JPH048844B2 - - Google Patents

Info

Publication number
JPH048844B2
JPH048844B2 JP58195347A JP19534783A JPH048844B2 JP H048844 B2 JPH048844 B2 JP H048844B2 JP 58195347 A JP58195347 A JP 58195347A JP 19534783 A JP19534783 A JP 19534783A JP H048844 B2 JPH048844 B2 JP H048844B2
Authority
JP
Japan
Prior art keywords
magnetic
recording
medium
magnetic head
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58195347A
Other languages
Japanese (ja)
Other versions
JPS6087411A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19534783A priority Critical patent/JPS6087411A/en
Priority to US06/653,094 priority patent/US4646184A/en
Publication of JPS6087411A publication Critical patent/JPS6087411A/en
Publication of JPH048844B2 publication Critical patent/JPH048844B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/187Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
    • G11B5/1875"Composite" pole pieces, i.e. poles composed in some parts of magnetic particles and in some other parts of magnetic metal layers
    • G11B5/1877"Composite" pole pieces, i.e. poles composed in some parts of magnetic particles and in some other parts of magnetic metal layers including at least one magnetic thin film
    • G11B5/1878"Composite" pole pieces, i.e. poles composed in some parts of magnetic particles and in some other parts of magnetic metal layers including at least one magnetic thin film disposed immediately adjacent to the transducing gap, e.g. "Metal-In-Gap" structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/187Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
    • G11B5/245Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features comprising means for controlling the reluctance of the magnetic circuit in a head with single gap, for co-operation with one track
    • G11B5/2452Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features comprising means for controlling the reluctance of the magnetic circuit in a head with single gap, for co-operation with one track where the dimensions of the effective gap are controlled

