JPH0488995A - Atp synthesizing device - Google Patents

Atp synthesizing device

Info

Publication number
JPH0488995A
JPH0488995A JP20344890A JP20344890A JPH0488995A JP H0488995 A JPH0488995 A JP H0488995A JP 20344890 A JP20344890 A JP 20344890A JP 20344890 A JP20344890 A JP 20344890A JP H0488995 A JPH0488995 A JP H0488995A
Authority
JP
Japan
Prior art keywords
atp
liposome
phospholipid
antigen
bacteriorhodopsin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20344890A
Other languages
Japanese (ja)
Inventor
Minoru Saito
稔 斎藤
Takeshi Koyano
武 小谷野
Hiroo Miyamoto
裕生 宮本
Katsuaki Umibe
海部 勝晶
Masakazu Kato
雅一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP20344890A priority Critical patent/JPH0488995A/en
Publication of JPH0488995A publication Critical patent/JPH0488995A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain an ATP synthesizing device useful for bio-element, etc., readily integrating a material to be integrated by blending liposome comprising phospholipid, bacteriorhodopsin and ATP synthase as constituent elements with a phospholipid antigen as a constituent element. CONSTITUTION:Soybean phospholipid Asolectin 43, etc., shown by formula (R is alkyl) is used as phospholipid, a halophilic bacteria derived bacteriorhodopsin as rhodopsin, ATP synthase 49 prepared from vituline heart mitochondrion as ATP synthase and further phospholipid antigen 45 shown by formula II as a constituent element and these components are dissolved in dried chloroform, irradiated by an ultrasonic grinding device under a condition of one minute irradiation and one minute stopping for 2 hours to give liposome 41. Then, the liposome is integrated through an antigen 51 in to glass substrate 55, a material to be integrated of ATP synthesizing device to give the objective ATP synthesizing device.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、A T P (adenosine 5°
−triphos−phate :アデノシン三すンM
)の合成装置に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is directed to ATP (adenosine 5°
-triphos-phate: Adenosine triphos M
).

(従来の技術) 現在の電子装置の進歩例えば電子計算機の進歩は、電子
計算機の基本構成デバイスである半導体デバイスの高集
積化技術の進歩に依るところが大きい、そして、半導体
デバイスの集積度は、1970年代には平均して年に2
倍の割合で向上し、現在では3年に4倍の割合と少しベ
ースダウンしでいるとはいえ、当分の開面上が見込める
(Prior Art) Current progress in electronic devices, for example, progress in electronic computers, is largely dependent on advances in high integration technology for semiconductor devices, which are the basic constituent devices of electronic computers. On average, 2 per year
The rate has increased by twice as much, and now the rate has quadrupled every three years, although the base is slightly down, it is expected to remain open for the time being.

しかし、半導体デバイスの設計ルールが0.5〜0.2
5umとなり集積度が109個トランジスタ/1チツプ
となると、高集積化技術の進歩は頭打ちとなることが予
測され、よって電子計算機の進歩も制約を草けることが
予想される。
However, the design rule for semiconductor devices is 0.5 to 0.2.
5 um and the degree of integration becomes 109 transistors/chip, it is predicted that the progress in highly integrated technology will reach a plateau, and therefore the progress of electronic computers will also be expected to reach its limits.

そこで、半導体デバイスに代る素子として、例えば文献
■(日本の科学と技術(1987)。
Therefore, as an element to replace a semiconductor device, for example, see Document ① (Japanese Science and Technology (1987)).

p、69)に開示されているように、生体分子とエレク
トロニクスとを融合させた生体由来の機能デバイス(以
下、ここではバイオ素子と略称する。)が注目されてい
る。その理由は、ノ\イオ素子が高三度性、自己組織化
能力を具えているからである。
As disclosed in p. 69), biologically derived functional devices (hereinafter abbreviated as bio-devices) that combine biomolecules and electronics are attracting attention. The reason is that the ionic element has high tertiary nature and self-organization ability.

例えば上記文献■には、まだ実現されてはいないが、M
calearによって提案されたノ\イオ素子の概念が
紹介されている。第5図は、そのノ\イオ素子の概念図
である。
For example, in the above document ■, although it has not been realized yet, M
The concept of an ionic element proposed by John Calear is introduced. FIG. 5 is a conceptual diagram of the ionic element.

