JPH0489329A - Whisker compounded glass composition - Google Patents

Whisker compounded glass composition

Info

Publication number
JPH0489329A
JPH0489329A JP20357990A JP20357990A JPH0489329A JP H0489329 A JPH0489329 A JP H0489329A JP 20357990 A JP20357990 A JP 20357990A JP 20357990 A JP20357990 A JP 20357990A JP H0489329 A JPH0489329 A JP H0489329A
Authority
JP
Japan
Prior art keywords
whisker
glass composition
sintered body
powder
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20357990A
Other languages
Japanese (ja)
Inventor
Masahiro Nawa
正弘 名和
Masayuki Ishihara
政行 石原
Keizou Makio
槙尾 圭造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP20357990A priority Critical patent/JPH0489329A/en
Publication of JPH0489329A publication Critical patent/JPH0489329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain a glass compsn. which can realize such a sintered body having low relative dielectric constant and coefft. of thermal expansion and high strength by compounding a specified amt. of whisker into a glass compsn. powder which forms a specified crystalline structure after sintering. CONSTITUTION:The whisker-compounded glass compsn. powder consists of a whisker and a glass compsn. powder which has alpha-cordierite as the main crystalline structure after sintering. The compounding ratio of the whisker is preferably <=50vol.% calculated as the density to the whole whisker- compounded glass compsn. As for the whisker, whiskers of silicon nitride, aluminum boride, and silicon carbide are preferable. The glass compsn. powder contains 48-63wt.% SiO2, 10-25wt.% Al2O3, 10-25wt.% MgO, 4-10wt.% B2O3 with one or more components selected from CaO, BaO, and SrO substituted for 0-20wt.% of the whole MgO component.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば各種半導体部品を搭載したり、電気信
号の入出力端子などを取りつける多層配線基板の製造に
用いられるガラス組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a glass composition used, for example, in the manufacture of multilayer wiring boards on which various semiconductor components are mounted and input/output terminals for electrical signals are attached.

[従来の技術] LSIなどの各種電子部品を多数搭載する多層配線基板
においては小型化や高信鯨性の要求に対応するために、
基板材料としてセラミックを利用することが広まってき
ている。セラミック材料としては比較的に高い強度を有
するアルミナが割れや欠けの生じにくい、好ましい有料
として多(使用されている。 しかしアルミナ基板は比
誘電率が高(、多層配線板における電気信号の伝播速度
が遅く、高速化を要求される機器ではアルミナ基板より
比誘電率の低い基板が求められている。またアルミナの
熱膨張係数は搭載されるLSIなどの材料であるシリコ
ンの熱膨張係数の約2倍と高いため、熱膨張係数の差に
起因する故障が発生する問題がある。
[Conventional technology] In order to meet the demands for miniaturization and high reliability in multilayer wiring boards that are equipped with a large number of various electronic components such as LSIs,
The use of ceramics as substrate materials is becoming widespread. As a ceramic material, alumina, which has relatively high strength and is difficult to crack or chip, is often used as a preferable material. In devices that require high speeds, a substrate with a lower dielectric constant than an alumina substrate is required.Also, the coefficient of thermal expansion of alumina is about 2 that of silicon, which is the material for the LSIs etc. on which it is mounted. Since this is twice as high, there is a problem that failures may occur due to the difference in thermal expansion coefficients.

これらの問題を解決するために、発明者らは比誘電率お
よび、熱膨張係数の低い基板材料として焼結後の結晶構
造が主としてα−コージェライトとなるガラス組成物の
開発を行ったが、このガラス組成物を用いて得られる基
板の性能は比誘電率および熱膨張係数については低く、
優れているが抗折強度は120〜170MPaと低く、
そのために配線板とした場合、配線板に電気信号の入出
力用ピンをろう付は等で取りつける際に、ろう材と基板
との熱膨張差で生じる熱応力で割れが生じる問題や、ろ
う付は後に負荷応力が加わった時ろう付は部で基板の剥
離などが生じ、そのため導通不良などの故障が発生する
問題があった。
In order to solve these problems, the inventors developed a glass composition whose crystal structure after sintering is mainly α-cordierite as a substrate material with a low dielectric constant and a low coefficient of thermal expansion. The performance of the substrate obtained using this glass composition is low in terms of dielectric constant and coefficient of thermal expansion;
Although excellent, the bending strength is low at 120 to 170 MPa.
When using a wiring board for this purpose, when attaching electrical signal input/output pins to the wiring board by brazing, etc., there are problems such as cracking due to thermal stress caused by the difference in thermal expansion between the brazing material and the board, and problems with brazing. However, when load stress is applied later on, the board may peel off at the brazed area, resulting in failures such as poor continuity.