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、磁気記録再生装置に用いられる記録
再生兼用の磁気ヘツドに関するものである。 〔従来の技術とその問題点〕 現在、磁気記録再生装置に用いられている磁気
ヘツドは、生産コストや装置の簡素化への有利性
から、同一ヘツドを再生と記録に共用すると共
に、その材質を加工精度、周波数特性、耐摩耗性
などが良いことからフエライトとした、フエライ
ト材質系、記録再生兼用リングヘツドが主流とな
つている。 一方、磁気記録の高密度化の要求により媒体の
抗磁力は高くなる方向にあり、ヘツド材質の主流
であるフエライトの飽和磁束密度(以下Bsとい
う)では充分に磁化することが困難となつてきて
いる。 この問題を解決する手段として、特開昭51−
140708号公報や特開昭55−77024号公報に示され
るようなメタルインギヤツプ型ヘツドが考えられ
ているが、それを記録再生兼用ヘツドとして用い
た場合次のような問題がある。 すなわち記録再生兼用ヘツドでは、記録及び再
生時の磁気的ギヤツプ長設定に際して記録と再生
の相反する要求(記録の場合は広く、再生の場合
は周波数特性から狭くする。)に対して中間値を
取つている為、記録と再生のそれぞれの専用磁気
ヘツドに比べ出力レベル、周波数特性等の記録再
生特性が劣つてしまうという問題がある。 〔発明が解決しようとする課題〕 そこで本発明は、磁性材料の飽和特性を積極的
に利用して一つのヘツドで恰かも2つのヘツドが
あるかのような特性を有し、かつ記録時に従来よ
り記録時のギヤツプ面に大きな磁束を発生させて
高特性が得られる磁気ヘツドを提供しようとする
ものである。 〔課題を解決するための手段〕 本発明は上記の課題を解決するためになされた
もので、磁気ヘツドを構成する基礎磁性体コアの
媒体対向側に設けられた突き合わせ面の少なくと
も一方の面に、前記基礎磁性体コアよりも飽和磁
束密度の大きい第1の物質による層を設け、これ
により新たに発生する突き合わせ面の少なくとも
一方の面に前記基礎磁性体コアよりも飽和磁束密
度の小さい第2の物質による層を設け、これぬよ
り新たに発生する突き合わせ面の間を非磁性物質
で埋めるようにしたものである。 〔実施例〕 以下本発明の実施例について説明すれば次の通
りである。 第1図は本発明の一実施例の磁気ヘツド本体
(磁心)の構造外形を示し、1は基礎磁性材料か
ら成る逆U字状本体、2は逆U字状本体1の突き
合わせ面の右側面に形成した前記基礎磁性材料よ
りも飽和磁束密度の小さい物質による層(以下低
Bs磁性層という)、3は逆U字状本体1の突き合
わせ面の左側側面に形成した前記基礎磁性材料よ
りも飽和磁束密度の大きい物質による層(以下高
Bs磁性層という)、4は媒体、5は空気、プラス
チツク充填材等から成る非磁性物質層、6はコイ
ルである。 したがつて本発明にかかる第1図に示す磁気ヘ
ツドは、記録作用に有効に働く記録時の磁気的ギ
ヤツプWは低Bs磁性層2と非磁性物質層5を加
えたものとし、それに加え、記録有効磁束を大き
く急峻に発生させ、また再生のときには、再生作
用に有効に仂く再生時の磁気的ギヤツプRを非磁
性物質層5だけが有効となるようにした磁気ヘツ
ドと言える。 ところで記録時においては記録媒体中に媒体4
の抗磁力若しくはそれ以上の磁界を発生させる必
要がある。その為には記録時の磁気的ギヤツプを
形成する為の厚さを媒体4の記録層の厚さに磁気
ヘツドと媒体間にできる空隙の長さを加えた厚さ
以上にして媒体に対して大きな磁束を発生しなけ
ればならない。 また磁気ヘツド材料面から見れば、材料のBs
が大きいことが重要である。 これに対して再生時には媒体に記録された磁化
変化を高分解能で磁気ヘツドのコイル部に導く必
要がある。 このため再生時の磁気的ギヤツプRを形成する
層の厚さは狭いこと、材料特性としては微小磁束
を検出する為に初期透磁率が大きいことが重要で
ある。例えば再生時の磁気的ギヤツプRを形成す
る為の厚さが大きいと磁化変化を検出できない。
一般に再生時の磁気的ギヤツプRを形成する層の
厚さは記録波長の1/2以下に設定される。 また再生時には材質の磁束密度の大きいことは
あまり関係しない。 上記のように記録再生それぞれに異なる要求特
性を1つのヘツドで達成し、記録時にはより大き
な磁束を発生させるように考案したのが本発明で
ある。 即ち基礎となる逆U字状本体1の突き合わせ面
において、記録有効側面、即ち磁気ヘツドと相対
走行をする媒体からみて後に通過する突き合わせ
面に構成材(基礎材)より大きいBsを持つ磁性
材料を付加し、もう一方の突き合わせ面に構成材
(基礎材)より小さいBsの磁性材料を付して記録
と再生機能を最適にできる磁気ヘツドを構成する
ものである。 このとき付加した低Bs磁性層は、記録時に磁
化される分だけ記録時のギヤツプ磁束を見かけ上
減らす悪い効果があるため、低Bs磁性層のBsは、
通常ヘツド材選択の場合の範囲を考慮して、高
Bs磁性層のBsの30%程度以下に選ぶことが効果
的である。 本発明は以下に示すように具体化することによ
り1つの記録再生兼用磁気ヘツドで記録と再生そ
れぞれ通常の磁気ヘツドを設けたもの以上の良い
記録再生特性を得ることが出来る。 このことは磁気ヘツドを記録と再生でそれぞれ
通常の専用のものを使用することに比べ簡略化
し、低価格で特性を良くすると共に装置の簡略化
にも大きく寄与することを意味する。 また以下に示す各具体的実施例の再生時におけ
る磁束分布を見れば分る通り、低Bs磁性層の厚
さ、すなわち低Bs磁性層を通る磁束の距離が短
いために、低Bs磁性層の初期透磁率に対する要
求は他の磁性層よりもゆるやかである。 以下に示す比較例1−1及び1−2と具体的実
施例1は、使用材料の組合せは夫々異なるが磁気
ヘツド本体の構造外形を第1図に示す状態のもの
とし、且つ媒体4として垂直異方性に選んだ場合
で共通する諸元は第1表に示す通りである。
[Industrial Field of Application] The present invention relates to a magnetic head used for both recording and reproducing purposes, which is used in a magnetic recording and reproducing device. [Prior art and its problems] Currently, the magnetic head used in magnetic recording and reproducing devices uses the same head for both reproducing and recording to reduce production costs and simplify the device. Due to its good processing accuracy, frequency characteristics, and wear resistance, ferrite material-based ring heads for both recording and playback have become mainstream. On the other hand, with the demand for higher density magnetic recording, the coercive force of media is increasing, and it is becoming difficult to sufficiently magnetize the media with the saturation magnetic flux density (hereinafter referred to as Bs ) of ferrite, which is the mainstream material for the head. ing. As a means to solve this problem,
Metal-in-gap type heads such as those shown in Japanese Patent Laid-open No. 140708 and Japanese Patent Application Laid-Open No. 55-77024 have been considered, but when used as a recording/reproducing head, the following problems arise. In other words, in a recording/reproducing head, when setting the magnetic gap length during recording and reproduction, an intermediate value is set for the conflicting demands of recording and reproduction (wide for recording, narrow for reproduction due to frequency characteristics). Therefore, there is a problem in that the recording and reproducing characteristics such as output level and frequency characteristics are inferior to magnetic heads dedicated to recording and reproducing respectively. [Problems to be Solved by the Invention] Therefore, the present invention actively utilizes the saturation characteristics of magnetic materials to have characteristics that make one head appear as if there are two heads, and which allows recording to be performed while recording. The present invention aims to provide a magnetic head that generates a larger magnetic flux on the gap surface during recording and provides higher characteristics. [Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems. , a layer made of a first material having a higher saturation magnetic flux density than the basic magnetic core is provided, and a second material having a lower saturation magnetic flux density than the basic magnetic core is provided on at least one of the newly generated abutting surfaces. A layer of this material is provided, and the space between newly generated abutting surfaces is filled with a non-magnetic material. [Examples] Examples of the present invention will be described below. FIG. 1 shows the structural outline of a magnetic head main body (magnetic core) according to an embodiment of the present invention, in which 1 is an inverted U-shaped main body made of a basic magnetic material, and 2 is a right side of the abutting surface of the inverted U-shaped main body 1. A layer made of a material with a lower saturation magnetic flux density than the basic magnetic material (hereinafter referred to as low