このバイオ素子は、細胞融合を応用したモノクロナー・
ル抗体11と抗原13、酵素15、ペプチド界面(イン
タフェース)17及び分子電子スイッチ19から成り、
みずから導体21を取り込んで回路を作るものである0
分子電子スイッチ19は、第6図(A)及び(B)に示
すように、ポリフィリン1!131を持つタンパク貢分
子を主電極33間に配置した構造とされている。
This biodevice is a monoclonal device that applies cell fusion.
It consists of an antibody 11, an antigen 13, an enzyme 15, a peptide interface 17, and a molecular electronic switch 19.
0, which takes in the conductor 21 and creates a circuit
The molecular electronic switch 19 has a structure in which a protein contributor molecule having porphyrin 1!131 is arranged between the main electrodes 33, as shown in FIGS. 6(A) and 6(B).

このバイオ素子では、第6図(A)及び(B)に示すよ
うに、制御電極35から信号が出ると、ソリトンがポリ
エン部37を伝搬しポルフィリン環31の構造を変化さ
せ主電極33周がオン(第6図CB)の状態)、或いは
オフ(第6図(A)の状WB)する。さらにこのバイオ
素子は、フォスフアーゼ、ATP等の酵素の働きにより
、当該バイオ素子周辺に存在するアミノ酸、糖類、脂質
等を原料として自ら回路網を作るとされている。
In this biodevice, as shown in FIGS. 6(A) and 6(B), when a signal is output from the control electrode 35, solitons propagate through the polyene portion 37, change the structure of the porphyrin ring 31, and cause the main electrode 33 to rotate. It is turned on (state CB in FIG. 6) or off (state WB in FIG. 6(A)). Furthermore, this bio-element is said to create its own circuit network using the amino acids, sugars, lipids, etc. present around the bio-element as raw materials through the action of enzymes such as phosphorase and ATP.

従って、生体でもATPが必要であるように、この種の
バイオ素子でもこれを駆動するエネルギーとしてATP
が不可欠になる。
Therefore, just as living organisms require ATP, this type of biodevice also uses ATP as the energy to drive it.
becomes essential.

方、例えば文献■(ジャーナル オフ バイオロジカル
 ケミストリ(J、Biolo9ical  Chem
、、249 (2)、p、662(1974))には、
A D P (adenosine 5−diphos
phateアデノシンニリン酸)と無機リン酸(Pl)
とからATPを合成するため、リン脂質、バクテリオロ
ドプシン及びATP合成酵素で構成されたリポソーム(
これ%ATP合成装盲と称する。)が開示されていた。
For example, literature ■ (Journal of Biological Chemistry)
, 249 (2), p. 662 (1974)),
ADP (adenosine 5-diphos)
phate adenosine diphosphate) and inorganic phosphoric acid (Pl)
In order to synthesize ATP from
This is called %ATP synthesis blindness. ) was disclosed.

この従来のへTP合成装置では、光照射を受けるとバク
テリオロドプシンがH+をリポソーム内部に取り込みA
TP合成酵素がこの日+をリポソーム外部に運び出す、
この際リポソーム内外で生じるH1濃度勾配を利用して
ATP合成酵素によってATP合成が起こる。
In this conventional HeTP synthesis device, when exposed to light, bacteriorhodopsin takes H+ into the liposome and A
TP synthase transports + to the outside of the liposome.
At this time, ATP synthesis occurs by ATP synthase using the H1 concentration gradient generated inside and outside the liposome.

(発明が解決しようとする課題) しかしながら、文献■に開示の従来のへTP合成装置は
、バイオ素子に組み込むための手段を具えた構造ではな
いため、第5図を用い説明したバイオ素子を含む種々の
バイオ素子が将来冥現されこれらバイオ素子駆動のため
にATP合成装′aLをバイオ素子に組み込む必要が生
した場合、その要求を満足することが出来ないという問
題点があった。
(Problems to be Solved by the Invention) However, the conventional HeTP synthesis device disclosed in Document ① does not have a structure that includes a means for incorporating it into a biodevice, so it does not include the biodevice explained using FIG. If various bio-devices are to be created in the future and it becomes necessary to incorporate an ATP synthesis device aL into the bio-devices to drive these bio-devices, there is a problem in that it will not be possible to satisfy the requirements.

