ガス吸収工程に連続的に帰還させるように
したことを特徴とする針状石膏結晶の製造方法である。
[Means for Solving the Problems] The present invention includes an SO2 gas absorption step in which milk of lime absorbs SO2 gas, an oxidation step in which a gypsum crystal slurry is obtained by oxidizing the milk of lime after absorbing the SO2 gas, and In a method for producing acicular gypsum crystals that includes a concentration step of concentrating a crystal slurry and a dehydration step of dehydrating the gypsum crystal slurry after concentration, the amount of gypsum crystals generated in the lower stage of SO2 gas absorption is 1 to 5 times This method of producing acicular gypsum crystals is characterized in that a gypsum crystal slurry in an amount containing the gypsum crystals is continuously returned to the SO2 gas absorption step.

[作用] 本発明の針状石膏結晶の製造方法によれば、SO2ガス
吸収工程で発生する石膏結晶の1倍〜5倍量の石膏結晶
を含む量の石膏結晶スラリーをSO2ガス吸収工程に帰
還させて針状石膏結晶を製造する。このため、石膏結晶
スラリー中の石膏結晶は、酸化工程においてさらに成長
する。この結果、比較的大きい粒径を有する針状石膏結
晶か得られる。
[Function] According to the method for producing acicular gypsum crystals of the present invention, gypsum crystal slurry in an amount containing 1 to 5 times the amount of gypsum crystals generated in the SO2 gas absorption process is returned to the SO2 gas absorption process. to produce acicular gypsum crystals. Therefore, the gypsum crystals in the gypsum crystal slurry grow further during the oxidation process. This results in acicular gypsum crystals having a relatively large particle size.

[実施例] 以下、本発明の実施例を図面を参照して具体的に説明す
る。
[Example] Hereinafter, an example of the present invention will be specifically described with reference to the drawings.

第1図は、本発明の方法を示す工程図である。FIG. 1 is a process diagram showing the method of the present invention.

ます、SO2ガス吸収工程10において、SO2ガス吸
収塔内で石灰乳にSO2ガスを吸収させる。また、S 
O2ガスを吸収させた石灰乳(以下、SO2吸収石灰乳
と省略する)の固液比は、10〜20重−%であること
か好ましい。ここで、固液比とは、固型物と液体の割合
をいう。次いて、酸化工程12において、SO2吸収石
灰乳を酸化して、石膏結晶スラリーを得る。SO2吸収
石灰乳を酸化する方法としては、高圧酸化方式等が用い
られる。このとき、石膏結晶スラリーの固液比は、5〜
10であることか好ましい。次いて、濃縮工程14にお
いて、石膏結晶スラリーをンックナーにより濃縮する。
First, in the SO2 gas absorption step 10, SO2 gas is absorbed into milk of lime in an SO2 gas absorption tower. Also, S
The solid-liquid ratio of the milk of lime that has absorbed O2 gas (hereinafter abbreviated as SO2-absorbed milk of lime) is preferably 10 to 20% by weight. Here, the solid-liquid ratio refers to the ratio of solid matter to liquid. Next, in an oxidation step 12, the SO2-absorbed milk of lime is oxidized to obtain a gypsum crystal slurry. As a method for oxidizing SO2-absorbing lime milk, a high-pressure oxidation method or the like is used. At this time, the solid-liquid ratio of the gypsum crystal slurry is 5 to
It is preferable that it is 10. Next, in a concentration step 14, the gypsum crystal slurry is concentrated using a cooker.

このとき、濃縮は、石膏結晶スラリーの固液比か10〜
20重量06の範囲内になるように行う。その後、脱水
工程16において、濃縮後の石膏結晶スラリーを遠心分
離機により脱水して石膏結晶を製造する。
At this time, the concentration is determined by the solid-liquid ratio of the gypsum crystal slurry from 10 to
Do this so that the weight is within the range of 20 weight 06. Thereafter, in a dehydration step 16, the concentrated gypsum crystal slurry is dehydrated using a centrifuge to produce gypsum crystals.