[発明が解決しようとする課題〕 本発明の課題は比誘電率および熱膨張係数が低く、かつ
強度の強い焼結体が得られるガラス組成物を提供するこ
とにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a glass composition that has a low dielectric constant and a low coefficient of thermal expansion, and can yield a strong sintered body.

[課題を解決するための手段] 本発明は、ウィスカーと焼結後の結晶構造が主としてα
−コージェライトとなるガラス組成物粉末とからなり、
密度換算によるウィスカーの配合割合が50体積%以下
であるウィスカー配合ガラス組成物である。
[Means for Solving the Problems] The present invention provides that the whiskers and the crystal structure after sintering are mainly α
- consisting of a glass composition powder that becomes cordierite;
This is a whisker-containing glass composition in which the proportion of whiskers in terms of density is 50% by volume or less.

本発明のウィスカーとガラス組成物粉末とからなるガラ
ス組成物はウィスカーを配合していないガラス組成物に
比べ、焼結により得られる焼結体の強度が大幅に改善さ
れる。これはウィスカーが焼結体において破壊エネルギ
ーの散逸源として作用し、破壊に必要なエネルギーを増
大させるため焼結体の強度が向上するものと考えられる
。ウィスカーが破壊エネルギーの散逸源として作用する
には、ウィスカーは焼結後の焼結体中にウィスカーとし
て分散していることが望ましく、ガラス組成物粉末の焼
結温度では溶融し難い窒化珪素、ホウ酸アルミ、炭化珪
素のウィスカーが好適である。
The glass composition comprising the whiskers and glass composition powder of the present invention has a significantly improved strength of a sintered body obtained by sintering, compared to a glass composition containing no whiskers. This is considered to be because the whiskers act as a dissipation source of fracture energy in the sintered body and increase the energy required for fracture, thereby improving the strength of the sintered body. In order for the whiskers to act as a dissipation source of fracture energy, it is desirable that the whiskers be dispersed as whiskers in the sintered body after sintering. Acid aluminum and silicon carbide whiskers are preferred.

ウィスカーの配合割合は密度換算でウィスカーを配合し
たガラス組成物全体の50体積%以下である点に本発明
の特徴がある。(以下の体積%はすぺで密度換算により
求めた値である)すなわち、ウィスカーの配合割合が5
0体積%を越えると、焼結性が阻害され、緻密な焼結体
が得られず、焼結体の強度が低くなる問題が生じるため
である。
A feature of the present invention is that the blending ratio of whiskers is 50% by volume or less of the entire glass composition containing whiskers in terms of density. (The following volume percentages are values calculated by density conversion) In other words, the blending ratio of whiskers is 5.
This is because if the content exceeds 0% by volume, sinterability is inhibited, a dense sintered body cannot be obtained, and the strength of the sintered body becomes low.

ただし、ウィスカーが炭化珪素である場合は炭化珪素の
比誘電率が比較的に大きいため、ウィスカー配合ガラス
組成物全体の10体積%以下の割合にとどめることが低
い比誘電率の焼結体を得るためには望ましい。
However, when the whisker is silicon carbide, the dielectric constant of silicon carbide is relatively large, so it is difficult to keep the proportion of the whisker-containing glass composition to less than 10% by volume to obtain a sintered body with a low dielectric constant. desirable for this purpose.

また、ウィスカーの配合割合が少なすぎると、焼結体の
強度を向上させる効果が乏しくなるため、ウィスカーを
配合ガラス組成物全体の2体積%以上のウィスカーが配
合されていることが望ましい。
Furthermore, if the blending ratio of whiskers is too small, the effect of improving the strength of the sintered body will be poor, so it is desirable that the whiskers be blended in an amount of 2% or more by volume of the entire whisker-blended glass composition.