この発明はこのような点に鑑みなされたものであり、従
ってこの発明の目的は、バイオ素子の所定の位置に組み
込むことが可能なATP合成装置を提供することにある
The present invention has been made in view of these points, and therefore, an object of the present invention is to provide an ATP synthesis device that can be incorporated into a predetermined position of a biodevice.

(課題を解決するための手段) この目的の達成を図るため、この発明によれば、リン脂
質、バクテリオロドプシン及びATP合成酵素で構成さ
れたリポソームを用いたATP合成装置において、 リポソームの構成要素としてにリン脂質抗原をさらに含
ませたことを特徴とする。
(Means for Solving the Problems) In order to achieve this object, according to the present invention, in an ATP synthesis device using a liposome composed of phospholipids, bacteriorhodopsin, and ATP synthase, as constituent elements of the liposome, It is characterized by further containing a phospholipid antigen.

(作用) この発明のATP合成装置によれば、リン脂質抗原を含
む構成となっているので、例えばバイオ素子等のような
ATP合成装置を組み込みたい物(以下、被組み込み物
と称することもある。)の所定位置に前述のリン脂質抗
原に対し好適な抗原を予め配置しでおくことにより、当
該ATP合成装置を被組み込み物に抗原−抗体反応を利
用して容易に組み込むことが出来る。
(Function) The ATP synthesizer of the present invention has a structure that includes a phospholipid antigen, so it is possible to incorporate the ATP synthesizer into an object such as a biodevice (hereinafter also referred to as an object to be incorporated). By placing an antigen suitable for the above-mentioned phospholipid antigen in advance at a predetermined position in the phospholipid antigen, the ATP synthesizer can be easily incorporated into the object by utilizing the antigen-antibody reaction.

(実施例) 以下、図面を参照してこの発明のATP合成装置の実施
例について説明する。なお、以下の説明で用いる各図は
、この発明を理解出来る程度に各構成成分の寸法、形状
及び配!!関係を概略的に示しである。また、以下の説
明で述べる使用薬品名、薬品濃度、薬品使用量、処理時
間等の数値的条件、処理方法、使用装置N等はこの発明
の範囲内の好適例にすぎない、従って、この発明がこれ
ら条件にのみ限定されるものでないことは理解されたい
(Example) Hereinafter, an example of the ATP synthesis apparatus of the present invention will be described with reference to the drawings. Each figure used in the following explanation shows the size, shape, and arrangement of each component to the extent that this invention can be understood. ! The relationship is schematically illustrated. In addition, the names of chemicals used, chemical concentrations, amounts of chemicals used, numerical conditions such as processing time, processing methods, equipment N, etc. used in the following explanation are only preferred examples within the scope of this invention. It should be understood that is not limited to only these conditions.

迭ポy二」す1生1 始めに、以下に説明するように実施例のリポソーム(A
TP合成装置)を作製する。なお、リン脂質として下記
0式で示される大豆リン脂質アゾレクチン(シグマ社製
)を用い、バクテリオロドブシンとしてHalobac
te rlumhalobium(好塩菌)より調製し
たバクテリオロドプシンを用い、ATP合成酵素として
子牛心臓ミトコンドリアより調製したATPアーゼを用
い、リン脂質抗原として下記0式で示されるものを用い
る。但し、■式中のRはアルキル基(C−82−+1 
)である。
First, as explained below, the liposomes of Examples (A
TP synthesizer) is prepared. The soybean phospholipid azolectin (manufactured by Sigma) represented by the following formula 0 was used as the phospholipid, and Halobac was used as the bacteriorhodobuscin.
Bacteriorhodopsin prepared from Terlumhalobium (halophilic bacterium) is used, ATPase prepared from calf heart mitochondria is used as the ATP synthase, and an antigen represented by the following formula 0 is used as the phospholipid antigen. However, R in the formula (■) is an alkyl group (C-82-+1
).