二の一連の操作において、SO2カス吸収工程10て発
生する右耳結晶を含む石膏結晶スラリを連続的にSO2
ガス吸収工程10に帰還させる。
In the second series of operations, the gypsum crystal slurry containing the right ear crystals generated in the SO2 scum absorption step 10 is continuously
The gas is returned to the gas absorption step 10.

ここで、帰還させる石膏結晶スラリーの量は、SO2カ
ス吸収工程10て発生した石膏結晶(以下、発生石膏結
晶と省略する)の1倍〜5倍量の石膏結晶を含む−に設
定する。これは、帰還させる石膏結晶スラリー中の石膏
結晶(以下、帰還石膏結晶と省略する)の量が発生石膏
結晶の量の1倍未満であると比較的大きな粒径を持つ石
膏結晶が得られず、帰還石膏結晶の量か発生石膏結晶の
量の5倍を超えると得られる石膏結晶スラリーのpHか
高くなるからである。pHか高くなる原因は、SO2ガ
ス吸収石灰乳中のCaH3O,か酸化工程で充分に酸化
されず石膏結晶とならすに残存するためである。
Here, the amount of the gypsum crystal slurry to be returned is set to - containing 1 to 5 times the amount of gypsum crystals generated in the SO2 scum absorption step 10 (hereinafter abbreviated as generated gypsum crystals). This is because if the amount of gypsum crystals in the gypsum crystal slurry to be returned (hereinafter abbreviated as returned gypsum crystals) is less than one time the amount of generated gypsum crystals, gypsum crystals with a relatively large particle size cannot be obtained. This is because if the amount of returned gypsum crystals exceeds five times the amount of generated gypsum crystals, the pH of the resulting gypsum crystal slurry becomes high. The reason for the high pH is that CaH3O in the SO2 gas-absorbing lime milk is not sufficiently oxidized in the oxidation process and remains as gypsum crystals.

第2図は、発生石膏結晶の量に対する帰還石膏結晶の量
の比(以下、帰還比と省略する)と、酸化工程で得られ
た石膏結晶スラリーのpHとの関係を示すグラフである
。第2図から明らかなようこ、帰還比か5、すなわち帰
還石膏結晶の量が発生石膏結晶の量の5倍を超えると、
酸化工程で得られた右耳結晶スラリーのpHか急激に上
昇する。
FIG. 2 is a graph showing the relationship between the ratio of the amount of returned gypsum crystals to the amount of generated gypsum crystals (hereinafter abbreviated as feedback ratio) and the pH of the gypsum crystal slurry obtained in the oxidation step. It is clear from Figure 2 that when the feedback ratio exceeds 5, that is, the amount of returned gypsum crystals exceeds the amount of generated gypsum crystals,
The pH of the right ear crystal slurry obtained in the oxidation process increases rapidly.

このようにして、比較的大きな粒径を何する針状石膏結
晶を製造することかできる。
In this way, acicular gypsum crystals with relatively large particle sizes can be produced.

以下、本発明の効果を確認するために行った実験例を示
す。
Examples of experiments conducted to confirm the effects of the present invention are shown below.

実験例1 3000kgの石灰乳にSO2カス吸収塔により900
m3の802ガスを吸収させた。このとき、得られたS
O2ガス吸収石灰乳は、流量か45m3/hてあり、固
液比が10重量%であった。次いて、SO2ガス吸収石
灰乳を空気により酸化して石膏結晶スラリーを得た。得
られた石膏結晶スラリーは、流量か45m”/hてあり
、固液比が10重量%てあった。次いて、石膏結晶スラ
リーをンソクナーにより濃縮した。濃縮後の石膏結晶ス
ラリーは、流量が30m3/hてあり、固液比か15重
量96てあった。その後、濃縮後の石膏結晶スラリーを
遠心分離機により脱水して針状石膏結晶を得た。
Experimental example 1 3000 kg of milk of lime was heated to 900 kg using an SO2 sludge absorption tower.
m3 of 802 gas was absorbed. At this time, the obtained S
The O2 gas-absorbing milk of lime had a flow rate of 45 m3/h and a solid-liquid ratio of 10% by weight. Next, the SO2 gas-absorbing milk of lime was oxidized with air to obtain a gypsum crystal slurry. The obtained gypsum crystal slurry had a flow rate of 45 m''/h and a solid-liquid ratio of 10% by weight.Then, the gypsum crystal slurry was concentrated using a soaker.The gypsum crystal slurry after concentration had a flow rate of The solid-liquid ratio was 15 and the weight was 96.Then, the concentrated gypsum crystal slurry was dehydrated using a centrifuge to obtain acicular gypsum crystals.

