JPH0488311A - Position adjusting mechanism for scanner - Google Patents

Position adjusting mechanism for scanner

Info

Publication number
JPH0488311A
JPH0488311A JP20447290A JP20447290A JPH0488311A JP H0488311 A JPH0488311 A JP H0488311A JP 20447290 A JP20447290 A JP 20447290A JP 20447290 A JP20447290 A JP 20447290A JP H0488311 A JPH0488311 A JP H0488311A
Authority
JP
Japan
Prior art keywords
optical deflector
spherical part
end side
scanning
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20447290A
Other languages
Japanese (ja)
Other versions
JP2713648B2 (en
Inventor
Tsunehisa Takada
倫久 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2204472A priority Critical patent/JP2713648B2/en
Publication of JPH0488311A publication Critical patent/JPH0488311A/en
Application granted granted Critical
Publication of JP2713648B2 publication Critical patent/JP2713648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To accurately and efficiently adjust the inclination of an optical deflector by providing a spherical part which is provided on one end side of the optical deflector and a pressing means which presses the other end side from biaxial directions intersecting with each other and adjusts the angle position of the optical deflector. CONSTITUTION:This mechanism has the spherical part 32 which is provided on one end side of the optical deflector 20, a holder 34 which has circular optical parts 44, 46 in contact with the spherical part 32 and can rotate and fix the spherical part 32 and the pressing means 36 which presses the other end side of the optical deflector 20 from the biaxial directions intersecting with each other and adjusts the angle position of the optical deflector 20. Then, the spherical part 32 provided on one end side of the optical deflector 20 is held rotatably with the holder 34 and thereafter, the other end side of this optical deflector 20 is pressed by means of the pressing means 36 from the biaxial directions intersecting with each other, by which the angle position of the optical deflector 20 is adjusted. Further, the spherical part 32 is fixed at a desired angle by the holder 34. The inclination of the optical deflector 20 is thus corrected with good accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光ビームを被走査体上に走査させる光偏向器
の傾きを補正するための走査装置の[発明の背景] 印刷、製版等の分野において、作業工程の合理化、画像
品質の向上等を目的として原稿に担持された画像情報を
電気的に処理し、フィルム原版を作成する画像走査読取
再生システムが広範に採用されている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a scanning device for correcting the inclination of an optical deflector that scans a light beam onto a scanned object [Background of the Invention] Printing, plate making, etc. In the field of , image scanning reading and reproducing systems that electrically process image information carried on a manuscript to create a film master have been widely adopted for the purpose of streamlining work processes and improving image quality.

この画像走査読取再生システムでは、副走査搬送される
原稿あるいは記録担体等の被走査体に対して光ビームを
主走査させるために、光偏向器が用いられている。この
光偏向器は、回動軸を介して高速で振動する偏向ミラー
を有しており、光ビームはこの偏向ミラーによって偏向
されることで被走査体上を主走査する。
In this image scanning reading and reproducing system, an optical deflector is used to cause a light beam to perform main scanning on an object to be scanned, such as a document or a record carrier that is conveyed in a sub-scanning direction. This optical deflector has a deflection mirror that vibrates at high speed via a rotating shaft, and the light beam is deflected by the deflection mirror to main-scan the object to be scanned.

ところで、前記光偏向器は、設定時において当該システ
ムの座標系に対して傾いてしまうことがある。また、光
偏向器自体の製造時の誤差によってミラー回動軸あるい
は偏向ミラーが予め傾斜していることもある。この場合
、被走査体上を走査する光ビームの軌跡は副走査方向に
ずれるだけでなく、湾曲したり傾いたりすることになる
By the way, the optical deflector may be tilted with respect to the coordinate system of the system at the time of setting. Furthermore, the mirror rotation axis or the deflection mirror may be tilted in advance due to errors in manufacturing the optical deflector itself. In this case, the trajectory of the light beam scanning the object to be scanned is not only shifted in the sub-scanning direction, but also curved or tilted.