本発明では上記の例示したウィスカー以外のウィスカー
であっても例示したウィスカーと同様な性賀を有するも
のであれば使用可能である。
In the present invention, whiskers other than the above-mentioned whiskers can be used as long as they have properties similar to those of the above-mentioned whiskers.

本発明の焼結後の結晶構造が主としてα−コージェライ
トとなるガラス組成物粉末とはS t O。
The glass composition powder of the present invention whose crystal structure after sintering is mainly α-cordierite is S t O.

AlgOs  MgOを主成分とするガラス組成物粉末
であり、好ましくは次に示す成分を主成分として含有す
るガラス組成物粉末である。
AlgOs A glass composition powder containing MgO as a main component, preferably a glass composition powder containing the following components as main components.

SiO□  :40〜63重量% A 1m Os  : 10〜25重量%MgO:10
〜25重量% このようなガラス組成物粉末を用いて得られる焼結体は
比誘電率が低く、熱膨張係数がシリコンに近い値となる
が、成分の配合割合によっては1000℃以上の焼結温
度で焼結しないと、緻密な焼結体が得られない場合があ
る。
SiO□: 40-63% by weight A 1m Os: 10-25% by weight MgO: 10
~25% by weight The sintered body obtained using such a glass composition powder has a low dielectric constant and a coefficient of thermal expansion close to that of silicon, but depending on the blending ratio of the components, it may be difficult to sinter at temperatures above 1000°C. Unless sintered at a high temperature, a dense sintered body may not be obtained.

本発明のガラス組成物を用いて製造する多層配線基板は
、通常導体をガラス組成物および有機バインダーなどよ
りなるグリーンシート上に形成したものを焼結して製造
される。このグリーンシート上に形成する導体としては
A−u、Ag、Ag−Pd、Cuなどの低抵抗の金属が
好ましい、これらの金属の融点は1000℃付近にある
ため、導体を溶融させずに多層配線基板を得るためには
、グリーンシートの焼結温度は1000℃以下が望まし
い、但し、導体をグリーンシート上に形成しない場合や
前記に例示した金属より高融点の金属を導体に使用する
場合はグリーンシートの焼結温度を1000℃以上にし
ても問題は生じない、グリーンシートの焼結を1000
℃以下で行うことが望ましい場合、用いるsio□−A
 I * 05−MgOを主成分とするガラス組成物粉
末はその組成として sto、  :48〜63重量% A1.03:10〜25重量% MgO:10〜25重量% Btus  :4〜10重量% の成分を有し、かつMgO成分全体に対して0〜20重
量%のMgOがCaO1BaO1SrOの中から選ばれ
たアルカリ土類金属酸化物の少なくとも一種類以上で置
換されてなる組成を有していることが好適である。
A multilayer wiring board manufactured using the glass composition of the present invention is usually manufactured by forming a conductor on a green sheet made of a glass composition, an organic binder, etc. and then sintering it. The conductor to be formed on this green sheet is preferably a low-resistance metal such as Au, Ag, Ag-Pd, or Cu.The melting point of these metals is around 1000°C, so multilayers can be formed without melting the conductor. In order to obtain a wiring board, the sintering temperature of the green sheet is preferably 1000°C or less. However, if the conductor is not formed on the green sheet or if a metal with a higher melting point than the metals listed above is used for the conductor, No problem occurs even if the sintering temperature of the green sheet is increased to 1000℃ or higher.
If it is desirable to carry out the temperature below ℃, use sio□-A
The glass composition powder containing I*05-MgO as a main component has the following composition: sto: 48-63% by weight A1.03: 10-25% by weight MgO: 10-25% by weight Btus: 4-10% by weight and has a composition in which 0 to 20% by weight of MgO based on the entire MgO component is replaced with at least one kind of alkaline earth metal oxide selected from CaO1BaO1SrO. is suitable.

