JPH0488202A - Directional control valve device - Google Patents

Directional control valve device

Info

Publication number
JPH0488202A
JPH0488202A JP2202227A JP20222790A JPH0488202A JP H0488202 A JPH0488202 A JP H0488202A JP 2202227 A JP2202227 A JP 2202227A JP 20222790 A JP20222790 A JP 20222790A JP H0488202 A JPH0488202 A JP H0488202A
Authority
JP
Japan
Prior art keywords
pilot
path
main valve
load
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2202227A
Other languages
Japanese (ja)
Other versions
JP3016576B2 (en
Inventor
Kohei Yamamoto
浩平 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP2202227A priority Critical patent/JP3016576B2/en
Publication of JPH0488202A publication Critical patent/JPH0488202A/en
Application granted granted Critical
Publication of JP3016576B2 publication Critical patent/JP3016576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fluid-Driven Valves (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To freely change a fourth position of a main valve to a plurality of changeover functions by providing a flow passage forming member for changeably and selectively installing a pilot valve and a changeover member in the main valve composed of four main valve bodies for communication and shut-off between a feed passage, a discharge passage and a load passage. CONSTITUTION:A main valve 2 is constituted of a first - fourth valve bodies 3-6 for communicating and shutting off respectively a first, a second load passages A, B, a feed passage P and a discharge passage R leading to a rod, a head chambers 1A, 1B of a fluid actuator 1. There are also provided solenoid operated pilot valves 9, 10 for controlling pilot pressure to fluid chambers 3A-6A of main valve bodies respectively, and a first, a third, a fifth, a seventh changeover members 12, 13, 31, 36 changeably and selectively installed on a flow passage forming member 11. Since the respective changeover members 12, 13, 31, 36 are selectively installed on the flow passage forming member 11, a fourth position of the main valve 2 can be changed to a plurality of changeover functions, thus coping with a wide range of application.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、4個の主弁体を作動して4位置の切換を得る
ようにした方向制御弁装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a directional control valve device that operates four main valve bodies to obtain four-position switching.

〔従来の技術〕[Conventional technology]

従来、この種の方向制御弁装置は、特公平214563
号公報に示される如き構成があり、2個のパイロット弁
の切換操作により主弁に有する4個の主弁体を作動して
圧力流体を供給する供給路と流体アクチュエータに接続
する第1負荷路および第2負荷路と低圧側に接続する排
出路との間を連通遮断し、主弁は供給路と第2負荷路間
を連通ずると共に排出路と第1負荷路間を連通ずる第1
位置と、供給路と第1負荷路間を連通ずると共に排出路
と第2負荷路間を連通ずる第2位置と、供給路と第1負
荷路と第2負荷路間を連通ずると共に排出路を遮断する
第3位置と、供給路および第1負荷路および第2負荷路
および排出路を遮断する第4位置との4位置切換を可能
に有し、主弁の第1位置で流体アクチュエータを一方向
に作動し、主弁の第2位置で流体アクチュエータを他方
向に作動し、主弁の第3位置で流体アクチュエタを差動
回路により高速作動し、主弁の中立位置で流体アクチュ
エータを停止したりして流体アクチュエータを作動制御
し得るよう設けている。
Conventionally, this type of directional control valve device has been disclosed in Japanese Patent Publication No. 214563.
The configuration is as shown in the publication, and includes a supply path that supplies pressurized fluid by operating four main valve bodies in the main valve by switching two pilot valves, and a first load path that connects to the fluid actuator. and a main valve which communicates between the second load path and a discharge path connected to the low pressure side, and a main valve which communicates between the supply path and the second load path and communicates between the discharge path and the first load path.
a second position that communicates between the supply path and the first load path and a second position that communicates between the discharge path and the second load path; and a second position that communicates between the supply path and the first load path and the second load path and a discharge path that communicates with each other. The fluid actuator is switched in the first position of the main valve, and has a fourth position where the supply path, the first load path, the second load path, and the discharge path are shut off. It operates in one direction, the second position of the main valve operates the fluid actuator in the other direction, the third position of the main valve operates the fluid actuator at high speed by the differential circuit, and the neutral position of the main valve stops the fluid actuator. The fluid actuator is provided to control the operation of the fluid actuator.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、かかる方向制御弁装置は、主弁の第4位置で
供給路および第1負荷路および第2負荷路および排出路
を遮断する切換機能を専有するものであるから、主弁の
第4位置で第1負荷路と第2負荷路の両方の負荷路の圧
抜きを必要とする用途やどちらか一方の負荷路の圧抜き
を必要とする用途に対応するにはそれ専用の第4位置で
の切換機能を有する方向制御弁装置を備えておかなけれ
ばならず管理作業が大変になるといった問題点があった
However, since such a directional control valve device exclusively has the switching function of shutting off the supply path, the first load path, the second load path, and the discharge path at the fourth position of the main valve, the fourth position of the main valve In order to accommodate applications that require pressure relief from both the first load path and the second load path, or applications that require pressure relief from either one of the load paths, a dedicated fourth position is provided. There was a problem in that a directional control valve device with a switching function had to be provided, making management work difficult.

本発明は、かかる問題点を解決するもので、主弁の第4
位置での切換機能を変更自在にして広範囲の用途に対応
し得るようにした方向制御弁装置を提供するものである
The present invention solves this problem, and the fourth valve of the main valve
The present invention provides a directional control valve device in which the switching function can be changed depending on the position and can be used in a wide range of applications.

〔問題点を解決するための手段〕[Means for solving problems]