この操作は、濃縮後の石膏結晶スラリーを流量8 m 
3/ h %すなわち帰還比が約069でSO2ガス吸
収工程に連続的に帰還させながら行った。
In this operation, the concentrated gypsum crystal slurry was processed at a flow rate of 8 m
3/h%, that is, the feedback ratio was about 069, and the SO2 gas absorption step was continuously fed back.

なお、帰還比を算出する際に用いられる石膏結晶量は、
以下のようにして算出した。
The amount of gypsum crystals used when calculating the feedback ratio is
It was calculated as follows.

石膏結晶量−流量×密度X固液比×石膏含有率・・・式
(I) 発生石膏結晶量は、流ji45 m 3/ h、密度1
100kg/m3、固液比0.1、石膏含有率0゜3を
式(1)に代入して、1485kg/hである。
Amount of gypsum crystals - flow rate × density
Substituting 100 kg/m3, solid-liquid ratio 0.1, and gypsum content rate 0°3 into equation (1), it is 1485 kg/h.

帰還石膏結晶量は、流量8m’/h、密度1100kg
/m3、固液比0.15、石膏含有率1゜0を式(1)
に代入して、1320kg/hである。
The amount of returned gypsum crystals is a flow rate of 8 m'/h and a density of 1100 kg.
/m3, solid-liquid ratio 0.15, gypsum content 1゜0 using formula (1)
Substituting into , it is 1320 kg/h.

したがって、帰還比は、約0.9となる。Therefore, the feedback ratio is approximately 0.9.

得られた針状石膏結晶の平均粒径をレーザ解析方法によ
り測定したところ25μmであった。
The average particle size of the obtained acicular gypsum crystals was measured by a laser analysis method and was found to be 25 μm.

実験例2〜4 帰還させる濃縮後の石膏結晶スラリーの流量をそれぞれ
20m3/h (帰還比約2.2)、30m3/h(帰
還比約3.3) 、45m’ /h (帰還比5)にす
ることを除いて実験例1と同様にして実験例2〜4の針
状石膏結晶を得た。
Experimental Examples 2 to 4 The flow rates of the concentrated gypsum crystal slurry to be returned are 20 m3/h (feedback ratio approximately 2.2), 30 m3/h (feedback ratio approximately 3.3), and 45 m'/h (feedback ratio 5), respectively. Acicular gypsum crystals of Experimental Examples 2 to 4 were obtained in the same manner as Experimental Example 1 except that

得られた各々の針状石膏結晶の平均粒径を実験例1と同
様にして測定したところ、それぞれ40μm(実験例2
)、45μm(実験例3)、50μm(実験例4)であ
った。
The average particle size of each of the obtained acicular gypsum crystals was measured in the same manner as in Experimental Example 1, and was found to be 40 μm (Experimental Example 2).
), 45 μm (Experimental Example 3), and 50 μm (Experimental Example 4).