0  CH2−QC−R 上述のアゾレクチン(リン脂質)及びリン脂質抗原の混
合脂質と、バクテリオロドプシンと、ATPアーゼとを
混合し、それをナス型フラスコ中にて乾燥クロロホルム
に溶解する。
0 CH2-QC-R The above mixed lipid of azolectin (phospholipid) and phospholipid antigen, bacteriorhodopsin, and ATPase are mixed, and the mixture is dissolved in dry chloroform in an eggplant-shaped flask.

次に、ロータリエバポレーターを用いてクロロホルムを
留去する。
Next, chloroform is distilled off using a rotary evaporator.

次に、このフラスコをVOrteXミキサーに設置し、
このフラスコ内にpH調製済みの所定の緩衝液を入れて
フラスコ内のものを膨潤させ剥離する。
Next, place this flask in the VorteX mixer,
A predetermined pH-adjusted buffer solution is put into this flask to swell and peel off the contents in the flask.

次に、このフラスコを超音波破砕器(ヒートシステム社
製W−385)に設置し4℃の温度に保冷した状態でN
2気流下で475Wの超音波を1分照射1分停止の照射
条件で2時間照射する。これにより得られた懸濁液を、
予め上記緩衝液で平衡化させたセファローズ4Bカラム
(ファルマシア社製1.8φx4Qcm)上で分画して
リポソーム懸濁液を得る。
Next, this flask was placed in an ultrasonic crusher (W-385 manufactured by Heat System Co., Ltd.) and kept cool at 4°C.
Ultrasonic waves of 475 W are irradiated for 2 hours under 2 air currents under irradiation conditions of 1 minute irradiation and 1 minute stop. The suspension obtained by this,
A liposome suspension is obtained by fractionation on a Sepharose 4B column (manufactured by Pharmacia, 1.8φ x 4Qcm) equilibrated with the above buffer solution.

第1図は、このようにしで得たリポソーム懸濁液中の1
つのリポソーム41の様子を模式的に示した図である。
Figure 1 shows the concentration of 1 in the liposome suspension thus obtained.
FIG. 3 is a diagram schematically showing the appearance of one liposome 41.

第1図中、43はアゾレクチン、45はリン脂質抗原、
47はバクテリオロドプシン、49はATPアーゼであ
る。このリポソーム41にはリポソームの構成要素とし
てリン脂質抗原45が含まれている。
In Figure 1, 43 is azolectin, 45 is phospholipid antigen,
47 is bacteriorhodopsin and 49 is ATPase. This liposome 41 contains a phospholipid antigen 45 as a component of the liposome.

このリポソーム41に光(バクテリオロドプシンの吸収
ビーク540nmの波長の光を含む光)を照射すると、
バクテリオロドプシン47かリポソーム41内にH”!
取り込みATPアーセがこのH+をリポソーム外に運び
出しATPが合成される。このATP合成機能は、文献
■に開示の従来のATP合成装置の機能と同しである。
When this liposome 41 is irradiated with light (light containing light with a wavelength of 540 nm, the absorption peak of bacteriorhodopsin),
H” in bacteriorhodopsin 47 or liposome 41!
The uptake ATPase carries this H+ out of the liposome and ATP is synthesized. This ATP synthesis function is the same as that of the conventional ATP synthesis apparatus disclosed in Document (2).

しかし、この発明のリポソーム4](即ちこの発明のA
TP合成装置)は、リポソーム41にリン脂質抗原45
を含ませであるので、リポソーム41を被組み込み物に
抗原−抗体反応を利用して容易に組み込むことが出来る
。以下、これについて具体的に説明する。
However, the liposome 4 of this invention] (i.e., the liposome of this invention
TP synthesizer) injects phospholipid antigen 45 into liposome 41.
Therefore, the liposome 41 can be easily incorporated into the object by utilizing an antigen-antibody reaction. This will be explained in detail below.

A T P A    の み゛ 被組み込み物をガラス基板とし、このガラス基板にリポ
ソーム41を以下に説明するように組み込む。
A glass substrate is used as the object to be incorporated into ATPA, and the liposome 41 is incorporated into this glass substrate as described below.

先ず、ガラス基板をオクタデシルトリクロロシランに予
め浸漬することによりガラス基板表面を疎水化処理する
First, the glass substrate surface is hydrophobized by immersing the glass substrate in octadecyltrichlorosilane in advance.