B s magnetic layer), 3 is a layer made of a material having a higher saturation magnetic flux density than the basic magnetic material (hereinafter referred to as a magnetic layer) formed on the left side of the abutting surface of the inverted U-shaped main body 1.
4 is a medium, 5 is a non-magnetic material layer made of air, plastic filler , etc., and 6 is a coil. Therefore, in the magnetic head according to the present invention shown in FIG . This can be said to be a magnetic head that generates a large and steep recording effective magnetic flux, and that only the non-magnetic material layer 5 is effective in creating a magnetic gap R during reproduction, which is effective for the reproduction action. By the way, when recording, there is a medium 4 in the recording medium.
It is necessary to generate a magnetic field with a coercive force equal to or greater than . To do this, the thickness for forming a magnetic gap during recording must be greater than or equal to the thickness of the recording layer of the medium 4 plus the length of the gap created between the magnetic head and the medium. A large magnetic flux must be generated. Also, from the perspective of the magnetic head material, the B s of the material
It is important that the value is large. On the other hand, during reproduction, it is necessary to guide the magnetization changes recorded on the medium to the coil section of the magnetic head with high resolution. For this reason, it is important that the thickness of the layer forming the magnetic gap R during reproduction be narrow, and that the material properties have a high initial magnetic permeability in order to detect minute magnetic fluxes. For example, if the thickness is large to form a magnetic gap R during reproduction, magnetization changes cannot be detected.
Generally, the thickness of the layer forming the magnetic gap R during reproduction is set to 1/2 or less of the recording wavelength. Furthermore, during reproduction, the fact that the material has a high magnetic flux density does not matter much. The present invention has been devised to achieve the different required characteristics for recording and reproduction with a single head as described above, and to generate a larger magnetic flux during recording. That is, on the abutting surface of the inverted U-shaped main body 1 that serves as the base, a magnetic material having a B s larger than the constituent material (base material) is placed on the recording effective side surface, that is, the abutting surface that passes later when viewed from the medium traveling relative to the magnetic head. A magnetic head is constructed in which recording and reproducing functions can be optimized by attaching a magnetic material with Bs smaller than that of the constituent material (base material) to the other abutting surface. The low B s magnetic layer added at this time has the negative effect of apparently reducing the gap magnetic flux during recording by the amount of magnetization during recording, so the B s of the low B s magnetic layer is
Considering the range of normal head material selection,
It is effective to select the B s to be about 30% or less of the B s of the magnetic layer. By embodying the present invention as described below, it is possible to obtain better recording and reproducing characteristics with a single magnetic head for both recording and reproducing purposes than when ordinary magnetic heads are provided for each recording and reproducing operation. This means that the magnetic head is simpler than using ordinary dedicated magnetic heads for recording and reproduction, and that it is low cost and has good characteristics, and it also greatly contributes to the simplification of the device. Furthermore, as can be seen from the magnetic flux distribution during reproduction of each specific example shown below, the thickness of the low B s magnetic layer, that is, the distance of the magnetic flux passing through the low B s magnetic layer is short, so the low B s The requirements for the initial magnetic permeability of the magnetic layer are more relaxed than those of other magnetic layers. In Comparative Examples 1-1 and 1-2 and Specific Example 1 shown below, the combination of materials used is different, but the structural outline of the magnetic head main body is as shown in FIG. 1, and the medium 4 is vertical. Table 1 shows the common specifications when anisotropic is selected.