比較例 3000 kgの石灰乳にSO2ガス吸収塔により90
0m3のSO2ガスを吸収させた。このとき、得られた
SO2ガス吸収石灰乳は、流量か45m’/hてあり、
固液比か10重量96てあった。次いて、SO2ガス吸
収石灰乳を空気により酸化して石膏結晶スラリーを得た
。得られた石膏結晶スラリーは、流量が45m3/hて
あり、固液比が10重量%であった。次いて、石膏結晶
スラリーをシックナーにより濃縮した。濃縮後の石膏結
晶スラリーは、流量が30m3/hてあり、固液比か1
5重量%であった。その後、濃縮後の石膏結晶スラリー
を遠心分離機により脱水して針状石膏結晶を得た。
Comparative Example 3000 kg of milk of lime was heated to 90 kg using an SO2 gas absorption tower.
0 m3 of SO2 gas was absorbed. At this time, the obtained SO2 gas-absorbing lime milk had a flow rate of 45 m'/h,
The solid-liquid ratio was 10% by weight and 96%. Next, the SO2 gas-absorbing milk of lime was oxidized with air to obtain a gypsum crystal slurry. The resulting gypsum crystal slurry had a flow rate of 45 m3/h and a solid-liquid ratio of 10% by weight. The gypsum crystal slurry was then concentrated using a thickener. The flow rate of the gypsum crystal slurry after concentration is 30 m3/h, and the solid-liquid ratio is 1.
It was 5% by weight. Thereafter, the concentrated gypsum crystal slurry was dehydrated using a centrifuge to obtain acicular gypsum crystals.

得られた針状石膏結晶の平均粒径を実験例1と同様にし
て測定したところ50μmであった。
The average particle size of the obtained acicular gypsum crystals was measured in the same manner as in Experimental Example 1 and found to be 50 μm.

実験例1〜4および比較例の平均粒径の結果を第3図に
示すグラフに表した。第3図から明らかなように、本発
明の方法により得られた針状石膏結晶は、比較的大きな
平均粒径を有する。
The results of the average particle diameters of Experimental Examples 1 to 4 and Comparative Examples are shown in the graph shown in FIG. As is clear from FIG. 3, the acicular gypsum crystals obtained by the method of the present invention have a relatively large average particle size.

[発明の効果] 以上説明した如く、本発明の針状石膏結晶の製造方法は
、比較的大きい粒径を有する石膏結晶を効率よく得るこ
とができるものである。
[Effects of the Invention] As explained above, the method for producing acicular gypsum crystals of the present invention can efficiently obtain gypsum crystals having a relatively large particle size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を示す工程図、第2図は、帰還比
と、酸化工程で得られた石膏結晶スラリーのpHとの関
係を示すグラフ、第3図は帰還比と、酸化工程で得られ
た石膏晶の平均粒径との関係を示すグラフである。 10・・・S O2ガス吸収工程、12・・・酸化工程
、14・・・濃縮工程、16・・・脱水工程。 出願人代理人 弁理士 鈴江武彦 針状石膏結晶 第1図 帰還比 第2図
Fig. 1 is a process diagram showing the method of the present invention, Fig. 2 is a graph showing the relationship between the feedback ratio and the pH of the gypsum crystal slurry obtained in the oxidation process, and Fig. 3 is a graph showing the feedback ratio and the pH of the gypsum crystal slurry obtained in the oxidation process. It is a graph showing the relationship with the average particle size of gypsum crystals obtained in . 10...S O2 gas absorption step, 12... Oxidation step, 14... Concentration step, 16... Dehydration step. Applicant's representative Patent attorney Takehiko Suzue Acicular gypsum crystal Figure 1 Return ratio Figure 2

Claims (1)