また、リン脂質抗原45(特に上述の0式のリン脂質抗
原の芳香111)に対する抗体であるγ−グロブリン%
LB(ラングミュア・プロジェット)法用の水槽のサブ
フェイズ水溶液上に展開し、この水溶液を圧縮すること
により水溶液上に抗体の単分子膜を形成する。
In addition, γ-globulin%, which is an antibody against phospholipid antigen 45 (particularly aroma 111 of the above-mentioned phospholipid antigen of formula 0)
The antibody is developed on a subphase aqueous solution in a water tank for the LB (Langmuir-Prodgett) method, and the aqueous solution is compressed to form a monomolecular film of the antibody on the aqueous solution.

次に、抗体の単分子膜が形成されたこの水槽中に上述の
疎水化処理済みガラス基板を浸漬し、LB法の水平付着
法により、ガラス基板に抗体の単分子膜を移し取る。
Next, the above-mentioned hydrophobized glass substrate is immersed in this water tank in which the antibody monomolecular film has been formed, and the antibody monomolecular film is transferred onto the glass substrate by the horizontal deposition method of the LB method.

第2図は、このように作製した、抗体51の単分子膜5
3を有するガラス基板55の様子を模式的に示した断面
図である。
FIG. 2 shows the monomolecular film 5 of antibody 51 produced in this way.
FIG. 3 is a cross-sectional view schematically showing the appearance of a glass substrate 55 having a size of 3.

次に、抗体51の単分子膜53を有するガラス基板55
を、上述のリポソーム懸濁液中に浸漬することにより、
抗原−抗体反応を行わせる。これにより、第3図に平面
図を以って示すように、ガラス基板55にリポソーム4
1(ATP合成装@)が二次元配列状態で組み込まれる
Next, a glass substrate 55 having a monomolecular film 53 of the antibody 51 is
by immersing it in the liposome suspension described above,
Allow antigen-antibody reaction to occur. As a result, as shown in a plan view in FIG.
1 (ATP synthesis system @) is installed in a two-dimensional array state.

ATFL&城jJl詔 次に、リポソーム41の組み込まれたガラス基板55に
光を照射することによつATPが合成出来るか否かを、
文献■に開示されている方法により確認する。
Next, we investigated whether ATP could be synthesized by irradiating the glass substrate 55 in which the liposome 41 was incorporated with light.
Confirm by the method disclosed in Document ①.

このため、先ず、50ユニツトのイーストへキソキナー
セ、20mM(ミリモル)の無機リン酸32P、、2m
MのM9SO4,1mMのATP、32mMのグルコー
ス、5mMのトリス硫酸、0.3mMのEDTA (エ
チレンジアミン四酢酸)及び1mgの子牛血清アルブミ
ン!O,IMのショ糖に溶解させ試験液を調製する。そ
して、この試験液中に、上述のリポソーム41付きガラ
ス基板55を浸漬する。
For this purpose, first, 50 units of yeast hexokinase, 20 mM (mmol) of inorganic phosphoric acid 32P, 2 m
M9SO4, 1mM ATP, 32mM glucose, 5mM Tris sulfate, 0.3mM EDTA (ethylenediaminetetraacetic acid) and 1mg calf serum albumin! Prepare a test solution by dissolving O, IM in sucrose. Then, the above-described glass substrate 55 with liposomes 41 is immersed in this test liquid.

次に、この状態でガラス基板55に対し白色光を照射し
たときの放射活性グルコース−6−リン酸の生成量を分
析する。
Next, the amount of radioactive glucose-6-phosphate produced when the glass substrate 55 is irradiated with white light in this state is analyzed.

第4図は、この結果を示した特性図であり、横軸に白色
光の照射時間(分)をとり、縦軸にグルコース−6−リ
ン酸の生成量(マイクロモル(口M)をとって、両者の
関係を示した特性図である。
Figure 4 is a characteristic diagram showing this result, with the horizontal axis representing the irradiation time (minutes) of white light and the vertical axis representing the amount of glucose-6-phosphate produced (micromoles (M)). FIG. 2 is a characteristic diagram showing the relationship between the two.