【表】【table】

【表】 起磁力を600mATに固定して逆U字状本体1
の突き合わせ面近傍の材質を変え記録を行つた際
の磁束密度垂直成分を有限要素法を使用して解析
した結果を、第2図〜第4図に示す。 比較例 1−1 第2図は比較例1−1で本体のa,b及びc部
とd部を従来と同様全てフエライトで構成した場
合の記録時における媒体中の磁束密度垂直成分分
布の等高線を描いたものである。 比較例 1−2 第3図は比較例1−2を示すもので、d部分を
低Bs磁性層とし、a,b及びc部分をフエライ
トで構成した場合の記録時の磁束密度垂直成分分
布の等高線を描いたものである。 第2図に示した比較例1−1と比べると、低
Bs磁性層がほぼその厚みだけ記録時の磁気的ギ
ヤツプの一部として働いていることがわかり、ま
たその場合、比較例1−1より大きく急峻に磁化
していることが確認できる。この現象を低Bs
性層による磁気的広ギヤツプ記録効果とする。 具体的実施例 1 第4図は具体的実施例1における磁束密度垂直
成分分布の等高線を示すものである。 この実施例は、本体、即ちa部とb部をフエラ
イトとし、c部を高Bs磁性層、d部を低Bs磁性
層とした場合で、この場合記録有効側を高Bs
性層側に設定する。 第3図の比較例1−2と比較して記録有効側の
磁束密度が大きくなつていることがわかる。 これは高Bs磁性層による効果である。 上記のように低Bs磁性層と高Bs磁性層により
本発明にかかる磁気ヘツドは、垂直記録において
高特性を得ることが可能であることが理解されよ
う。 第5図及び第6図は、比較例1−1として示し
た前記第2図に示す構造のものと、第4図に示し
た具体的実施例1とを再生用に用いたときの媒体
が完全に垂直に磁化されていると仮定した場合の
ヘツドに流入する磁束を描いたものである。な
お、この場合触媒の磁化反転の境はヘツド非磁性
物質層の中心より左に0.7μmずれた位置にあると
する。 第5図と第6図を比べて分るとおり、両者のd
部の磁気特性の違いにより磁束経路は変つている
が、ヘツドに流入する磁束数に変化はなく、第6
図は記録時の磁気的広ギヤツプ記録効果に対して
再生時は磁気的狭ギヤツプ再生効果を確認でき
る。 以上示した実施例により、本発明にかかる磁気
ヘツドは記録時は磁気的に広ギヤツプで記録特性
が良く、かつ再生時は磁気的に狭ギヤツプで再生
特性も良いことが明らかである。 なお媒体に記録時有効な磁界は、磁気ヘツドと
相対走行をする媒体からみで後に通過する突き合
わせ面側に発生する磁界であるので、媒体進行側
にギヤツプの磁界が急峻に変化することが好まし
い。第4図を見ればわかるように、低Bs磁性層
のない側で磁束が急峻に変化しているので、低
Bs磁性層は媒体4の進行方向の反対側に設け、
高Bs磁性層は進行方向に設けた方が良い。 以下に述べる比較例2−1、2−2及び具体的
実施例2は媒体を水平異方性に選んだ場合で、媒
体の特性と形状等を示すと第2表の通りである。
なおヘツドの特性と磁気ヘツド本体の構成は第1
表と同じである。
[Table] Inverted U-shaped body 1 with magnetomotive force fixed at 600mAT
Figures 2 to 4 show the results of analyzing the perpendicular component of magnetic flux density using the finite element method when recording was performed by changing the material near the abutting surface. Comparative Example 1-1 Figure 2 shows the contour lines of the vertical component distribution of magnetic flux density in the medium during recording in Comparative Example 1-1, in which parts a, b, c, and d of the main body are all made of ferrite as in the conventional case. It is a depiction of Comparative Example 1-2 Figure 3 shows Comparative Example 1-2, which shows the vertical component distribution of magnetic flux density during recording when the d part is a low B s magnetic layer and the a, b, and c parts are made of ferrite. It is a contour line drawn. Compared to Comparative Example 1-1 shown in Figure 2, the
It can be seen that approximately the thickness of the Bs magnetic layer acts as part of the magnetic gap during recording, and in this case, it can be confirmed that the magnetization is larger and steeper than in Comparative Example 1-1. This phenomenon is referred to as the magnetic wide gap recording effect due to the low B s magnetic layer. Concrete Example 1 FIG. 4 shows contour lines of the magnetic flux density vertical component distribution in Concrete Example 1. In this example, the main body, that is, parts a and b, is made of ferrite, part c is a high B s magnetic layer, and part d is a low B s magnetic layer. In this case, the recording effective side is the high B s magnetic layer. Set on the side. It can be seen that the magnetic flux density on the recording effective side is increased compared to Comparative Example 1-2 in FIG. This is an effect of the high Bs magnetic layer. It will be understood that the magnetic head according to the present invention can obtain high characteristics in perpendicular recording by using the low B s magnetic layer and the high B s magnetic layer as described above. 5 and 6 show the media when the structure shown in FIG. 2 shown as Comparative Example 1-1 and the specific example 1 shown in FIG. 4 are used for reproduction. This diagram depicts the magnetic flux flowing into the head assuming that it is completely perpendicularly magnetized. In this case, the boundary of magnetization reversal of the catalyst is assumed to be at a position shifted by 0.7 μm to the left from the center of the head nonmagnetic material layer. As you can see by comparing Figures 5 and 6, both d
Although the magnetic flux path changes due to the difference in the magnetic properties of the head, there is no change in the number of magnetic flux flowing into the head.
The figure shows a wide magnetic gap recording effect during recording and a narrow magnetic gap reproducing effect during playback. From the embodiments shown above, it is clear that the magnetic head according to the present invention has a wide magnetic gap during recording and has good recording characteristics, and has a narrow magnetic gap during reproduction and has good reproducing characteristics. The magnetic field effective during recording on the medium is the magnetic field generated on the abutting surface side of the medium that travels relative to the magnetic head, so it is preferable that the magnetic field of the gap changes sharply on the medium advancing side. As you can see from Figure 4, the magnetic flux changes sharply on the side without the low B s magnetic layer, so the low
The B s magnetic layer is provided on the opposite side of the traveling direction of the medium 4,
It is better to provide the high B s magnetic layer in the traveling direction. Comparative Examples 2-1 and 2-2 and Specific Example 2 described below are cases in which horizontally anisotropic media are selected, and the characteristics, shapes, etc. of the media are shown in Table 2.
The characteristics of the head and the structure of the magnetic head body are
Same as table.