このため、本発明は、圧力流体を供給する供給路と流体
アクチュエータに接続する第1負荷路間を連通遮断する
第1主弁体、供給路と流体アクチュエータに接続する第
2負荷路間を連通遮断する第2主弁体、第1負荷路と低
圧側に接続する排出路間を連通遮断する第3主弁体、第
2負荷路と排出路間を連通遮断する第4主弁体を備えた
主弁と、4個の主弁体の背部に形成した流体室にパイロ
ット流体を導入したり流体室のパイロット流体を低圧側
へ排出したりするようパイロット供給路と一方のパイロ
ット負荷路間を連通すると共にパイロット排出路と他方
のパイロット負荷路間を連通ずる第1位置およびパイロ
ット供給路と他方のパイロット負荷路間を連通ずると共
にパイロット排出路と一方のパイロット負荷路間を連通
ずる第2位置を切換操作自在に有した2個のパイロット
弁と、主弁と2個のパイロット弁間に介在して設け4個
の主弁体背部の流体室と2個のパイロット弁の各パイロ
ット負荷路間を接続する複数のパイロット接続路を形成
した流路形成部材とを負備し、流路形成部材は内部に形
成のパイロット接続路を、パィロット弁の一方を第1位
置に他方を第2位置に切換操作することで主弁が供給路
と第2負荷路間を連通ずると共に排出路と第1負荷路間
を連通ずる第1位置に、パイロット弁の一方を第2位置
に他方を第1位置に切換操作することで主弁が供給路と
第1負荷路間を連通ずると共に排出路と第2負荷路間を
連通ずる第2位置に、両パイロット弁をともに第2位置
に切換操作することで主弁が排出路を遮断すると共に供
給路と第1負荷路と第2負荷路間を連通可能とする流体
アクチュエータの差動回路を構成する第3位置に、両パ
イロット弁をともに第1位置に切換操作することで主弁
が第4位置にそれぞれ切換するよう設け、流路形成部材
には一方のパイロット弁の第1位置と第2位置との切換
操作に応じて第3主弁体背部の流体室に接続のパイロッ
ト接続路を一方のパイロット弁の一方のパイロット負荷
路と他方のパイロット弁の他方のパイロット負荷路とに
切換連通する第1切換部材と、第3主弁体背部の流体室
に接続のパイロット接続路を他方のパイロット弁の他方
のバイロフト負荷路に接続する第2切換部材とを変更自
在に選択して取付けると共に、他方のパイロット弁の第
1位置と第2位置との切換操作に応じて第4主弁体背部
の流体室に接続のパイロット接続路を他方のパイロット
弁の一方のパイロット負荷路と一方のパイロット弁の他
方のパイロット負荷路とに切換連通する第3切換部材と
、第4主弁体背部の流体室に接続のパイロット接続路を
一方のパイロット弁の他方のパイロット負荷路に接続す
る第4切換部材とを変更自在に選択して取付けして設け
、流路形成部材への各切換部材の選択取付けにより主弁
の第4位置を複数の切換機能に変更自在に有して成る。
For this reason, the present invention provides a first main valve body that disconnects communication between a supply path that supplies pressure fluid and a first load path that connects to a fluid actuator, and a first main valve body that disconnects communication between a supply path that supplies pressure fluid and a first load path that connects to a fluid actuator; A second main valve body that cuts off communication between the first load path and the discharge path connected to the low pressure side, a fourth main valve body that cuts off communication between the second load path and the discharge path. A pilot supply path and one pilot load path are connected so that pilot fluid can be introduced into the fluid chambers formed at the back of the four main valve bodies and the pilot fluid in the fluid chamber can be discharged to the low pressure side. A first position where the pilot discharge passage and the other pilot load passage communicate with each other, and a second position where the pilot supply passage and the other pilot load passage communicate with each other and the pilot discharge passage and one of the pilot load passages communicate with each other. Two pilot valves that can be freely switched between the two pilot valves are provided between the main valve and the two pilot valves, and are installed between the fluid chambers on the back of the four main valve bodies and the pilot load paths of the two pilot valves. a flow path forming member forming a plurality of pilot connection paths connecting the pilot valves; By performing a switching operation, the main valve is placed in the first position, which communicates between the supply path and the second load path, and the discharge path and the first load path, and one of the pilot valves is placed in the second position, and the other is placed in the first position. By switching the main valve to a second position, the main valve communicates between the supply path and the first load path, and also communicates the discharge path and the second load path, and both pilot valves are switched to the second position. The main valve is placed in the third position constituting a differential circuit of the fluid actuator in which the main valve shuts off the discharge path and allows communication between the supply path, the first load path, and the second load path, and both pilot valves are placed in the first position. The main valves are provided in such a way that the main valves are switched to the fourth position when the pilot valve is switched between the first and second positions. a first switching member that switches the pilot connection path connected to the fluid chamber of the pilot valve into communication with one pilot load path of one pilot valve and the other pilot load path of the other pilot valve; A pilot connection path connected to the chamber and a second switching member connecting the other viroft load path of the other pilot valve are changeably selected and installed, and the first and second positions of the other pilot valve are changed. A third switching device that switches the pilot connection path connected to the fluid chamber on the back of the fourth main valve body to one pilot load path of the other pilot valve and the other pilot load path of the one pilot valve in accordance with the switching operation. and a fourth switching member that connects the pilot connection path connected to the fluid chamber on the back of the fourth main valve body to the other pilot load path of one pilot valve, and is provided by freely selecting and attaching the pilot connection path to the fluid chamber on the back of the fourth main valve body. The fourth position of the main valve can be changed to a plurality of switching functions by selectively attaching each switching member to the path forming member.

〔作  用〕[For production]