そこで、本出願人は、−面鏡型光偏向器の傾き、あるい
はこの光偏向器のミラー回動軸および/または偏向ミラ
ーの傾きを被走査体上における走査線の湾曲量、傾き量
等に基づいて補正することにより、湾曲、傾き等のない
正確な走査ビーム軌跡を得ることができるとともに、前
記光偏向器の得率を向上させ、かつ安価な装置を提供す
ることを可能とする走査ビーム軌跡補正方法を提案して
いる(特開平2−64521号公報参照)。
Therefore, the present applicant has developed a method for adjusting the inclination of a surface mirror type optical deflector, or the mirror rotation axis of this optical deflector and/or the inclination of a deflection mirror, to the amount of curvature, the amount of inclination, etc. of the scanning line on the object to be scanned. By performing correction based on the scanning beam, it is possible to obtain an accurate scanning beam trajectory free from curvature, inclination, etc., and also to improve the yield of the optical deflector and to provide an inexpensive device. A trajectory correction method has been proposed (see Japanese Patent Laid-Open No. 2-64521).

[発明が解決しようとする課題] ところで、前記補正方法を実施する機構については、薄
肉な箔を用いるものしか開示されていない。このため、
現実に光偏向器の傾き等を調整する際に、その調整作業
が煩雑になるとともに、高精度な調整作業を遂行するこ
とが困難なものになるという問題がある。
[Problems to be Solved by the Invention] By the way, as for a mechanism for carrying out the above correction method, only a mechanism using thin foil has been disclosed. For this reason,
When actually adjusting the inclination or the like of the optical deflector, there are problems in that the adjustment work becomes complicated and it becomes difficult to perform the adjustment work with high precision.

本発明は、この種の問題を解決するためになされたもの
であり、光偏向器の傾き調整作業を精度よくかつ効率的
に遂行することが可能な走査装置の位置調整機構を提供
することを目的とする。
The present invention was made in order to solve this type of problem, and it is an object of the present invention to provide a position adjustment mechanism for a scanning device that can accurately and efficiently perform the tilt adjustment work of an optical deflector. purpose.

[課題を解決するための手段] 前記の課題を解決するために、本発明は光ビームを被走
査体上に走査させる光偏向器が配置された走査装置にお
いて、 前記光偏向器の一端側に設けられる球状部と、前記球状
部に接する円錐状部を有しかつ前記球状部を回転および
固定可能なホルダと、前記光偏向器の他端側を、互いに
交差する二軸方向から押圧して前記光偏向器の角度位置
を調整する押圧手段とを備えることを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a scanning device in which an optical deflector for scanning a light beam onto a scanned object is disposed, in which one end side of the optical deflector is disposed. A spherical part provided, a holder having a conical part in contact with the spherical part and capable of rotating and fixing the spherical part, and the other end side of the optical deflector are pressed from biaxial directions intersecting with each other. It is characterized by comprising a pressing means for adjusting the angular position of the optical deflector.

[作用] 上記のように構成される走査装置の位置調整機構では、
光偏向器の一端側に設けられる球状部が、ホルダに対し
て回転可能な状態にされた後に、この光偏向器の他端側
が、押圧手段を介して互いに交差する二軸方向から押圧
されて前記光偏向器の角度位置が調整される。さらに、
ホルダにより球状部が所望の角度に固定されて光偏向器
の傾き補正が精度よく遂行される。
[Operation] In the position adjustment mechanism of the scanning device configured as described above,
After the spherical part provided at one end of the optical deflector is made rotatable relative to the holder, the other end of the optical deflector is pressed from two axes directions intersecting each other via a pressing means. The angular position of the optical deflector is adjusted. moreover,
The spherical part is fixed at a desired angle by the holder, and the tilt correction of the optical deflector is performed with high precision.

[実施例コ 本発明に係る走査装置の位置調整機構について実施例を
挙げ、添付の図面を参照しながら以下詳細に説明する。
[Embodiments] An embodiment of the position adjustment mechanism of a scanning device according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図において、参照符号10は、本実施例に係る位置
調整機構が組み込まれる画像再生装f(走査装置)の本
体部を示す。この本体部10は、記録用レーザ光L1を
出力するレーザダイオード12と、同期用レーザ光L2
を出力するレーザダイオード14とを有する。レーザダ
イオード12から出力された記録用レーザ光L1は、コ
リメータ16を介して一面鏡型光偏向器20に導かれ、
レーザダイオード14から出力された同期用レーザ光L
2は、コリメータ22を介してこの光偏向器20に導か
れる。
In FIG. 1, reference numeral 10 indicates the main body of an image reproduction device f (scanning device) in which the position adjustment mechanism according to the present embodiment is incorporated. This main body 10 includes a laser diode 12 that outputs a recording laser beam L1, and a synchronization laser beam L2.
It has a laser diode 14 that outputs. The recording laser beam L1 output from the laser diode 12 is guided to a single-mirror optical deflector 20 via a collimator 16.
Synchronization laser light L output from the laser diode 14
2 is guided to this optical deflector 20 via a collimator 22.