すなわち、Singの組成割合が63重量%を越えると
ガラス溶融温度が上昇するとともに、焼結時にガラス粒
子表面が急激に結晶化するため焼結を助けるガラス相が
不足し、緻密な焼結体が得難くなる。48重量%未満で
あるとガラス粉末の結晶化温度が上昇し、緻密な焼結体
が得られる焼結温度が高くなり、したがって1000℃
以下で焼結した場合、未焼結の状態の焼結体しか得られ
ない問題が生じる。
In other words, when the composition ratio of Sing exceeds 63% by weight, the glass melting temperature increases, and the surface of the glass particles rapidly crystallizes during sintering, resulting in a lack of glass phase that helps sintering, resulting in a dense sintered body. It becomes difficult to obtain. If it is less than 48% by weight, the crystallization temperature of the glass powder increases, and the sintering temperature at which a dense sintered body is obtained becomes high, and therefore
If sintering is performed below, a problem arises in that only a sintered body in an unsintered state is obtained.

A1.O,の組成割合については、25重量%を越える
と緻密な焼結体が得られる焼結温度が高くなり、したが
って1000℃以下で焼結した場合、未焼結の状態の焼
結体しか得られない問題が生じる。10重量%未満であ
るとα−コージェライト結晶が少なくなり、S to、
−MgO系の結晶が多く析出し、比誘電率が高くなる問
題を生じる。
A1. Regarding the composition ratio of O, if it exceeds 25% by weight, the sintering temperature at which a dense sintered body can be obtained becomes high, and therefore, if sintered at a temperature below 1000°C, only an unsintered sintered body can be obtained. Problems that cannot be solved arise. If it is less than 10% by weight, α-cordierite crystals will decrease, and S to,
- Many MgO-based crystals precipitate, resulting in a problem of high relative dielectric constant.

MgOの組成割合については25重量%を越えると、ケ
イ酸マグネシウムが析出するためと推定されるが、焼結
時の変形が太き(なり、実用性に乏しくなる。10重量
%未満であると緻密な焼結体を得られないという問題を
生じる。
Regarding the composition ratio of MgO, if it exceeds 25% by weight, it is presumed that magnesium silicate will precipitate, but the deformation during sintering will become large (which will make it impractical). If it is less than 10% by weight, This causes the problem that a dense sintered body cannot be obtained.

B20.の組成割合については、10重量%を越えると
、焼結時に発泡しやすくなり、焼結可能な温度範囲が狭
くなると共に、焼結体の強度が低下する問題が生じる。
B20. When the composition ratio exceeds 10% by weight, foaming tends to occur during sintering, the temperature range in which sintering can be performed becomes narrow, and the strength of the sintered body decreases.

4重量%未満であると、ガラス粒子表面層の結晶化が急
激に進み、1000°C以下の焼結では緻密な焼結体が
得られない問題が生じる。
If it is less than 4% by weight, crystallization of the surface layer of the glass particles will proceed rapidly, causing a problem that a dense sintered body cannot be obtained by sintering at 1000°C or lower.

MgOを置換するアルカリ土類金属酸化物に関しては、
緻密な焼結体が得られるように、必要に応じ適宜用いう
るが、置換するアルカリ土類金属酸化物がMgOの20
重量%を越えると、MgO成分が少なくなり、α−コー
ジェライト結晶の析出が悪くなり比誘電率が高くなる問
題が生じる。
Regarding alkaline earth metal oxides to replace MgO,
In order to obtain a dense sintered body, it can be used as needed, but if the alkaline earth metal oxide to be substituted is MgO,
If it exceeds % by weight, the MgO component will decrease, causing a problem that precipitation of α-cordierite crystals will deteriorate and the dielectric constant will increase.

なお、 本発明のウィスカー配合ガラス組成物の用途は
前記した多層配線基板が好適であるが、これに限定され
るものではなく、高強度、低い比誘電率、低い熱膨張係
数を必要とする各種分野に適用可能である。
The whisker-containing glass composition of the present invention is preferably used in the above-mentioned multilayer wiring board, but is not limited thereto, and can be used in various applications that require high strength, low dielectric constant, and low coefficient of thermal expansion. Applicable to the field.

[作用] 本発明の焼結後の結晶構造が主としてα−コージェライ
トとなるガラス組成物粉末はその焼結体が低い比誘電率
、低い熱膨張係数となる作用をし、このガラス組成物粉
末と複合するウィスカーは焼結体中に分散させられてい
ることにより、破壊エネルギーの散逸源として作用し、
焼結体の破壊に必要なエネルギーを増大させる作用をす
る。
[Function] The glass composition powder of the present invention whose crystal structure is mainly α-cordierite after sintering has the effect that the sintered body has a low dielectric constant and a low coefficient of thermal expansion, and this glass composition powder Since the whiskers combined with the sintered body are dispersed in the sintered body, they act as a dissipation source of fracture energy,
It acts to increase the energy required to destroy the sintered body.