かかる本発明の構成において、流路形成部材に第1切換
部材と第3切換部材を選択取付けすることにより主弁の
第4位置で第1主弁体、第2主弁体、第3主弁体、第4
主弁体が遮断するよう作動して供給路および第1負荷路
および第2負荷路および排出路を遮断する第1切換機能
が、また第1切換部材を第2切換部材に第3切換部材を
第4切換部材にそれぞれ変更して取付けすることにより
主弁の第4位置で第1主弁体、第2主弁体が遮断するよ
う作動して第3主弁体、第4主弁体が連通ずるよう作動
して供給路を遮断し第1負荷路と第2負荷路と排出路間
を連通ずる第2切換機能が、また第1切換部材を変更せ
ず第3切換部材を第4切換部材に変更して取付けするこ
とにより主弁の第4位置で第1主弁体、第2主弁体、第
3主弁体が遮断するよう作動して第4主弁体が連通ずる
よう作動して供給路および第1負荷路を遮断し排出路と
第2負荷路間を連通ずる第3切換機能が、また第3切換
部材を変更せず第1切換部材を第2切換部材に変更して
取付けすることにより主弁の第4位置で第1主弁体、第
2主弁体、第4主弁体が遮断するよう作動して第3主弁
体が連通ずるよう作動して供給路および第2負荷路を遮
断し排出路と第1負荷路間を連通する第4切換機能の複
数の切換機能をそれぞれ得ることができる。このため、
用途に応じて主弁の第4位置での切換機能を変更できて
広範囲の用途に対応することができる。
In this configuration of the present invention, by selectively attaching the first switching member and the third switching member to the flow path forming member, the first main valve body, the second main valve body, and the third main valve body are switched at the fourth position of the main valve. body, 4th
The first switching function operates to shut off the main valve body to shut off the supply path, the first load path, the second load path, and the discharge path, and also connects the first switching member to the second switching member and the third switching member. By changing and attaching them to the fourth switching member, the first main valve body and the second main valve body are operated to shut off at the fourth position of the main valve, and the third main valve body and the fourth main valve body are closed. A second switching function that operates to communicate with each other to cut off the supply path and establish communication between the first load path, the second load path, and the discharge path also switches the third switching member to the fourth switching function without changing the first switching member. By changing the parts and attaching them, the first main valve body, the second main valve body, and the third main valve body are operated to shut off at the fourth position of the main valve, and the fourth main valve body is operated to communicate. A third switching function that cuts off the supply path and the first load path and communicates between the discharge path and the second load path also changes the first switching member to the second switching member without changing the third switching member. By installing the main valve in the fourth position, the first main valve body, the second main valve body, and the fourth main valve body are operated to shut off, and the third main valve body is operated to communicate with the supply channel. A plurality of switching functions can be obtained, including a fourth switching function that interrupts the second load path and communicates between the discharge path and the first load path. For this reason,
The switching function at the fourth position of the main valve can be changed depending on the application, making it possible to correspond to a wide range of applications.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図において、Pは圧力流体を供給する供給路、Aは
流体アクチュエータ1のワークWの負荷が作用するロッ
ド室IAに接続する第1負荷路、Bは流体アクチュエー
タ1のヘッド室IBに接続する第2負荷路、Rは低圧側
に接続する排出路である。2は主弁で、供給路Pと第1
負荷路A間を連通遮断する第1主弁体3と、供給路Pと
第2負荷路B間を連通遮断する第2主弁体4と、第1負
荷路Aと排出路2間を連通遮断する第3主弁体5と、第
2負荷路Bと排出路2間を連通遮断する第4主弁体6お
よび各主弁体背部に形成してパイロット流体を導入した
りパイロット流体を排出したりする流体室3A、4A、
5A、6Aを備えている。第1主弁体3はポペット形状
に設けて供給路Pの圧力流体が平衡作用するよう頭部に
ピストン部を有して第1作用室3Bを形成し、さらにカ
ウンタバランス機能を得るよう第1負荷路Aの流体を導
入する第2作用室3Cを形成し、背部の流体室3Aには
第1主弁体3を遮断方向に付勢するようばね力を調整自
在としたばね3Dを収装している。
In FIG. 1, P is a supply path for supplying pressure fluid, A is a first load path connected to the rod chamber IA on which the load of the workpiece W of the fluid actuator 1 acts, and B is connected to the head chamber IB of the fluid actuator 1. The second load path R is a discharge path connected to the low pressure side. 2 is the main valve, which connects the supply path P and the first
A first main valve body 3 that disconnects communication between the load path A, a second main valve body 4 that disconnects communication between the supply path P and the second load path B, and a communication between the first load path A and the discharge path 2. A third main valve body 5 that blocks the communication, a fourth main valve body 6 that blocks communication between the second load path B and the discharge path 2, and a valve formed on the back of each main valve body to introduce pilot fluid or discharge the pilot fluid. Fluid chambers 3A, 4A,
Equipped with 5A and 6A. The first main valve body 3 is provided in a poppet shape and has a piston portion at the head so that the pressure fluid in the supply path P acts in equilibrium, forming a first action chamber 3B. A second action chamber 3C is formed into which fluid from the load path A is introduced, and a spring 3D whose spring force is adjustable is housed in the fluid chamber 3A at the back so as to bias the first main valve body 3 in the shutoff direction. are doing.

第2主弁体4はポペット形状に設けて供給路Pの圧力流
体が平衡作用するよう頭部にピストン部を有して第1作
用室4Bを形成し、背部の流体室4Aには第2主弁体4
を遮断方向に付勢するようばね4Dを収装している。第
3主弁体5および第4主弁体6はポペット形状に設け、
背部の流体室5A、6Aには各主弁体5.6を遮断方向
に付勢するようばね5D、6Dを収装していると共に、
各主弁体5.6の連通方向の開度を調整自在に調整部材
5E、6Eを設けている。3F、4F、5F。
The second main valve body 4 is provided in a poppet shape and has a piston portion at the head so that the pressure fluid in the supply path P acts in equilibrium, forming a first action chamber 4B, and a second fluid chamber 4A at the back. Main valve body 4
A spring 4D is installed to bias the switch in the blocking direction. The third main valve body 5 and the fourth main valve body 6 are provided in a poppet shape,
The back fluid chambers 5A and 6A house springs 5D and 6D to bias each main valve body 5.6 in the blocking direction, and
Adjustment members 5E and 6E are provided to freely adjust the opening degree of each main valve body 5.6 in the communication direction. 3F, 4F, 5F.