【特許請求の範囲】[Claims] 石灰乳にSO_2ガスを吸収させるSO_2ガス吸収工
程と、前記SO_2ガス吸収後の石灰乳を酸化させて石
膏結晶スラリーを得る酸化工程と、該石膏結晶スラリー
を濃縮する濃縮工程と、濃縮後の石膏結晶スラリーを脱
水する脱水工程とを具備する針状石膏結晶の製造方法に
おいて、SO_2ガス吸収工程で発生する石膏結晶の1
倍〜5倍量の該石膏結晶を含んだ量の石膏結晶スラリー
を前記SO_2ガス吸収工程に連続的に帰還させるよう
にしたことを特徴とする針状石膏結晶の製造方法。
an SO_2 gas absorption step in which milk of lime absorbs SO_2 gas; an oxidation step in which the milk of lime after absorption of SO_2 gas is oxidized to obtain a gypsum crystal slurry; a concentration step in which the gypsum crystal slurry is concentrated; and gypsum after concentration. In a method for producing acicular gypsum crystals comprising a dehydration step of dehydrating a crystal slurry, one of the gypsum crystals generated in the SO_2 gas absorption step
A method for producing acicular gypsum crystals, characterized in that an amount of gypsum crystal slurry containing 5 times to 5 times the amount of the gypsum crystals is continuously returned to the SO_2 gas absorption step.
JP20357090A 1990-07-31 1990-07-31 Production of acicular gypsum crystal Pending JPH0489400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20357090A JPH0489400A (en) 1990-07-31 1990-07-31 Production of acicular gypsum crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20357090A JPH0489400A (en) 1990-07-31 1990-07-31 Production of acicular gypsum crystal

Publications (1)

Publication Number Publication Date
JPH0489400A true JPH0489400A (en) 1992-03-23

Family

ID=16476316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20357090A Pending JPH0489400A (en) 1990-07-31 1990-07-31 Production of acicular gypsum crystal

Country Status (1)

Country Link
JP (1) JPH0489400A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066525A1 (en) * 2002-02-08 2003-08-14 F.L. Smidth Airtech A/S Improvement of flue gas desulfurization gypsum-dewatering through crystal habit modification by carboxylic acids
CN104790041A (en) * 2015-04-13 2015-07-22 四川理工学院 Method for preparing semi-hydrated gypsum whisker from mirabilite and calcium solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066525A1 (en) * 2002-02-08 2003-08-14 F.L. Smidth Airtech A/S Improvement of flue gas desulfurization gypsum-dewatering through crystal habit modification by carboxylic acids
CN104790041A (en) * 2015-04-13 2015-07-22 四川理工学院 Method for preparing semi-hydrated gypsum whisker from mirabilite and calcium solution
CN104790041B (en) * 2015-04-13 2017-04-19 四川理工学院 Method for preparing semi-hydrated gypsum whisker from mirabilite and calcium solution

Similar Documents

Publication Publication Date Title
CN101804324B (en) Modified molecular sieve with high selectivity to ammonia nitrogen in waste water and preparation method thereof
GB2165829A (en) Producing a-gypsum hemihydrate
SG122892G (en) Process for exchanging dispersing medium of terephthalic acid slurry
US5643624A (en) Amorphous silicas
JPH0489400A (en) Production of acicular gypsum crystal
JP3272759B2 (en) Manufacture of trimanganese oxide
CN107434260A (en) A kind of preparation method of big granularity vanadic anhydride
JPS58172230A (en) Method for recovering gypsum after desulfurizing exhaust gas
US4299652A (en) Process for recovery of pulp mill chemicals
CN106423039B (en) A kind of preparation method for repairing the particulate iron manganese composite oxide of heavy metal in water and phosphorus pollution
JPH0489310A (en) Production of acicular gypsum crystal
JPS57167302A (en) Production of highly water-absorbing polymeric material having improved water absorption rate
CN109316964A (en) A kind of method of catalytic cracking flue gas desulfurization recycling sodium sulfite
JP3020143B2 (en) Method for producing desulfurizing agent
JPS6018959B2 (en) Defluorination reduction method for uranium compositions
US3658473A (en) Method for the manufacture of magnesium hydroxide
CA1144342A (en) Spheric particles of ammonium uranate easily cast, and process for preparing them
JPS57206378A (en) Filtering method of sake
JPH0138000B2 (en)
EP0014296B1 (en) Sodium uranate in the shape of spherical particles having a good flowability and process for its production
JPS63230520A (en) Production of calcium carbonate having controlled particle diameter
JPH0310578B2 (en)
JPS52150324A (en) Steel of extremely low sulfure content and its production method
SU688427A1 (en) Method of regeneration od spent sulfuric acid
Nishev et al. Kinetics of carbonization of calcium sulfide in water suspension