請求項第3項に示す組成のガラス組成物粉末は1000
℃以下の焼結温度で焼結が可能となる。
The glass composition powder having the composition shown in claim 3 is 1000
Sintering is possible at a sintering temperature below ℃.

[実施例] 本発明の実施例および比較例について、その製造方法お
よび行った性能試験の結果について説明する。
[Example] Regarding Examples and Comparative Examples of the present invention, the manufacturing method and the results of performance tests will be described.

各実施例および比較例についてのウィスカー配合ガラス
組成物の製法ならびに焼結体の製法は次のようにして行
った。
The whisker-containing glass composition and the sintered body of each Example and Comparative Example were manufactured as follows.

各配合成分(S 10x 、A 1103 、Mg 0
2B80.など)を第1表に示す割合で配合し、それぞ
れをアルミナ質ルツボに入れ、約1500〜1550℃
で加熱し溶解した。得られた溶融液を水中に投下し、ガ
ラス組成物とした後、アルミナ質ボールミル中で湿式粉
砕または乾式粉砕をし、平均粒径2〜4μmのガラス組
成物粉末を得た。
Each compounding component (S 10x , A 1103 , Mg 0
2B80. etc.) in the proportions shown in Table 1, put each into an alumina crucible, and heat the mixture to about 1500-1550℃.
It was heated and dissolved. The resulting melt was poured into water to form a glass composition, which was then wet-pulverized or dry-pulverized in an alumina ball mill to obtain a glass composition powder with an average particle size of 2 to 4 μm.

第1表のG−1〜G−10のガラス組成物粉末は本発明
の請求項第3項に示す組成範囲内の組成のガラス組成物
粉末であり、G−11〜G−14のガラス組成物粉末は
請求項第3項に示す組成範囲を外れた組成のガラス組成
物粉末である。
The glass composition powders of G-1 to G-10 in Table 1 are glass composition powders having compositions within the composition range shown in claim 3 of the present invention, and the glass compositions of G-11 to G-14 are The glass composition powder is a glass composition powder having a composition outside the composition range shown in claim 3.

こうして得られたガラス組成物粉末に対して、各種のウ
ィスカーを第2表および第3表に示す体積分率(配合物
全体に対する体積%)で配合し、ナイロン質ボールミル
中でエチルアルコールを添加して24時時間式混合し、
乾燥し、ウィスカー配合ガラス組成物を得た。なお、各
種のウィスカーはいずれも市販の、平均直径0.5〜1
.0μm、平均長さ10〜100μm前後のものであり
、ガラス組成物粉末と配合する前に、純水中で超音波を
照射した後、開口径50μm(#325メツシュ)のフ
ィルターを通過させたものを用いた。
Various whiskers were blended with the glass composition powder thus obtained at the volume fractions (volume % relative to the entire blend) shown in Tables 2 and 3, and ethyl alcohol was added in a nylon ball mill. 24-hour mixing,
It was dried to obtain a whisker-containing glass composition. In addition, all types of whiskers are commercially available and have an average diameter of 0.5 to 1.
.. 0 μm, average length around 10 to 100 μm, and before being blended with the glass composition powder, it was irradiated with ultrasonic waves in pure water and passed through a filter with an opening diameter of 50 μm (#325 mesh). was used.

こうして得られたウィスカー配合ガラス組成物を黒鉛製
モールドを用いて、アルゴン雰囲気中、昇温スピード1
0℃/分、焼結温度1000℃、保持時間1時間、プレ
ス圧力35MPaの条件下でホットプレス焼結し、50
mm−の円盤状のウィスカー複合ガラスセラミック焼結
体を得た。得られた50mm−の円盤状のウィスカー複
合ガラスセラミック焼結体について、周波数IMHzに
おける比誘電率を測定した。またこの焼結体から切断お
よび研削加工により、4X3X35mmの寸法の試験片
を作成し、熱膨張係数およびJISR1601の3点曲
げによる抗折強度の測定を行った。その結果を第2表、
第3表に示す。
Using a graphite mold, the whisker-containing glass composition thus obtained was heated at a heating rate of 1 in an argon atmosphere.
Hot press sintering was carried out under the conditions of 0 °C/min, sintering temperature of 1000 °C, holding time of 1 hour, and press pressure of 35 MPa.
A whisker composite glass-ceramic sintered body in the shape of a disk of mm- was obtained. The relative dielectric constant at a frequency of IMHz was measured for the obtained 50 mm disk-shaped whisker composite glass ceramic sintered body. Further, test pieces with dimensions of 4 x 3 x 35 mm were prepared from this sintered body by cutting and grinding, and the thermal expansion coefficient and bending strength by three-point bending according to JISR1601 were measured. The results are shown in Table 2.
It is shown in Table 3.