6Fは流体室3A、4A、5A15Aに接続するパイロ
ット路、3J、4Jは第1作用室3B14Bに接続する
パイロット路、7は低圧側に接続するパイロット排出流
路、8は供給路Pに接続するパイロット供給流路でそれ
ぞれ主弁2に備えている。9.10は電磁操作の2個の
パイロット弁で、パイロット流体を供給するパイロット
供給路9P、10Pおよびパイロット流体を低圧側へ排
出するパイロット排出路9R1IORおよび2個のパイ
ロット負荷路9A、IOAとgB、IOBを備えている
。そして、パイロット弁9.10はパイロット供給路9
P、IOPとパイロット負荷路9A、10A間を連通ず
ると共にパイロット排出路9R110Rとパイロット負
荷路9B、IOB間を連通ずる非通電状態の中立位置で
ある第1位置9C110Cと、パイロット供給路9P、
IOPとパイロット負荷路9B1 IOB間を連通ずる
と共にパイロット排出路9R,IORとパイロット負荷
路9A、IOA間を連通ずる通電状態の第2位置9D1
10Dとを切換操作自在に有している。11は主弁2と
2個のパイロット弁9.10間に介在して設けた流路形
成部材で、後述詳記する複数のパイロット接続路を内部
に形成している。12は流路形成部材11に変更自在に
選択取付けした第1切換部材で、パイロット操作路12
Aをパイロット接続路13.14.15を介してパイロ
ット弁9のパイロット負荷路9Bに接続し、パイロット
弁9の第1位置9Cで第3主弁体5のパイロット路5F
に接続のパイロット接続路16をパイロット接続路17
.18を介してパイロット弁9のパイロット負荷路9A
に切換連通すると共に、パイロット弁9の第2位置9D
でパイロット接続路16をパイロット接続路19.20
,21.22を介してパイロット弁1oのパイロット負
荷路10Bに切換連通するようにしている。13は流路
形成部材11に変更自在に選択取付けした第3切換部材
で、パイロット操作路13Aをパイロット接続路23.
24.22を介してパイロット弁10のパイロット負荷
路10Bに接続し、パイロット弁10の第1位置10C
で第4主弁体6のパイロット路6Fに接続のパイロット
接続路25をパイロット接続路26.27を介してパイ
ロット弁10のパイロット負荷路10Aに切換連通する
と共ニ、ハイロット弁1oの第2位置10Dでパイロッ
ト接続路25をパイロット接続路28.29.30.1
5を介してパイロット弁9のパイロット負荷路9Bに切
換連通するようにしている。そして、第1切換部材12
と第3切換部材13は同様の内部構造となっている。3
1は流路形成部材11に変更自在に選択取付けした第5
切換部材で、パイロット操作路31Aをパイロット接続
路32.24.22を介しテハイロット弁1oのパイロ
ット負荷路10Bに接続し、パイロット弁1oの第1位
置10Cで第1主弁体3のパイロット路3Fに接続のパ
イロット接続路33をパイロット接続路34.27を介
してパイロット弁1oのパイロット負荷路10Aに切換
連通すると共に、パイロット弁10の第2位置10Dで
パイロット接続路33をパイロット接続路35.29.
30,15を介してパイロット弁9のパイロット負荷路
9Bに切換連通するようにしている。36は流路形成部
材11に変更自在に選択取付けした第7切換部材で、第
2主弁体4のパイロット路4Fに接続のパイロット接続
路37をパイロット接続路38.18を介してパイロッ
ト弁9のパイロット負荷路9Aに接続するようにしてい
る。38Aはパイロット接続路21より分岐して第1主
弁体3のパイロット路3Jに接続するパイロット接続路
、39はパイロット接続路30より分岐して第2主弁体
4のパイロット路4Jに接続するパイロット接続路、4
0は主弁2のパイロット供給流路8をパイロット弁9の
パイロット供給路9Pに接続するパイロット接続路、4
1はパイロット接続路40より分岐してパイロット弁1
0のパイロット供給路10Pに接続するパイロット接続
路、42.43続路、44.45はパイロット接続路4
2より分してパイロット弁10のパイロット排出路10
Rに接続するパイロット接続路である。
6F is a pilot path connected to the fluid chambers 3A, 4A, and 5A15A, 3J and 4J are pilot paths connected to the first action chamber 3B14B, 7 is a pilot discharge flow path connected to the low pressure side, and 8 is connected to the supply path P. Each main valve 2 is equipped with a pilot supply flow path. 9.10 are two electromagnetically operated pilot valves, including pilot supply paths 9P and 10P that supply pilot fluid, a pilot discharge path 9R1IOR that discharges pilot fluid to the low pressure side, and two pilot load paths 9A, IOA and gB. , is equipped with IOB. And the pilot valve 9.10 is the pilot supply path 9.
P, a first position 9C110C that is a neutral position in a non-energized state that communicates between the IOP and the pilot load paths 9A and 10A, and also communicates between the pilot discharge path 9R110R and the pilot load path 9B and IOB, and a pilot supply path 9P,
A second position 9D1 in an energized state that communicates between the IOP and the pilot load path 9B1 and the IOB, and also communicates between the pilot discharge path 9R and IOR and the pilot load path 9A and IOA.
10D, which can be freely switched. Reference numeral 11 denotes a flow path forming member interposed between the main valve 2 and the two pilot valves 9 and 10, and a plurality of pilot connection paths, which will be described in detail later, are formed inside. Reference numeral 12 denotes a first switching member which is selectively and selectively attached to the flow path forming member 11;
A is connected to the pilot load path 9B of the pilot valve 9 via the pilot connection path 13.14.15, and the pilot path 5F of the third main valve body 5 is connected at the first position 9C of the pilot valve 9 to the pilot load path 9B of the pilot valve 9.
The pilot connection path 16 connected to the pilot connection path 17
.. Pilot load path 9A of pilot valve 9 via 18
At the same time, the second position 9D of the pilot valve 9
Connect pilot connection path 16 to pilot connection path 19.20.
, 21 and 22, the pilot load path 10B of the pilot valve 1o is switched to communicate with the pilot load path 10B. Reference numeral 13 denotes a third switching member which is selectively and selectively attached to the flow path forming member 11, and connects the pilot operation path 13A to the pilot connection path 23.
24.22 to the pilot load path 10B of the pilot valve 10, and the first position 10C of the pilot valve 10
When the pilot connection path 25 connected to the pilot path 6F of the fourth main valve body 6 is switched to the pilot load path 10A of the pilot valve 10 via the pilot connection path 26.27, the second position of the high-lot valve 1o is reached. 10D to pilot connection path 25 to pilot connection path 28.29.30.1
5, the pilot load path 9B of the pilot valve 9 is switched to communicate with the pilot load path 9B. Then, the first switching member 12
and the third switching member 13 have the same internal structure. 3
1 is a fifth member selectively attached to the flow path forming member 11 in a changeable manner.
The switching member connects the pilot operating path 31A to the pilot load path 10B of the high rotary valve 1o via the pilot connection path 32.24.22, and connects the pilot operating path 31A to the pilot load path 10B of the pilot valve 1o at the first position 10C of the pilot valve 1o. The pilot connection path 33 connected to the pilot connection path 34.27 is switched to the pilot load path 10A of the pilot valve 1o via the pilot connection path 34.27, and the pilot connection path 33 is connected to the pilot connection path 35.27 at the second position 10D of the pilot valve 10. 29.
30 and 15, the pilot load path 9B of the pilot valve 9 is switched to communicate with the pilot load path 9B. Reference numeral 36 denotes a seventh switching member that is selectively and selectively attached to the flow path forming member 11, and connects the pilot connection path 37 connected to the pilot path 4F of the second main valve body 4 to the pilot valve 9 via the pilot connection path 38.18. The pilot load path 9A is connected to the pilot load path 9A. 38A is a pilot connection path that branches from the pilot connection path 21 and connects to the pilot path 3J of the first main valve body 3; 39 is a pilot connection path that branches from the pilot connection path 30 and connects to the pilot path 4J of the second main valve body 4. Pilot connection path, 4
0 is a pilot connection path connecting the pilot supply path 8 of the main valve 2 to the pilot supply path 9P of the pilot valve 9;
1 is branched from the pilot connection path 40 and connected to the pilot valve 1
0 is a pilot connection path connected to the pilot supply path 10P, 42.43 is a continuation path, and 44.45 is a pilot connection path 4.
2, the pilot discharge passage 10 of the pilot valve 10
This is a pilot connection path that connects to R.