第2図に示すように、光偏向器20は、本体24内に収
容される駆動部26と、駆動部26によって高速で回動
するミラー回動軸28と、ミラー回動軸28に取着され
、第1図中、矢印方向に振動する偏向ミラー30とを備
え、この本体24の下端側(一端側)に球状部32が設
けられる。
As shown in FIG. 2, the optical deflector 20 includes a drive section 26 housed in the main body 24, a mirror rotation shaft 28 that is rotated at high speed by the drive section 26, and a mirror rotation shaft 28 that is attached to the mirror rotation shaft 28. The main body 24 includes a deflection mirror 30 that vibrates in the direction of the arrow in FIG.

この球状部32とホルダ34と押圧手段36とから本実
施例に係る位置調整機構38が構成される。
This spherical portion 32, holder 34, and pressing means 36 constitute a position adjustment mechanism 38 according to this embodiment.

第1図および第2図に示すように、ホルダ34は、固定
台40と取付台42とを備え、この固定台40および取
付台42には、球状部32に接してこれを回転および固
定可能な円錐状部44.46が設けられるとともに、取
付台42が固定台40に対しボルト48を介して固定さ
れる。
As shown in FIGS. 1 and 2, the holder 34 includes a fixed base 40 and a mounting base 42, and the fixed base 40 and the mounting base 42 are capable of rotating and fixing the spherical part 32 in contact with the spherical part 32. Conical portions 44 and 46 are provided, and the mounting base 42 is fixed to the fixed base 40 via bolts 48.

抑圧手段36は、基台50a、50bに装着され、互い
に交差する二軸(X軸、Y軸)方向に光偏向器20の本
体24を押圧するマイクロメータ52a、52bを備え
、このマイクロメータ52a、52bからスピンドル5
4a、54bが突出している。
The suppressing means 36 includes micrometers 52a and 52b that are attached to bases 50a and 50b and press the main body 24 of the optical deflector 20 in two axes (X-axis and Y-axis) that intersect with each other. , 52b to spindle 5
4a and 54b protrude.

光偏向器20の偏向ミラー30に入射する記録用レーザ
光L1は同期用レーザ光L2に対してミラー回動軸28
の軸線方向に所定の角度αだけ偏位して入射するよう設
定しておく。
The recording laser beam L1 incident on the deflection mirror 30 of the optical deflector 20 is aligned with the mirror rotation axis 28 with respect to the synchronization laser beam L2.
The beam is set so that it is incident at a predetermined angle α in the axial direction.

この光偏向器20によって反射偏向された記録用レーザ
光L1は、fθレンズ56を介して反射ミラー58に入
射した後、略90°上方向に偏向されてフィルムF上を
矢印A方向に主走査する(第3図参照)。このフィルム
Fは、ドラム60と一対のニップローラ62a、62b
間に挟持された状態で矢印B方向に副走査搬送されるよ
う構成される。
The recording laser beam L1 reflected and deflected by the optical deflector 20 enters the reflection mirror 58 via the fθ lens 56, and then is deflected upward by approximately 90° and main-scans the film F in the direction of arrow A. (See Figure 3). This film F is attached to a drum 60 and a pair of nip rollers 62a and 62b.
It is configured to be conveyed in the sub-scanning direction in the direction of arrow B while being held between them.

光偏向器20によって反射偏向された同期用レーザ光L
2は、fθレンズ56を介して同期信号を生成するため
の基準格子板64に導かれる。
Synchronization laser beam L reflected and deflected by optical deflector 20
2 is guided through an fθ lens 56 to a reference grating plate 64 for generating a synchronization signal.