【表】 上記媒体に600mATで記録したときの逆U字
状本体の突き合わせ面近傍の磁束密度水平成分分
布を有限要素法を使用して解析した結果を第7図
〜第9図に示す。 比較例 2−1 第7図は比較例2−1で、本体のa,b及びc
部とd部を全てフエライトで構成した場合の記録
時の媒体中の磁束水平成分分布の等高線を描いた
ものである。 比較例 2−2 第8図は比較例2−2を示すもので、d部分を
低Bs材とし、a,b及びc部分をフエライトで
構成した場合の磁束密度水平成分分布の等高線を
描いたものである。 第7図に示した比較例2−1と対比して分かる
とおり、水平記録の場合も垂直記録の場合と同じ
ように低Bs磁性層によつて磁気的広ギヤツプ記
録効果が起り、媒体を水平方向に強く急峻に磁化
していることがわかる。 具体的実施例 2 第9図は異なる具体的実施例2における磁束密
度水平成分分布の等高線を示すもので、この実施
例は本体、即ちa部とb部をフエライトとし、c
部を高Bs磁性層、d部を低Bs磁性層とした場合
で、第7図及び第8図に示した比較例と比較して
記録有効側の磁束密度が大きくなつていることが
わかる。これは高Bs磁性層による効果である。 第10図及び第11図は、比較例2−1として
示した第7図に示すものと、第9図に示した具体
的実施例2とを再生用に用いたときの媒体が完全
に水平に磁化されていると仮定した場合のヘツド
に流入する磁束を描いたものである。この場合媒
体の磁化反転の境はヘツド非磁性物質層の中心よ
り左に0.7μmずれた位置にあるとする。 第10図と第11図を比べて分かるとおり、両
者におけるd部の磁気特性の違いにより磁束経路
は変つているがヘツドに流入する磁束数に変化は
なく、第11図のヘツドは記録時の磁気的広ギヤ
ツプ記録効果に対し再生時は磁気的狭ギヤツプ再
生効果を確認できる。 以上示した実施例により本発明にかかるヘツド
は水平記録の場合も記録時は磁気的に広ギヤツプ
で記録特性が良く、再生時には磁気的狭ギヤツプ
で再生特性が良いことが明らかである。 多層型具体的実施例 3−1 前記第4図及び第9図に示した実施例では、何
れも逆U字状本体の突き合わせ面に設ける低Bs
磁性層は高Bs磁性層の反対側の逆U字状本体の
突き合わせ面に設けたものであるが、第12図に
示すように逆U字状本体の突き合わせ面の両側に
設けることもできる。 この場合、記録、再生の特性は構造的に前記実
施例の場合より低Bs磁性層が多層になつている
が、ほぼ近い特性のものが得られる。 したがつてギヤツプ内に低Bs磁性層2,2を
両側に設けたヘツドも片側1層に設けたものと同
様に記録時は磁気的広ギヤツプ記録、再生時は磁
気的狭ギヤツプ再生効果により垂直記録、水平記
録で優れた記録、再生特性を得ることができる。 多層型具体的実施例 3−2 第13図は多層型の異なる実施例を示すもの
で、逆U字状本体の突き合わせ面の両面に高Bs
磁性層3,3を分けて設けたものである。この実
施例は構造は複雑になるが、第9図及び第11図
に例示したものに近い特性が得られる。 尚低Bs磁性層2の厚みは、媒体への最適な信
号記録をするためにコア突き合わせ間に必要とさ
れる磁気的ギヤツプの厚さをWとし、媒体からの
信号再生を最適にするためにコア突き合わせ間に
必要とされる最適な磁気的ギヤツプの厚さをRと
した場合、これらの差W−Rに等しい厚さに相当
する。 ヘツド材の特質について考えると、磁気ヘツド
の高周波数特性、耐摩耗性の見地からヘツドの基
礎材にはフエライトが適しており、低Bs磁性層
としてはBsが2000〜400Gで、かつ磁性のなくな
るキユーリー温度が150℃以上であるガーネツト
を低Bs磁性層として用いると有効である。また
高Bs磁性層としてはNi−Fe(パーマロイ)、Fe−
Si−Al(センダスト)、Feなどのメタル系が
Bs7000G以上得られるので好ましい。またアモル
フアス磁性材も有効である。 また、基礎材をFe−Ni系合金にした場合は、
高Bs磁性層としてはFe、Fe−Al系合金、Fe−
Co系合金とし、低Bs磁性層としてはフエライト
またはガーネツトとすることが望ましい。
[Table] Figures 7 to 9 show the results of analyzing the magnetic flux density horizontal component distribution near the abutting surface of the inverted U-shaped body using the finite element method when recording was performed on the above medium at 600 mAT. Comparative Example 2-1 Figure 7 shows Comparative Example 2-1.
The contour lines of the magnetic flux horizontal component distribution in the medium during recording are drawn when the portions 1 and d are all made of ferrite. Comparative Example 2-2 Figure 8 shows Comparative Example 2-2, in which the contour lines of the horizontal component distribution of magnetic flux density are drawn when the d part is made of a low B s material and the a, b, and c parts are made of ferrite. It is something that As can be seen by comparing with Comparative Example 2-1 shown in FIG. 7, in the case of horizontal recording, as in the case of perpendicular recording, the magnetic wide gap recording effect occurs due to the low B s magnetic layer, and the medium It can be seen that the magnetization is strong and steep in the horizontal direction. Concrete Example 2 FIG. 9 shows the contour lines of the magnetic flux density horizontal component distribution in a different Concrete Example 2. In this example, the main body, that is, parts a and b, are made of ferrite, and c
It can be seen that the magnetic flux density on the recording effective side is larger compared to the comparative example shown in Figs. 7 and 8 when the part is made of a high B s magnetic layer and the d part is made of a low B s magnetic layer. Recognize. This is an effect of the high Bs magnetic layer. 10 and 11 show that when the medium shown in FIG. 7 shown as Comparative Example 2-1 and the specific example 2 shown in FIG. 9 are used for reproduction, the medium is completely horizontal. This diagram depicts the magnetic flux flowing into the head assuming that it is magnetized. In this case, the boundary of magnetization reversal of the medium is assumed to be shifted 0.7 μm to the left from the center of the head nonmagnetic material layer. As can be seen by comparing Figures 10 and 11, the magnetic flux path changes due to the difference in the magnetic properties of the d section in both, but there is no change in the number of magnetic fluxes flowing into the head. In contrast to the wide magnetic gap recording effect, the magnetic narrow gap reproduction effect can be confirmed during reproduction. From the embodiments shown above, it is clear that even in the case of horizontal recording, the head according to the present invention has good recording characteristics with a wide magnetic gap during recording, and good reproduction characteristics with a narrow magnetic gap during reproduction. Multilayer Type Specific Embodiment 3-1 In the embodiments shown in FIGS. 4 and 9, the low B s provided on the butting surface of the inverted U-shaped main body