次にかかる構成の作動を説明する。Next, the operation of this configuration will be explained.

Pに供給された圧力流体の一部がパイロット流体として
パイロット供給流路8、パイロット接続路40よりパイ
ロット弁9のパイロット供給路9Pに流れると共に、パ
イロット接続路41を経てパイロット弁10のパイロッ
ト供給路10Pに流れ、パイロット供給路9に流れたパ
イロット流体はパイロット負荷路9A、パイロット接続
路18.17、第1切換部材12、パイロット接続路1
6、パイロット路5Fを流れて流体室5Aに導入されて
第3主弁体5はパイロット流体の圧力に基づく作用力と
ばね5D力により付勢されて第1負荷路Aと排出路2間
を遮断する。また、パイロット流体はパイロット接続路
18よりパイロット接続路38、第7切換部材36、パ
イロット接続路37、パイロット路4Fを流れて流体室
4Aに導入されて第2主弁体4は第1作用室4Bのパイ
ロット流体がパイロット路4J、パイビット接続路39
.30.15、パイロット弁9のパイロット負荷路9B
、パイロット排出路9R,パイロット接続路42.43
、パイロット排出流路7を流れて低圧側に排出されてい
るため流体室4Aに導入のパイロット流体の圧力に基づ
く作用力とばね4D力により付勢されて供給路Pと第2
負荷路B間を遮断する。また、パイロット弁10のパイ
ロット供給路10Pに流れたパイロット流体はパイロッ
ト負荷路10A1パイロット接続路27.26、第3切
換部材13、パイロット接続路25、パイロット路6F
を流れて流体室6Aに導入されて第4主弁体6はパイロ
ット流体の圧力に基づく作用力とばね6A力により付勢
されて第2負荷路Bと排出路2間を遮断する。また、パ
イロット流体はパイロット接続路27よりパイロット接
続路34、第5切換部材31、パイロット接続路33、
パイロット路3Fを流れて流体室3Aに導入されて第1
主弁体3は第1作用室3Bのパイロット流体がパイロッ
ト路3J1パイロット接続路38A、21.22、パイ
ロット弁10のパイロット負荷路10B、パイロット排
出路10R、パイロット接続路45.44.42.43
、パイロット排出流路7を流れて低圧側に排出されてい
るため流体室3Aに導入のパイロット流体の圧力に基づ
く作用力とばね3D力により付勢されて供給路Pと第1
負荷路A間を遮断する。すなわち第2図に示す如き、第
4装置Xでは供給路Pおよび第1負荷路Aおよび第2負
荷路Bおよび排出路Rを遮断する第1切換機能となり、
流体アクチュエータ1は停止している。
A part of the pressure fluid supplied to P flows as a pilot fluid from the pilot supply passage 8 and the pilot connection passage 40 to the pilot supply passage 9P of the pilot valve 9, and also passes through the pilot connection passage 41 to the pilot supply passage of the pilot valve 10. 10P, and the pilot fluid that has flowed into the pilot supply path 9 is transferred to the pilot load path 9A, the pilot connection path 18.17, the first switching member 12, and the pilot connection path 1.
6. It flows through the pilot path 5F and is introduced into the fluid chamber 5A, and the third main valve body 5 is biased by the acting force based on the pressure of the pilot fluid and the force of the spring 5D, and flows between the first load path A and the discharge path 2. Cut off. Further, the pilot fluid flows from the pilot connection path 18 through the pilot connection path 38, the seventh switching member 36, the pilot connection path 37, and the pilot path 4F, and is introduced into the fluid chamber 4A, and the second main valve body 4 is introduced into the first action chamber. The pilot fluid of 4B is connected to the pilot path 4J and the pipe connection path 39.
.. 30.15, pilot load path 9B of pilot valve 9
, pilot discharge path 9R, pilot connection path 42.43
, because it flows through the pilot discharge channel 7 and is discharged to the low pressure side, it is biased by the acting force based on the pressure of the pilot fluid introduced into the fluid chamber 4A and the force of the spring 4D, and the supply channel P and the second
The load path B is cut off. Further, the pilot fluid flowing into the pilot supply path 10P of the pilot valve 10 is transferred to the pilot load path 10A1, the pilot connection path 27.26, the third switching member 13, the pilot connection path 25, and the pilot path 6F.
is introduced into the fluid chamber 6A, and the fourth main valve body 6 is biased by the acting force based on the pressure of the pilot fluid and the force of the spring 6A, thereby blocking the second load path B and the discharge path 2. Further, the pilot fluid is transferred from the pilot connection path 27 to the pilot connection path 34, the fifth switching member 31, the pilot connection path 33,
The first fluid flows through the pilot path 3F and is introduced into the fluid chamber 3A.
In the main valve body 3, the pilot fluid in the first action chamber 3B is connected to the pilot path 3J1, the pilot connection path 38A, 21.22, the pilot load path 10B of the pilot valve 10, the pilot discharge path 10R, and the pilot connection path 45.44.42.43.
, because it flows through the pilot discharge channel 7 and is discharged to the low pressure side, it is biased by the acting force based on the pressure of the pilot fluid introduced into the fluid chamber 3A and the force of the spring 3D, and the supply channel P and the first
The load path A is cut off. That is, as shown in FIG. 2, the fourth device X has a first switching function that cuts off the supply path P, the first load path A, the second load path B, and the discharge path R;
Fluid actuator 1 is stopped.