第2表に示す実施例1〜11は本発明の請求項第3項に
示す組成範囲内の組成のガラス組成物粉末を用いて実施
したものであり、何れの場合も得られた抗折強度は20
9〜391MPaと高い値を示しており、また比誘電率
および熱膨張係数も実用上、十分な値が得られた。この
結果から本発明の実施例のウィスカー配合ガラス組成物
により得られる焼結体は、比誘電率が低く、熱膨張係数
が低く、かつ強度が強いことが実証された。
Examples 1 to 11 shown in Table 2 were carried out using glass composition powders having compositions within the composition range shown in claim 3 of the present invention, and the bending strength obtained in each case was is 20
It showed a high value of 9 to 391 MPa, and the relative dielectric constant and coefficient of thermal expansion had values sufficient for practical use. These results demonstrate that the sintered body obtained from the whisker-containing glass composition of the example of the present invention has a low dielectric constant, a low coefficient of thermal expansion, and high strength.

これに対し、第3表の比較例1〜4ではウィスカーの配
合割合が60〜70体積%と50体積%より多いため、
緻密な焼結体が得られず、抗折強度は47〜118MP
aと低い値であった。また、第3表の比較例5〜8では
ガラス組成物粉末の各成分の配合割合が本発明の請求項
第3項に示す組成範囲を外れたものであり、この場合ウ
ィスカーを配合することにより、さらに焼結性が悪くな
り、ウィスカーの配合割合が10体積%であるにもかか
わらず1000℃の焼結では緻密な焼結体が得られず、
抗折強度は78〜148MPaと低い値であった。
On the other hand, in Comparative Examples 1 to 4 in Table 3, the blending ratio of whiskers is 60 to 70% by volume, which is higher than 50% by volume.
A dense sintered body cannot be obtained, and the bending strength is 47 to 118 MP.
It was a low value of a. In addition, in Comparative Examples 5 to 8 in Table 3, the blending ratio of each component of the glass composition powder is outside the composition range shown in claim 3 of the present invention, and in this case, by blending whiskers, Furthermore, the sintering properties deteriorated, and a dense sintered body could not be obtained by sintering at 1000°C even though the blending ratio of whiskers was 10% by volume.
The bending strength was a low value of 78 to 148 MPa.

[発明の効果] 本発明の、ウィスカー配合ガラス組成物による焼結体は
、比誘電率が低く、熱膨張係数が低く、かつ強度が強い
焼結体となるため、多層配線基板とするに好適な材料の
提供が可能となった。
[Effects of the Invention] The sintered body made of the whisker-containing glass composition of the present invention has a low dielectric constant, a low coefficient of thermal expansion, and a strong sintered body, so it is suitable for use as a multilayer wiring board. It is now possible to provide materials that

また、請求項第3項の組成のガラス組成物粉末を用いた
場合、1000℃以下の温度で焼結して強い強度を有す
るウィスカー複合ガラスセラミック焼結体を得ることが
できるため、グリーンシート上に低抵抗の金属の導体を
形成し、このグリーンシートを焼結して低抵抗の金属を
溶融させることなく、多層配線基板とすることが可能で
あり、低抵抗の導体を有する多層配線基板とするに好適
な材料の提供が可能となった。
Furthermore, when the glass composition powder having the composition of claim 3 is used, it is possible to obtain a whisker composite glass-ceramic sintered body having strong strength by sintering at a temperature of 1000°C or less. It is possible to form a low-resistance metal conductor on the green sheet and sinter this green sheet to make a multilayer wiring board without melting the low-resistance metal. It has now become possible to provide materials suitable for