基準格子板64には、多数のスリット66が主走査方向
(矢印A方向)に沿って形成されており、この基準格子
板64の背面部には前記スリット66を通過した同期用
レーザ光L2を集光する集光ロッド68が配設され、こ
の集光ロッド68の両端部に前記同期用レーザ光L2を
電気信号に変換するPINフォトダイオード等からなる
光電変換素子70a、70bが取着される。
A large number of slits 66 are formed in the reference grating plate 64 along the main scanning direction (arrow A direction), and the synchronizing laser beam L2 that has passed through the slits 66 is emitted onto the back surface of the reference grating plate 64. A condensing rod 68 is provided to condense light, and photoelectric conversion elements 70a and 70b, which are composed of PIN photodiodes and the like, are attached to both ends of the condensing rod 68, which convert the synchronizing laser beam L2 into an electrical signal. .

本実施例に係る走査装置の位置調整機構は以上のように
構成されるものであり、次にその動作について説明する
The position adjustment mechanism of the scanning device according to this embodiment is constructed as described above, and its operation will be explained next.

レーザダイオード14が駆動されると、このレーザダイ
オード14から出力された同期用レーザ光L2は、コリ
メータ22によって平行光束とされた後に光偏向器20
に入射する。この光偏向器20では、偏向ミラー30が
矢印方向に高速で振動されており、この偏向ミラー30
によって反射された同期用レーザ光L2がfθレンズ5
6を介して基準格子板64に導かれ、この基準格子板6
4上を走査する。この場合、基準格子板64には多数の
スリット66が形成されており、前記スリット66を通
過した同期用レーザ光L2は、パルス状の光信号として
集光ロッド68に入射した後にその内面部によって反射
を繰り返して光電変換素子70a、70bに導かれる。
When the laser diode 14 is driven, the synchronizing laser beam L2 output from the laser diode 14 is converted into a parallel beam by the collimator 22 and then sent to the optical deflector 20.
incident on . In this optical deflector 20, a deflection mirror 30 is vibrated at high speed in the direction of the arrow.
The synchronizing laser beam L2 reflected by the fθ lens 5
6 to a reference grid plate 64, and this reference grid plate 6
4 Scan above. In this case, a large number of slits 66 are formed in the reference grating plate 64, and the synchronizing laser beam L2 that has passed through the slits 66 enters the condensing rod 68 as a pulsed optical signal, and then enters the condensing rod 68 by its inner surface. The light is repeatedly reflected and guided to photoelectric conversion elements 70a and 70b.

この光電変換素子70a、70bは前記光信号を電気信
号に変換し、この電気信号が所定の周波数に逓倍された
後に同期信号としてレーザダイオード120制御用に供
給される。
The photoelectric conversion elements 70a and 70b convert the optical signal into an electrical signal, and after this electrical signal is multiplied to a predetermined frequency, it is supplied as a synchronization signal for controlling the laser diode 120.

一方、レーザダイオード12は前記同期信号に基づき画
像情報に応じて変調された記録用レーザ光L1を8カす
る。この記録用レーザ光L1はコリメータ16によって
平行光束とされた後、光偏向器20に入射する。この光
偏向器20を構成する偏向ミラー30は、記録用レーザ
光L1を反射偏向し、fθレンズ56および反射ミラー
58を介してフィルムF上に導く。その際、フィルムF
は、ドラム60とニップローラ62a、62bとの間に
挟持された状態で矢印B方向に副走査搬送されており、
フィルムF上に矢印A方向に主走査する記録用レーザ光
L1によって画像が二次元的に形成される。
On the other hand, the laser diode 12 emits eight recording laser beams L1 modulated according to image information based on the synchronization signal. This recording laser beam L1 is made into a parallel beam by the collimator 16, and then enters the optical deflector 20. A deflection mirror 30 constituting this optical deflector 20 reflects and deflects the recording laser beam L1, and guides it onto the film F via an fθ lens 56 and a reflection mirror 58. At that time, film F
is conveyed in the sub-scanning direction in the direction of arrow B while being sandwiched between the drum 60 and nip rollers 62a and 62b.
An image is formed two-dimensionally on the film F by the recording laser beam L1 that main scans in the direction of the arrow A.