The magnetic layers are provided on the abutting surfaces of the inverted U-shaped bodies on the opposite side of the high B s magnetic layer, but they can also be provided on both sides of the abutting surfaces of the inverted U-shaped bodies, as shown in Figure 12. . In this case, although the recording and reproducing characteristics are structurally multilayered with low B s magnetic layers than in the case of the above embodiment, almost similar characteristics can be obtained. Therefore, a head in which the low B s magnetic layers 2, 2 are provided on both sides within the gap also has a magnetic wide gap recording effect during recording, and a magnetic narrow gap reproducing effect during playback, similar to a head with a single layer provided on one side. Excellent recording and playback characteristics can be obtained in vertical and horizontal recording. Multilayer type specific embodiment 3-2 Figure 13 shows a different embodiment of the multilayer type, in which high B s is provided on both sides of the abutting surfaces of the inverted U-shaped main body.
The magnetic layers 3, 3 are provided separately. Although this embodiment has a complicated structure, characteristics close to those illustrated in FIGS. 9 and 11 can be obtained. Furthermore, the thickness of the low B s magnetic layer 2 is set such that W is the thickness of the magnetic gap required between the cores for optimal signal recording on the medium, and in order to optimize signal reproduction from the medium. If R is the optimum thickness of the magnetic gap required between the cores butt, then the thickness corresponds to the difference W-R between them. Considering the characteristics of the head material, ferrite is suitable as the base material for the head from the viewpoint of high frequency characteristics and wear resistance of the magnetic head . It is effective to use garnet, which has a Curie temperature of 150° C. or higher at which it disappears, as the low B s magnetic layer. In addition, as the high B s magnetic layer, Ni-Fe (permalloy), Fe-
Metals such as Si-Al (sendust) and Fe
It is preferable because it can obtain Bs7000G or more. Amorphous magnetic materials are also effective. In addition, if the base material is Fe-Ni alloy,
Fe, Fe-Al alloy, Fe-
A Co-based alloy is preferably used, and the low B s magnetic layer is preferably ferrite or garnet.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本発明実施例の側面図、第1図bは
要部の拡大側面図、第2図及び第3図は媒体とし
て垂直異方性に選んだ場合の比較例1−1と比較
例1−2の記録時における磁束密度垂直成分分布
を示す説明図、第4図は本発明の具体的実施例1
において媒体として垂直異方性に選んだ場合の記
録時における磁束密度垂直成分分布を示す説明
図、第5図は媒体として垂直異方性に選んだ場合
の比較例1−1の再生時におけるヘツドに流入す
る磁束の分布を示す説明図、第6図は媒体として
垂直異方性に選んだ場合の本発明の具体的実施例
1の再生時におけるヘツドに流入する磁束の分布
を示す説明図、第7図及び第8図は媒体として水
平異方性に選んだ場合の比較例2−1と比較例2
−2の記録時における磁束密度水平成分分布を示
す説明図、第9図は本発明の具体的実施例2にお
いて、媒体として水平異方性に選んだ場合の記録
時における磁束密度水平成分分布を示す説明図、
第10図は媒体として水平異方性に選んだ場合の
比較例2−1の再生時におけるヘツドに流入する
磁束の分布を示す説明図、第11図は媒体として
水平異方性に選んだ場合の具体的実施例2の再生
時におけるヘツドに流入する磁束の分布を示す説
明図、第12図及び第13図は夫々本発明の異な
る実施例の拡大側面図である。 1……本体、3……低飽和磁束密度磁性層、3
……高飽和磁束密度磁性層、4……媒体、5……
非磁性物質層、6……コイル、G……逆U字状本
体突き合わせ部近傍、G1,G2……逆U字状本体
突き合わせ面、R……再生時の磁気的ギヤツプ、
W……記録時の磁気的ギヤツプ。
FIG. 1a is a side view of the embodiment of the present invention, FIG. 1b is an enlarged side view of the main part, and FIGS. 2 and 3 are Comparative Example 1-1 when vertical anisotropy is selected as the medium. An explanatory diagram showing the magnetic flux density perpendicular component distribution during recording in Comparative Example 1-2, and FIG. 4 is a diagram showing specific example 1 of the present invention.
An explanatory diagram showing the magnetic flux density perpendicular component distribution during recording when vertical anisotropy is selected as the medium, and Figure 5 shows the head during reproduction in Comparative Example 1-1 when vertical anisotropy is selected as the medium. FIG. 6 is an explanatory diagram showing the distribution of magnetic flux flowing into the head during reproduction in the first embodiment of the present invention when perpendicular anisotropy is selected as the medium; Figures 7 and 8 show Comparative Example 2-1 and Comparative Example 2 when horizontal anisotropy is selected as the medium.
FIG. 9 is an explanatory diagram showing the magnetic flux density horizontal component distribution during recording in Example 2 of the present invention, and FIG. An explanatory diagram showing,
Figure 10 is an explanatory diagram showing the distribution of magnetic flux flowing into the head during playback of Comparative Example 2-1 when horizontal anisotropy is selected as the medium, and Figure 11 is when horizontal anisotropy is selected as the medium. 12 and 13 are enlarged side views of different embodiments of the present invention, respectively. 1... Main body, 3... Low saturation magnetic flux density magnetic layer, 3
...High saturation magnetic flux density magnetic layer, 4... Medium, 5...
Non-magnetic material layer, 6... Coil, G... Near the abutting portion of the inverted U-shaped body, G 1 , G 2 ... Abutting surface of the inverted U-shaped body, R... Magnetic gap during reproduction,
W...Magnetic gap during recording.