放射活性グルコースー6−リン酸の主成は、32P、か
らのATP合成に伴うものであることがら、実施例のリ
ボ−ワーム41組み込みガラス基板55において光によ
りATP合成が行われていることが理解出来る。このよ
うに、この発明のATP合成装璽は、ガラス基板に組み
込んだ後であってもATP合成を行える。
Since the main component of radioactive glucose-6-phosphate is associated with ATP synthesis from 32P, it is understood that ATP synthesis is performed by light in the glass substrate 55 incorporating ribo-worm 41 of the example. I can do it. In this manner, the ATP synthesis device of the present invention can perform ATP synthesis even after being incorporated into a glass substrate.

上述においては、この発明のATP合成装置の実施例に
ついて説明したがこの発明は上述の実施例のみに限られ
るものではない。
Although the embodiments of the ATP synthesis apparatus of the present invention have been described above, the present invention is not limited to the above embodiments.

例えば、上述の実施例では被組み込み物をガラス基板と
していたが、このATP合成装置はガラス基板以外の被
組み込み物例えば茎5図のバイオ素子に組み込むこんで
用い得ることも期待出来る。具体的には、第5図のバイ
オ素子に実施例のリン脂質抗原に対する抗体を組み込ん
でおき、抗原−抗体反応を利用して実施例のATP合成
装置を組み込んで用い得ることが期待出来る。
For example, in the above embodiment, the object to be incorporated is a glass substrate, but it is expected that this ATP synthesis apparatus can be used by being incorporated into an object other than a glass substrate, such as a biodevice as shown in Fig. 5. Specifically, it is expected that the antibody against the phospholipid antigen of the example can be incorporated into the biodevice shown in FIG. 5, and the ATP synthesizer of the example can be incorporated and used by utilizing the antigen-antibody reaction.

また、ATPを用いる種々の生化学反応系にも組み込み
得ることが期待出来る。
It is also expected that it can be incorporated into various biochemical reaction systems that use ATP.

(発明の効果) 上述した説明からも明らかなように、この発明のATP
合成装買は、ATPをエネルギー源とするバイオ素子等
のような種々の物の所定位置に抗原−抗体反応を利用し
て組み込むことか出来、その位置において光に応答して
ATP%合成することが出来るので、その利用価値は非
電に高い。
(Effect of the invention) As is clear from the above explanation, the ATP of this invention
Synthetic devices can be incorporated into predetermined positions of various objects such as bio-devices that use ATP as an energy source using antigen-antibody reactions, and ATP% can be synthesized in response to light at that position. Because it can do so, its utility value is higher than that of non-electronics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ATP合成合成装置槽成する実施例のリポソ
ームを模式的に示した図、 第2図は、実施例の被組み込み物の説明に供する図、 第3図は、実施例のリポソーム(ATP合成装Wl)を
組み込んだ基板を示した図、 第4図は、ATP合成の確認案験結果を示した図、 第5図は、従来提案されているバイオ素子の概念図、 第6図(A)及び(B) は、 第5図に示したバ イオ素子の説明に供する図である。 41−・・リポソーム (ATP合成装置) 43・・・アゾレクチン (リン脂質) 45・・・ワン脂質抗原 47・・・バクテリオロドプシン 49・−A T Pア セ、 51・・・抗体 53・・・抗体の単分子膜 55=−ガラス基板(ATP合成装置の被組み込み物) 特 許 出 願 人 沖電気工業株式会社 ATP合成装at構成する寅施例のリポソームを模式的
に示した図第1 図 寅施例の被組み込み物の説明に供する同第2図 ATP合成の確認実験結果を示した図 実施例のリポソーム(ATP合成装置)を組み込んた基
板を示しに口笛3図 第4 図 ロ
FIG. 1 is a diagram schematically showing the liposome of the example which is formed in the ATP synthesis device tank. FIG. 2 is a diagram for explaining the material to be incorporated in the example. FIG. 3 is the liposome of the example Figure 4 is a diagram showing the results of a confirmation experiment for ATP synthesis. Figure 5 is a conceptual diagram of a conventionally proposed bio-device. Figures (A) and (B) are diagrams for explaining the bioelement shown in Figure 5. 41--Liposome (ATP synthesizer) 43--Azolectin (phospholipid) 45--One lipid antigen 47--Bacteriorhodopsin 49-ATPase, 51--Antibody 53--Antibody Monomolecular film 55 = -Glass substrate (object to be incorporated into ATP synthesis device) Patent applicant Oki Electric Industry Co., Ltd. ATP synthesis device Fig. 1 schematically showing the liposome of Tora Example constituting the ATP synthesis device. Fig. 2 shows the results of a confirmation experiment for ATP synthesis;