ここで、光偏向器20を構成するミラー回動軸28ある
いは偏向ミラー30が本体部10を構成する座標系、た
とえば、第1図に示すxYZ座標系の2軸に対して平行
に設定されていない場合、フィルムF上を主走査する記
録用レーザ光L1の走査線80がZ′軸方向に変位した
り、あるいは走査線80に湾曲、傾き等が生じる。
Here, the mirror rotation axis 28 or the deflection mirror 30 constituting the optical deflector 20 is set parallel to the coordinate system constituting the main body 10, for example, the two axes of the xYZ coordinate system shown in FIG. If not, the scanning line 80 of the recording laser beam L1 that main scans the film F will be displaced in the Z'-axis direction, or the scanning line 80 will be curved, tilted, etc.

この場合、本実施例では、フィルムF上における記録用
レーザ光L1の走査ビーム軌跡の湾曲等を光偏向器20
の本体24を所定方向に傾斜させることで補正している
In this case, in this embodiment, the curvature of the scanning beam locus of the recording laser beam L1 on the film F is
This is corrected by tilting the main body 24 in a predetermined direction.

すなわち、先ず、本体24に対してxYZ座標系が、第
4図aに示すように設定される。ここで、本体24のZ
軸に対するX軸回りの傾斜角をex(第4図す参照)、
Z軸に対するY軸回りの傾斜角をθy(第4図C参照)
とする。
That is, first, an xYZ coordinate system is set for the main body 24 as shown in FIG. 4a. Here, Z of the main body 24
The inclination angle around the X axis with respect to the axis is ex (see Figure 4),
The inclination angle around the Y axis with respect to the Z axis is θy (see Figure 4 C)
shall be.

一方、第5図aは走査ビームの軌跡が湾曲した場合を示
し、この場合をBOW(湾曲)と定義し、第5図すは走
査ビームの軌跡が主走査方向(矢印六方向)に対して傾
いた場合を示し、この場合をLEAN (傾き)と定義
する。
On the other hand, Fig. 5a shows a case where the trajectory of the scanning beam is curved, and this case is defined as BOW (curved). Indicates the case where it is tilted, and this case is defined as LEAN (tilt).

従って、ex1θyとBOW、LEANとは、の関係が
得られる。ここで、Mは、第1図に示す画像再生装置の
固有の2×2係数行列である。
Therefore, the relationship between ex1θy, BOW, and LEAN is obtained. Here, M is a 2×2 coefficient matrix specific to the image reproduction device shown in FIG.

そして、光偏向器20の本体240球状部320回転中
心からマイクロメータ52a、52bの各スピンドル5
4a、54bまでの距離をHとすると、このスピンドル
54a、54bの移動量ΔX、Δyは、 ΔX=)(xey Δy = −HX Ox から求めることができる。
The spindles 5 of the micrometers 52a and 52b are connected from the center of rotation of the main body 240 of the optical deflector 20 to the spherical part 320.
4a, 54b, the movement amounts ΔX, Δy of the spindles 54a, 54b can be determined from ΔX=)(xey Δy=−HX Ox.

このようにして各移動量ΔX、Δyが設定されると、ま
ず、ホルダ34を構成する取付台42がボルト48を介
して緩められた後に、マイクロメータ52a、52bが
操作されてスピンドル54a、54bが所定の移動量Δ
y、ΔXだけ変位される。これにより、光偏向器20の
本体24が、球状部32の中心を支点にして傾斜され、
次にボルト48が締められることにより取付台42が固
定台40に固定されて、本体24がその傾斜した姿勢で
保持される。
When each movement amount ΔX, Δy is set in this way, first, the mounting base 42 constituting the holder 34 is loosened via the bolt 48, and then the micrometers 52a, 52b are operated and the spindles 54a, 54b are is the predetermined movement amount Δ
y, is displaced by ΔX. As a result, the main body 24 of the optical deflector 20 is tilted with the center of the spherical portion 32 as a fulcrum,
Next, by tightening the bolt 48, the mounting base 42 is fixed to the fixed base 40, and the main body 24 is held in its inclined position.

このように、本実施例では、ボルト48が緩められると
、本体24の一端側に設けられた球状部32が、ホルダ
34を構成する固定台40と取付台42の各円錐状部4
4.46に接した状態で種々の方向に回転可能になる。
As described above, in this embodiment, when the bolt 48 is loosened, the spherical part 32 provided on one end side of the main body 24 moves into each conical part 4 of the fixing base 40 and the mounting base 42 that constitute the holder 34.
4.46 and can be rotated in various directions.