次に一方のパイロット弁9を通電して第2位置9Dに切
換操作すると、パイロット供給路9Pのパイロット流体
がパイロット負荷路9B、パイロット接続路15.30
.39、パイロット路4Jを流れて第1作用室4Bに導
入されると共に、パイロット接続路15よりパイロット
接続路14.13を流れて第1切換部材12のパイロッ
ト操作路12Aに導入されて第1切換部材12はパイロ
ット接続路16をパイロット接続路19に切換連通する
。第2主弁体4は第1作用室4Bに導入のパイロット流
体の圧力に基づく作用力によりばね4D力に抗して流体
室4Aのパイロット流体をパイロット路4F、パイロッ
ト接続路37、第7切換部材36、パイロット接続路3
8、パイロット接続路18、パイロット弁9のパイロッ
ト負荷路9A、パイロット排出路9Rを流して低圧側に
排出しながら第1図左方向に作動して供給路Pと第2負
荷路B間を連通ずる。第3主弁体5は頭部に作用する第
1負荷路Aの圧力に基づく作用力によりばね5D力に抗
して流体室5Aのパイロット流体をパイロット路5F1
パイロット接続路16、第1切換部材12、パイロット
接続路19.20.21.22、パイロット弁10のパ
イロット負荷路10B1パイロット排出路10Rを流し
て低圧側に排出しながら第1図右方向に作動して排出路
Rと第1負荷路A間を連通ずる。すなわち第2図に示す
第1装置Yに切換わり、流体アクチュエータ1は第1図
下方向に作動する。
Next, when one pilot valve 9 is energized and switched to the second position 9D, the pilot fluid in the pilot supply path 9P is transferred to the pilot load path 9B and the pilot connection path 15.30.
.. 39, it flows through the pilot path 4J and is introduced into the first action chamber 4B, and at the same time flows through the pilot connection path 14.13 from the pilot connection path 15 and is introduced into the pilot operation path 12A of the first switching member 12, so that the first switching Element 12 switches pilot connection 16 into pilot connection 19 . The second main valve element 4 switches the pilot fluid in the fluid chamber 4A to the pilot path 4F, the pilot connection path 37, and the seventh switching channel against the force of the spring 4D by the action force based on the pressure of the pilot fluid introduced into the first action chamber 4B. Member 36, pilot connection path 3
8. The pilot connection path 18, the pilot load path 9A of the pilot valve 9, and the pilot discharge path 9R are operated to the left in FIG. 1 while discharging to the low pressure side to connect the supply path P and the second load path B. It goes through. The third main valve body 5 resists the force of the spring 5D by the acting force based on the pressure of the first load path A acting on the head, and moves the pilot fluid in the fluid chamber 5A to the pilot path 5F1.
The pilot connection path 16, the first switching member 12, the pilot connection path 19.20.21.22, the pilot load path 10B1 of the pilot valve 10, and the pilot discharge path 10R operate to the right in FIG. 1 while discharging to the low pressure side. The discharge path R and the first load path A are communicated with each other. That is, the system switches to the first device Y shown in FIG. 2, and the fluid actuator 1 operates in the downward direction in FIG.

次に、パイロット弁9を非通電にして第1図の状態に復
帰したのち他方のパイロット弁10を通電して第2位置
10Dに切換操作すると、パイロット供給路10Pのパ
イロット流体がパイロット負荷路10B1パイロット接
続路22.21.38A、パイロット路3Jを流れて第
1作用室3Bに導入される。また、パイロット接続路2
2を流れるパイロット流体はパイロット接続路24.2
3を流れて第3切換部材13のパイロット操作路13A
に導入されると共に、パイロット接続路24よりパイロ
ット接続路32を流れて第5切換部材31のパイロット
操作路31Aに導入される。第3切換部材13はパイロ
ット接続路25をパイロット接続路28に切換連通し、
第5切換部材31はパイロット接続路33をパイロット
接続路35に切換連通する。第1主弁体3は第1作用室
3Bに導入のパイロット流体の圧力に基づく作用力によ
りばね3D力に抗して流体室3Aのパイロット流体をパ
イロット路3F、パイロット接続路33、第5切換部材
31、パイロット接続路35.29.30.15、パイ
ロット弁9のパイロット負荷路9B、パイロット排出路
9Rを流して低圧側に排出しながら第1図左方向に作動
して供給路Pと第1負荷路A間を連通ずる。第4主弁体
6は頭部に作用する第2負荷路Bの圧力に基づ(作用力
によりばね6D力に抗して流体室6Aのパイロット流体
をパイロット路6F1パイロット接続路25、第3切換
部材13、パイロット接続路28.29.30.15、
パイロット弁9のパイロット負荷路9A、パイロット排
出路9Rを流して低圧側に排出しながら第1図右方向に
作動して排出路Rと第2負荷路B間を連通ずる。すなわ
ち、第2図に示す第2装置Zに切換わり、流体アクチュ
エータ1は第1図上方向に作動する。
Next, when the pilot valve 9 is de-energized to return to the state shown in FIG. 1 and then the other pilot valve 10 is energized and switched to the second position 10D, the pilot fluid in the pilot supply path 10P is transferred to the pilot load path 10B1. It flows through the pilot connection path 22.21.38A and the pilot path 3J and is introduced into the first working chamber 3B. In addition, pilot connection path 2
The pilot fluid flowing through the pilot connection 24.2
3 to the pilot operating path 13A of the third switching member 13.
At the same time, it flows from the pilot connection path 24 through the pilot connection path 32 and is introduced into the pilot operation path 31A of the fifth switching member 31. The third switching member 13 switches and connects the pilot connection path 25 to the pilot connection path 28;
The fifth switching member 31 switches the pilot connection path 33 into communication with the pilot connection path 35 . The first main valve body 3 switches the pilot fluid in the fluid chamber 3A to the pilot path 3F, the pilot connection path 33, and the fifth switching channel against the force of the spring 3D by the action force based on the pressure of the pilot fluid introduced into the first action chamber 3B. The member 31, the pilot connection path 35.29.30.15, the pilot load path 9B of the pilot valve 9, and the pilot discharge path 9R are operated to the left in FIG. One load path A is communicated with the other. Based on the pressure of the second load path B acting on the head, the fourth main valve body 6 transfers the pilot fluid in the fluid chamber 6A against the force of the spring 6D to the pilot path 6F1, the pilot connection path 25, and the third Switching member 13, pilot connection path 28.29.30.15,
While discharging to the low pressure side through the pilot load path 9A and pilot discharge path 9R of the pilot valve 9, it operates rightward in FIG. 1 to establish communication between the discharge path R and the second load path B. That is, the switch is switched to the second device Z shown in FIG. 2, and the fluid actuator 1 operates upward in FIG. 1.