Claims (1)

【特許請求の範囲】[Claims] (1)リン脂質、バクテリオロドプシン及びATP合成
酵素で構成されたリポソームを用いたATP合成装置に
おいて、 リポソームの構成要素としてリン脂質抗原をさらに含ま
せたことを特徴とするATP合成装置。
(1) An ATP synthesizer using a liposome composed of phospholipids, bacteriorhodopsin, and ATP synthase, characterized in that the liposome further contains a phospholipid antigen as a component.
JP20344890A 1990-07-31 1990-07-31 Atp synthesizing device Pending JPH0488995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20344890A JPH0488995A (en) 1990-07-31 1990-07-31 Atp synthesizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20344890A JPH0488995A (en) 1990-07-31 1990-07-31 Atp synthesizing device

Publications (1)

Publication Number Publication Date
JPH0488995A true JPH0488995A (en) 1992-03-23

Family

ID=16474289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20344890A Pending JPH0488995A (en) 1990-07-31 1990-07-31 Atp synthesizing device

Country Status (1)

Country Link
JP (1) JPH0488995A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022101A2 (en) * 1998-10-13 2000-04-20 Cornell Research Foundation, Inc. Enzymes as a power source for nanofabricated devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022101A2 (en) * 1998-10-13 2000-04-20 Cornell Research Foundation, Inc. Enzymes as a power source for nanofabricated devices
WO2000022101A3 (en) * 1998-10-13 2001-12-13 Cornell Res Foundation Inc Enzymes as a power source for nanofabricated devices

Similar Documents

Publication Publication Date Title
Strittmatter et al. The binding of cytochrome b5 to liver microsomes
Fleischer et al. [70] Removal and binding of polar lipids in mitochondria and other membrane systems
Petty Molecular biology of membranes: structure and function
Brustovetsky et al. The reconstituted ADP/ATP carrier can mediate H+ transport by free fatty acids, which is further stimulated by mersalyl.
Saks et al. Study of energy transport mechanism in myocardial cells
Torchilin et al. Incorporation of hydrophilic protein modified with hydrophobic agent into liposome membrane
JP2002511792A (en) Electrostatic spraying of substance solutions in mass production of chips and libraries
Brûlet et al. Lateral hapten mobility and immunochemistry of model membranes.
FI854158L (en) IMMUNOGENT KOMPLEX, FOERFARANDE FOER DESS FRAMSTAELLNING SAMT DESS ANVAENDNING SOM IMMUNSTIMULANT, I VACCINER OCH I REAGENSER.
EP3960752B1 (en) Biopolymer concentration method, crystallization method, and nanostructure substrate
US5288517A (en) Method of forming planar membrane
O'Brien et al. Light-regulated permeability of rhodopsin: egg phosphatidylcholine recombinant membranes.
Nagayama et al. Fabrication and control of two-dimensional crystalline arrays of protein molecules
Viadiu et al. Projection map of aquaporin-9 at 7 Å resolution
JPH0488995A (en) Atp synthesizing device
EP0355847B1 (en) Method of forming planar membrane
Li et al. Simple Host− Guest Chemistry To Modulate the Process of Concentration and Crystallization of Membrane Proteins by Detergent Capture in a Microfluidic Device
JPH08196284A (en) Enzymatic reaction element and production thereof, enzyme reactor and method thereof
Kreutz Structural principles of biomembranes
Sasaki et al. Photo-and thermo-responsive assembly of liposomal membranes triggered by a gemini peptide lipid as a molecular switch
Andrade Thin organic films of proteins
JP2008063284A (en) Protein-including liposome, method for producing protein-including liposome, producing apparatus and liposome preparation
Finkelstein Thin Lipid Membranes: A Model for Cell Membranes
CN108362890A (en) Based on the enrichment of boracic comb polymer patterning target plate, desalination and the method for identifying glycopeptide
JP2005274452A (en) Method of preparing lipid bilayer on semiconductor substrate, semiconductor substrate prepared by the method, and device using the substrate