Claims (3)

【特許請求の範囲】[Claims] (1)ウィスカーと焼結後の結晶構造が主としてα−コ
ージェライトとなるガラス組成物粉末とからなり、密度
換算によるウィスカーの配合割合が50体積%以下であ
るウィスカー配合ガラス組成物。
(1) A whisker-containing glass composition consisting of whiskers and a glass composition powder whose crystal structure after sintering is mainly α-cordierite, and in which the proportion of whiskers in terms of density is 50% by volume or less.
(2)ウィスカーが、窒化珪素、ホウ酸アルミ、炭化珪
素の中から選ばれた少なくとも一種以上であることを特
徴とする特許請求の範囲第1項記載のウィスカー配合ガ
ラス組成物。
(2) The whisker-containing glass composition according to claim 1, wherein the whisker is at least one selected from silicon nitride, aluminum borate, and silicon carbide.
(3)ガラス組成物粉末が SiO_2:48〜63重量% Al_2O_3:10〜25重量% MgO:10〜25重量% B_2O_3:4〜10重量% の成分を有し、かつMgO成分全体に対して0〜20重
量%のMgOがCaO、BaO、SrOの中から選ばれ
たアルカリ土類金属酸化物の少なくとも一種類以上で置
換されてなる組成を有する粉末であることを特徴とする
特許請求の範囲第1項または第2項記載のウィスカー配
合ガラス組成物。
(3) The glass composition powder has the following components: SiO_2: 48 to 63% by weight, Al_2O_3: 10 to 25% by weight, MgO: 10 to 25% by weight, B_2O_3: 4 to 10% by weight, and 0% to the total MgO component. Claim 1, characterized in that the powder has a composition in which ~20% by weight of MgO is replaced with at least one kind of alkaline earth metal oxide selected from CaO, BaO, and SrO. The whisker-containing glass composition according to item 1 or 2.
JP20357990A 1990-07-31 1990-07-31 Whisker compounded glass composition Pending JPH0489329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20357990A JPH0489329A (en) 1990-07-31 1990-07-31 Whisker compounded glass composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20357990A JPH0489329A (en) 1990-07-31 1990-07-31 Whisker compounded glass composition

Publications (1)

Publication Number Publication Date
JPH0489329A true JPH0489329A (en) 1992-03-23

Family

ID=16476443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20357990A Pending JPH0489329A (en) 1990-07-31 1990-07-31 Whisker compounded glass composition

Country Status (1)

Country Link
JP (1) JPH0489329A (en)

Similar Documents

Publication Publication Date Title
KR100320630B1 (en) Low dielectric loss glasses
JPS62113758A (en) Low temperature burnt ceramics
US5206190A (en) Dielectric composition containing cordierite and glass
TW200524835A (en) Multilayered wiring board and process for producing the same
JP2642253B2 (en) Glass-ceramic composite
JP3121990B2 (en) Glass-ceramic substrate
JPWO2001044143A1 (en) Bonded body of crystallized glass and sintered aluminum nitride and method for producing the same
JPH03125463A (en) Light weight substrate for semiconductor device
JP2598872B2 (en) Glass ceramic multilayer substrate
JPH04114931A (en) Production of sintered glass ceramic compact
JPH0489329A (en) Whisker compounded glass composition
JPH0489328A (en) Production of glass ceramic sintered body
JPS6350345A (en) Glass ceramic sintered body
JPH0881267A (en) Aluminum nitride sintered compact, its production, aluminum nitride circuit board and its production
JP2500692B2 (en) Low temperature sinterable low dielectric constant inorganic composition
JPH06199541A (en) Glass-ceramic composition
JP2563809B2 (en) Aluminum nitride substrate for semiconductors
JPH10194846A (en) Production of substrate fired at low temperature
JP2003073162A (en) Glass ceramic and wiring board
JP2710311B2 (en) Ceramic insulation material
JP2892163B2 (en) Low temperature firing glass ceramic body
JP3125500B2 (en) Ceramic substrate
JP2003137657A (en) Glass ceramics and method of manufacturing the same and wiring board
JPH02225338A (en) Calcined body of glass ceramics
JP3097426B2 (en) Ceramic substrate and method of manufacturing the same