そして、本体24の他端側に接している各スピンドル5
4a、54bを進退させることにより、この本体24が
球状部32を支点にして所望の方向に容易にかつ正確に
傾くことができる。従って、ボルト48を介して取付台
42を固定台40に固定させれば、円錐状部44.46
が球状部32に押圧し、本体24が前記の姿勢で確実に
保持されるに至る。
Each spindle 5 in contact with the other end side of the main body 24
By moving 4a and 54b forward and backward, the main body 24 can be easily and accurately tilted in a desired direction using the spherical portion 32 as a fulcrum. Therefore, if the mounting base 42 is fixed to the fixed base 40 via the bolt 48, the conical portion 44.46
presses against the spherical portion 32, and the main body 24 is reliably held in the above-mentioned position.

これによって、光偏向器20の位置調整作業が、効率的
にかつ高精度に遂行されるという効果が得られる。
This provides the effect that the position adjustment work of the optical deflector 20 can be performed efficiently and with high precision.

なお、本実施例では、押圧手段36を構成する各マイク
ロメータ52a、52bがfθレンズ56の光軸方向お
よびこれに直交する方向に指向して配置されているが、
第6図に示すような配置位置に設定することもできる。
In this embodiment, the micrometers 52a and 52b constituting the pressing means 36 are arranged to be oriented in the optical axis direction of the fθ lens 56 and in a direction perpendicular thereto.
It is also possible to set the arrangement position as shown in FIG.

すなわち、マイクロメータ52aと52bとを互いに直
交させるとともに、これらが偏向ミラー30の反射面に
平行な方向と直交する方向に指向して配置されている。
That is, the micrometers 52a and 52b are arranged to be perpendicular to each other and oriented in a direction perpendicular to a direction parallel to the reflective surface of the deflection mirror 30.

従って、(1)式のMを所定の係数行列M1に選択し、
同様に光偏向器20の位置調整作業を遂行すればよい。
Therefore, M in equation (1) is selected as a predetermined coefficient matrix M1,
Similarly, the position adjustment work of the optical deflector 20 may be performed.

[発明の効果] 以上のように構成される本発明に係る走査装置の位置調
整機構では、次のような効果乃至利点を有する。
[Effects of the Invention] The position adjustment mechanism for a scanning device according to the present invention configured as described above has the following effects and advantages.

光偏向器の一端側に設けられる球状部がホルダに対して
回転可能に支持されるとともに、この光偏向器の他端側
が押圧手段を介して互いに交差する二軸方向から押圧さ
れるため、前記光偏向器が所望の角度位置に容易にかつ
正確に調整される。従って、演算により求められる補正
量に基づいて光偏向器の取付角度を高精度に補正するこ
とができ、走査ビームの軌跡を直線状とすることが可能
になる。
The spherical part provided at one end of the optical deflector is rotatably supported by the holder, and the other end of the optical deflector is pressed from two axes directions that intersect with each other via a pressing means. The optical deflector is easily and accurately adjusted to the desired angular position. Therefore, the mounting angle of the optical deflector can be corrected with high precision based on the correction amount obtained by calculation, and the locus of the scanning beam can be made linear.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る位置調整機構が適用される画像再
生装置の概略構成図、 第2図は前記位置調整機構の側面説明図、第3図は前記
位置調整機構に設定した座標系の説明図、 第4図は前記位置調整機構の傾斜の説明図、第5図は走
査ビームの軌跡の誤差の説明図、第6図は前記位置調整
機構を構成する押圧手段の他の配電状態の説明図である
。 Ll・・・記録用レーザ光 L2・・・同期用レーザ光 0・・・本体部 2.14・・・レーザダイオード 0・・・光偏向器 4・・・本体 0・・・偏向ミラー 2・・・球状部 4・・・ホルダ 6・・・押圧手段 訃・・位置調整機構 0・・・固定台 2・・・取付台 4.46・・・円錐状部 2a、52b・・・マイクロメータ FIG、3 b2゜
FIG. 1 is a schematic configuration diagram of an image reproducing device to which a position adjustment mechanism according to the present invention is applied, FIG. 2 is an explanatory side view of the position adjustment mechanism, and FIG. 3 is a coordinate system set in the position adjustment mechanism. 4 is an explanatory diagram of the inclination of the position adjustment mechanism, FIG. 5 is an explanatory diagram of the error in the trajectory of the scanning beam, and FIG. 6 is an explanatory diagram of other power distribution states of the pressing means constituting the position adjustment mechanism. It is an explanatory diagram. Ll... Recording laser beam L2... Synchronization laser beam 0... Main body 2.14... Laser diode 0... Light deflector 4... Main body 0... Deflection mirror 2. ...Spherical part 4...Holder 6...Press means...Position adjustment mechanism 0...Fixing base 2...Mounting base 4.46...Conical part 2a, 52b...Micrometer FIG, 3 b2゜