Claims (1)

【特許請求の範囲】 1 磁気ヘツドを構成する基礎磁性体コアの媒体
対向側に設けられた突き合わせ面の少なくとも一
方に、前記基礎磁性体コアよりも飽和磁束密度の
大きい第1の物質による層を設け、これにより新
たに発生する突き合わせ面の少なくとも一方の面
に前記基礎磁性体コアよりも飽和磁束密度の小さ
い第2の物質による層を設け、これにより新たに
発生する突き合わせ面の間を非磁性物質で埋めた
ことを特徴とする磁気ヘツド。 2 前記第1の物質が記録有効側すなわち磁気ヘ
ツドと相対走行する媒体からみて後に通過する突
き合わせ面に付加されていることを特徴とする特
許請求の範囲第1項記載の磁気ヘツド。 3 前記第2の物質が、媒体への最適な信号記録
をするためにコア突き合わせ間に必要とされる磁
気的ギヤツプ長と、媒体からの信号再生を最適に
するためにコア突き合わせ間に必要とされる最適
な磁気的ギヤツプ長の差に等しい厚さをもつこと
を特徴とする特許請求の範囲第1項または第2項
記載の磁気ヘツド。 4 前記基礎磁性体コアがフエライトで構成さ
れ、前記第1の物質がメタル系材質であり、前記
第2の物質がガーネツトであることを特徴とする
特許請求の範囲第1項ないし第3項のいずれかに
記載の磁気ヘツド。 5 前記基礎磁性体コアが鉄−ニツケル系合金で
構成され、前記第1の物質が鉄、鉄−アルミ系合
金または鉄−コバルト系合金であり、前記第2の
物質がフエライトまたはガーネツトであることを
特徴とする特許請求の範囲第1項ないし第3項の
いずれかに記載の磁気ヘツド。 6 前記第1又は第2の物質がアモルフアス磁性
材であることを特徴とする特許請求の範囲第1項
ないし第3項のいずれかに記載の磁気ヘツド。
[Scope of Claims] 1. A layer made of a first material having a higher saturation magnetic flux density than that of the basic magnetic core is provided on at least one of the abutting surfaces provided on the side facing the medium of the basic magnetic core constituting the magnetic head. As a result, a layer made of a second material having a lower saturation magnetic flux density than the basic magnetic core is provided on at least one side of the newly generated abutting surfaces, thereby forming a non-magnetic layer between the newly generated abutting surfaces. A magnetic head characterized by being filled with a substance. 2. The magnetic head according to claim 1, wherein the first substance is added to a recording effective side, that is, an abutting surface that passes behind when viewed from the medium traveling relative to the magnetic head. 3. The second material has a magnetic gap length required between the core abutments for optimal signal recording on the medium and a magnetic gap length required between the core abutments for optimal signal reproduction from the medium. 3. A magnetic head according to claim 1, wherein the magnetic head has a thickness equal to the optimum magnetic gap length difference. 4. Claims 1 to 3, wherein the basic magnetic core is made of ferrite, the first substance is a metal material, and the second substance is garnet. The magnetic head according to any one of the above. 5. The basic magnetic core is made of an iron-nickel alloy, the first substance is iron, an iron-aluminum alloy, or an iron-cobalt alloy, and the second substance is ferrite or garnet. A magnetic head according to any one of claims 1 to 3, characterized in that: 6. The magnetic head according to any one of claims 1 to 3, wherein the first or second substance is an amorphous magnetic material.
JP19534783A 1983-09-21 1983-10-20 Magnetic head Granted JPS6087411A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19534783A JPS6087411A (en) 1983-10-20 1983-10-20 Magnetic head
US06/653,094 US4646184A (en) 1983-09-21 1984-09-21 Magnetic head for recording and reproduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19534783A JPS6087411A (en) 1983-10-20 1983-10-20 Magnetic head