次に、パイロット弁10を非通電にして第1図の状態に
復帰したのち両方のパイロット弁9.10を通電して第
2位置9D、10Dに切換操作すると、パイロット供給
路9Pのパイロット流体がパイロット負荷路9B、パイ
ロット接続路15.30.39、パイロット路4Jを流
れて第1作用室4Bに導入されると共に、パイロット接
続路15を流れるパイロット流体がパイロット接続路1
4.13を流れて第1切換部材12のパイロット操作路
12Aに導入されて第1切換部材12はパイロット接続
路16をパイロット接続路19に切換連通する。また、
パイロット供給路10Pのパイロット流体がパイロット
負荷路10B、パイロット接続路22.21.38A1
パイロツト路3Jを流れて第1作用室3Bに導入され、
さらにパイロット接続路22を流れるパイロット流体が
パイロット接続路24.23を流れて第3切換部材13
のパイロット操作路13Aに導入されて第3切換部材1
3はパイロット接続路25をパイロット接続路28に切
換連通すると共に、パイロット接続路24よりパイロッ
ト接続路32を流れて第5切換部材31のパイロット操
作路31Aに導入されて第5切換部材31はパイロット
接続路33をパイロット接続路35に切換連通する。第
3主弁体5はパイロット流体がパイロット弁10のパイ
ロット負荷路10B1パイロット接続路22.19、第
1切換部材12、パイロット接続路16、パイロット路
5Fを流れて流体室5Aに導入されて排出路Rと第1負
荷路A間を遮断する。第4主弁体6はパイロット流体が
パイロット弁9のパイロット負荷路9B、パイロット接
続路15.30.29.28、第3切換部材13、パイ
ロット接続路25、パイロット路6Fを流れて流体室6
Aに導入されて排出路Rと第2負荷路B間を遮断する。
Next, after de-energizing the pilot valve 10 to return to the state shown in FIG. 1, energizing both pilot valves 9 and 10 and switching them to the second positions 9D and 10D, the pilot fluid in the pilot supply path 9P is The pilot fluid flowing through the pilot load path 9B, the pilot connection path 15, 30, 39, and the pilot path 4J is introduced into the first working chamber 4B, and the pilot fluid flowing through the pilot connection path 15 is introduced into the pilot connection path 1.
4.13 and is introduced into the pilot operation path 12A of the first switching member 12, so that the first switching member 12 switches the pilot connection path 16 into communication with the pilot connection path 19. Also,
The pilot fluid in the pilot supply path 10P is the pilot load path 10B and the pilot connection path 22.21.38A1.
It flows through the pilot path 3J and is introduced into the first action chamber 3B,
Furthermore, the pilot fluid flowing through the pilot connection path 22 flows through the pilot connection path 24.23 and the third switching member 13
is introduced into the pilot operating path 13A of the third switching member 1.
3 switches the pilot connection path 25 to the pilot connection path 28 and flows through the pilot connection path 32 from the pilot connection path 24 and is introduced into the pilot operation path 31A of the fifth switching member 31, so that the fifth switching member 31 is connected to the pilot connection path 28. The connection path 33 is switched and communicated with the pilot connection path 35. In the third main valve body 5, the pilot fluid flows through the pilot load path 10B1 of the pilot valve 10, the pilot connection path 22.19, the first switching member 12, the pilot connection path 16, and the pilot path 5F, is introduced into the fluid chamber 5A, and is discharged. The road R and the first load road A are cut off. The fourth main valve element 6 has pilot fluid flowing through the pilot load path 9B of the pilot valve 9, the pilot connection path 15, 30, 29, 28, the third switching member 13, the pilot connection path 25, and the pilot path 6F.
A is introduced to cut off the discharge path R and the second load path B.

第2主弁体4は第2作用室4Bに導入のパイロット流体
の圧力に基づく作用力によりばね4D力に抗して流体室
4Aのパイロット流体をパイロット路4F、パイロット
接続路37、第7切換部材36、パイロット接続路38
.18、パイロット弁9のパイロット負荷路9A、パイ
ロット排出路9Rを流して低圧側に導出しながら第1図
左方向に作動して供給路Pと第2負荷路B間を連通ずる
The second main valve body 4 switches the pilot fluid in the fluid chamber 4A to the pilot path 4F, the pilot connection path 37, and the seventh switching channel against the force of the spring 4D by the action force based on the pressure of the pilot fluid introduced into the second action chamber 4B. Member 36, pilot connection path 38
.. 18. While flowing through the pilot load path 9A and pilot discharge path 9R of the pilot valve 9 and leading it to the low pressure side, it operates to the left in FIG. 1 to establish communication between the supply path P and the second load path B.

供給路Pの圧力流体は第2負荷路Bを流れて流体アクチ
ュエータ1のヘッド室IBに導入され流体アクチュエー
タ1はヘッド室IBへの圧力流体の導入によりロッド室
IAの圧力が上昇する。第1主弁体3は流体アクチュエ
ータ10ロツド室IAより第1負荷路Aを流れて第2作
用室3Cに導入される流体の圧力に基づく作用力と第1
作用室3Bに導入のパイロット流体の圧力に基づ(作用
力との和がばね3D力と流体室3Aに導入のパイロット
流体の圧力に基づく作用力との和を上回ると第1図左方
向に作動して供給路Pと第1負荷路A間を連通ずる。流
体アクチュエータ1のロッド室1Aの流体は第1負荷路
A、供給路P、第2負荷路Bを流れてヘッド室IBに導
入されて差動回路が構成され、さらに第1主弁体3によ
りカウンタバランス機能が得られ、流体アクチュエータ
は第1図下方向に高速作動する。すなわち、第2図に示
す第3装置Wに切換わる。
The pressure fluid in the supply path P flows through the second load path B and is introduced into the head chamber IB of the fluid actuator 1, and the pressure in the rod chamber IA of the fluid actuator 1 increases due to the introduction of the pressure fluid into the head chamber IB. The first main valve body 3 receives an acting force based on the pressure of the fluid that flows from the rod chamber IA of the fluid actuator 10 through the first load path A and is introduced into the second action chamber 3C.
Based on the pressure of the pilot fluid introduced into the action chamber 3B (if the sum of the action force exceeds the sum of the spring 3D force and the action force based on the pressure of the pilot fluid introduced into the fluid chamber 3A, the force will move to the left in Figure 1). The actuator operates to establish communication between the supply path P and the first load path A.The fluid in the rod chamber 1A of the fluid actuator 1 flows through the first load path A, the supply path P, and the second load path B and is introduced into the head chamber IB. A differential circuit is constructed, and a counterbalance function is obtained by the first main valve body 3, and the fluid actuator operates at high speed in the downward direction in FIG. Change.