Claims (1)

【特許請求の範囲】[Claims] (1)光ビームを被走査体上に走査させる光偏向器が配
置された走査装置において、 前記光偏向器の一端側に設けられる球状部と、前記球状
部に接する円錐状部を有しかつ前記球状部を回転および
固定可能なホルダと、 前記光偏向器の他端側を、互いに交差する二軸方向から
押圧して前記光偏向器の角度位置を調整する押圧手段と
を備えることを特徴とする走査装置の位置調整機構。
(1) A scanning device in which an optical deflector for scanning a light beam onto a scanned object is disposed, the optical deflector having a spherical part provided at one end side and a conical part in contact with the spherical part; A holder capable of rotating and fixing the spherical part; and a pressing means for pressing the other end of the optical deflector from biaxial directions intersecting each other to adjust the angular position of the optical deflector. A position adjustment mechanism for the scanning device.
JP2204472A 1990-07-31 1990-07-31 Scanning device position adjustment mechanism Expired - Lifetime JP2713648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2204472A JP2713648B2 (en) 1990-07-31 1990-07-31 Scanning device position adjustment mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2204472A JP2713648B2 (en) 1990-07-31 1990-07-31 Scanning device position adjustment mechanism

Publications (2)

Publication Number Publication Date
JPH0488311A true JPH0488311A (en) 1992-03-23
JP2713648B2 JP2713648B2 (en) 1998-02-16

Family

ID=16491099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2204472A Expired - Lifetime JP2713648B2 (en) 1990-07-31 1990-07-31 Scanning device position adjustment mechanism

Country Status (1)

Country Link
JP (1) JP2713648B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243126A (en) * 2005-03-01 2006-09-14 Kyocera Mita Corp Image forming apparatus
JP2008065045A (en) * 2006-09-07 2008-03-21 Ricoh Co Ltd Light source device, optical scanner and image forming apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132204A (en) * 1982-02-01 1983-08-06 Hoya Corp Shifting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132204A (en) * 1982-02-01 1983-08-06 Hoya Corp Shifting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243126A (en) * 2005-03-01 2006-09-14 Kyocera Mita Corp Image forming apparatus
JP2008065045A (en) * 2006-09-07 2008-03-21 Ricoh Co Ltd Light source device, optical scanner and image forming apparatus

Also Published As

Publication number Publication date
JP2713648B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
JP2000105347A (en) Multibeam light source device, multibeam scanner and image forming device
US5877494A (en) Beam error correction using movable correction element
EP0773461B1 (en) Multibeam scanning method and apparatus
JPH0488311A (en) Position adjusting mechanism for scanner
JP2000180748A (en) Division scanner and beam state adjusting method therefor
JP2002189182A (en) Multi-beam light source device
JPH10133135A (en) Light beam deflecting device
JP2000075227A (en) Multibeam light source device
JP2647091B2 (en) Laser beam scanning device
JPH04242215A (en) Optical scanner
JPH09288245A (en) Optical scanner
JP4917926B2 (en) Optical scanning apparatus and image forming apparatus
JP3950265B2 (en) Optical adjustment method for optical scanning device
JPH1010448A (en) Optical scanner
JP3057938B2 (en) Supporting device for reflecting mirror in optical scanning device
JPH0713094A (en) Optical scanner
JPH0926550A (en) Multibeam scanner
JP2001174731A (en) Multi-beam light source device and multi-beam scanner
JP2001194614A (en) Optical scanner
JPH0312626A (en) Image recorder
JP2557938B2 (en) Light beam scanning device with tilt correction function
JPH02311813A (en) Laser beam scanning optical device
JPH09230260A (en) Multi-optical beam scanner
JPH05257077A (en) Rotary polygon mirror
JP2002250882A (en) Multibeam scanner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 13