Publications (2)

Publication Number Publication Date
JPS6087411A JPS6087411A (en) 1985-05-17
JPH048844B2 true JPH048844B2 (en) 1992-02-18

Family

ID=16339653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19534783A Granted JPS6087411A (en) 1983-09-21 1983-10-20 Magnetic head

Country Status (1)

Country Link
JP (1) JPS6087411A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2553494B2 (en) * 1985-05-09 1996-11-13 日立マクセル株式会社 Magnetic head
JPS6257110A (en) * 1985-09-04 1987-03-12 Matsushita Electric Ind Co Ltd Magnetic head and magnetic recording method
JPS62185212A (en) * 1986-02-10 1987-08-13 Matsushita Electric Ind Co Ltd Magnetic recording head
JP2600841B2 (en) * 1988-09-02 1997-04-16 三菱電機株式会社 Magnetic head
JPH02105309A (en) * 1988-10-13 1990-04-17 Mitsubishi Electric Corp Thin film magnetic head
US5729413A (en) * 1995-12-20 1998-03-17 Ampex Corporation Two-gap magnetic read/write head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49117011A (en) * 1973-03-10 1974-11-08
JPS5619A (en) * 1979-06-11 1981-01-06 Canon Inc Magnetic head
JPS59227015A (en) * 1983-06-08 1984-12-20 Anelva Corp Magnetic head of vertical magnetization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49117011A (en) * 1973-03-10 1974-11-08
JPS5619A (en) * 1979-06-11 1981-01-06 Canon Inc Magnetic head
JPS59227015A (en) * 1983-06-08 1984-12-20 Anelva Corp Magnetic head of vertical magnetization

Also Published As

Publication number Publication date
JPS6087411A (en) 1985-05-17

Similar Documents

Publication Publication Date Title
US4646184A (en) Magnetic head for recording and reproduction
US4639810A (en) Magnetic head for perpendicular magnetization
JPS6332709A (en) Magnetic conversion head
JPH048844B2 (en)
JPH034964Y2 (en)
JPS6089805A (en) Magnetic erasure head
JPH0327963B2 (en)
JPH01122004A (en) Magnetic head device
JP2553494B2 (en) Magnetic head
JPS5994219A (en) Magnetic head
KR100244187B1 (en) Composite magnetic head and the manufacturing method
JPS599410Y2 (en) magnetic head
JPH117605A (en) Magnetic head
JPH034966Y2 (en)
JP2509073Y2 (en) Magnetic head
JPS6334523B2 (en)
JPS6139907A (en) Magnetic head
JPH0152806B2 (en)
JPS5832214A (en) Magnetic head
JPH0644522A (en) Magnetic head
JPH052711A (en) Erase head
JPS6015806A (en) Magnetic head and its production
JPH08180319A (en) Magnetic head
JPH05347009A (en) Magnetic head
JPS62177714A (en) Magnetic head