第3図は第1図に示す第1切換部材12を第2切換部材
46に、また第3切換部材13を第4切換部材47にそ
れぞれ変更して取付けしたものを示し、第2切換部材4
6は第3主弁体5の流体室5Aに接続のパイロット路5
Fに接続するパイロット接続路16をパイロット接続路
19.20.21.22を介してパイロット弁10のパ
イロット負荷路10Bに接続するものであり、第4切換
部材47は第4主弁体6の流体室6Aに接続のパイロッ
ト路6Fに接続するパイロット接続路25をパイロット
接続路28.29.30.15を介してパイロット弁9
のパイロット負荷路9Bに接続するものであり、第2切
換部材46と第4切換部材47は同様の内部構造となっ
ている。そして、かかる構成によれば、パイロット弁9
.10が非通電の状態でともに第1位置9C,IOCに
ある第4装置Xでは第4図に示す如き、供給路Pを遮断
し第1負荷路Aと第2負荷路Bと排出路R間を連通ずる
第2切換機能となる。
FIG. 3 shows a structure in which the first switching member 12 shown in FIG. 1 is replaced with a second switching member 46, and the third switching member 13 is replaced with a fourth switching member 47.
6 is a pilot path 5 connected to the fluid chamber 5A of the third main valve body 5
The pilot connection path 16 connected to F is connected to the pilot load path 10B of the pilot valve 10 via the pilot connection path 19. The pilot connection path 25 connected to the pilot path 6F connected to the fluid chamber 6A is connected to the pilot valve 9 via the pilot connection path 28, 29, 30, 15.
The second switching member 46 and the fourth switching member 47 have the same internal structure. According to this configuration, the pilot valve 9
.. 10 is in a de-energized state, and the fourth device This is the second switching function that communicates.

第5図は第1図に示す第1切換部材12を変更せず第1
図に示す第3切換部材13を第3図に示す第4切換部材
47に変更して取付けしたものを示し、第4装置Xでは
第6図に示す如き、供給路Pおよび第1負荷路Aを遮断
し排出路Rと第2負荷路B間を連通ずる第3切換機能と
なる。
FIG. 5 shows the first switching member 12 without changing the first switching member 12 shown in FIG. 1.
The third switching member 13 shown in the figure is replaced with the fourth switching member 47 shown in FIG. 3 and the fourth switching member 47 shown in FIG. This is a third switching function that disconnects the discharge path R and establishes communication between the discharge path R and the second load path B.

第7図は第1図に示す第3切換部材13を変更せず第1
図に示す第1切換部材12を第3図に示す第2切換部材
46に変更して取付けたものを示し、第4装置Xでは第
8図に示す如き、供給路Pおよび第2負荷路Bを遮断し
排出路Rと第1負荷路A間を連通ずる第4切換機能とな
る。
FIG. 7 shows the first switch without changing the third switching member 13 shown in FIG.
The first switching member 12 shown in the figure is replaced with the second switching member 46 shown in FIG. 3, and in the fourth device This is a fourth switching function that disconnects the discharge path R and communicates the first load path A with each other.

かかる作動で、第4装置Xでの切換機能を変更できるか
ら、広範囲の用途に対応することができる。また、流路
形成部材11に選択取付けする各切換部材は小型にして
取扱い易くできるから、管理も容易で方向制御弁装置の
設置後も変更取付けを容易に行える効果を有する。
With this operation, the switching function of the fourth device X can be changed, so that it can be used in a wide range of applications. Moreover, since each switching member selectively attached to the flow path forming member 11 can be made small and easy to handle, it has the effect that management is easy and changes and attachments can be easily made even after the directional control valve device is installed.

尚、一実施例では、第5切換部材31と第7切換部材3
6は流路形成部材11に変更自在に選択取付けしたが、
かかる各切換部材を流路形成部材11に固設するように
しても良い。
In addition, in one embodiment, the fifth switching member 31 and the seventh switching member 3
6 is selectively attached to the flow path forming member 11 in a changeable manner.
Each of these switching members may be fixed to the flow path forming member 11.

第9図は本発明の他の実施例を示したもので、第1図に
示す第5切換部材31を第6切換部材48に変更取付け
し、第1主弁体49を第2主弁体4と同様の形状に設け
、第6切換部材48は第1主弁体49の流体室3Aに接
続のパイロット路3Fに接続するパイロット接続路33
をパイロット接続路34.27を介してパイロット弁1
0のパイ〈 ベット負荷路!OAに接続するものであり、かる構成に
よれば、パイロット弁9.10をともに通電して第2位
置9D、IODに切換操作し主弁2を第3位置に切換え
して差動回路が構成された際の第1主弁体49によるカ
ウンタバランス機能を有しなくしている。
FIG. 9 shows another embodiment of the present invention, in which the fifth switching member 31 shown in FIG. 1 is replaced with a sixth switching member 48, and the first main valve body 49 is replaced with the second main valve body. 4, and the sixth switching member 48 is connected to the pilot connection path 33 connected to the pilot path 3F connected to the fluid chamber 3A of the first main valve body 49.
pilot valve 1 via pilot connection 34.27
0 pie〈 Bet load path! According to this configuration, the pilot valves 9 and 10 are both energized and switched to the second position 9D and IOD, and the main valve 2 is switched to the third position to form a differential circuit. The first main valve body 49 does not have a counterbalance function when the valve is closed.

第10図は本発明のさらに他の実施例を示したもので、
第1図に示す第5切換部材31を第9図に示す第6切換
部材48に、また第1図に示す第7切換部材36を第8
切換部材50にそれぞれ変更取付けし、第1主弁体51
を第1図に示す第2主弁体4と同様の形状に設け、また
第2主弁体52を第1図に示す第1主弁体3と同様の形
状に設け、第8切換部材50はパイロット弁9の第1位
置9Cで第2主弁体52の流体室4Aに接続のパイロッ
ト路4Fに接続するパイロット接続路37をパイロット
接続路38.18を介してパイロット弁9のパイロ・ッ
ト負荷路9Aに切換連通すると共に、パイロット弁9の
第2位置9Dでパイロット接続路37をパイロット接続
路53.20.21.22を介してパイロット弁10の
パイロット負荷路10Bに切換連通するようパイロット
操作路50Aをパイロット接続路54.14.15を介
してパイロット弁9のパイロット負荷路9Bに接続して
いる。そして、かかる構成によれば、主弁2を第3位置
に切換えして差動回路が構成された際に、第2主弁体5
2によりカウンタバランス機能が得られる。
FIG. 10 shows still another embodiment of the present invention,
The fifth switching member 31 shown in FIG. 1 is replaced with the sixth switching member 48 shown in FIG. 9, and the seventh switching member 36 shown in FIG.
The switching member 50 is modified and attached to the first main valve body 51.
is provided in the same shape as the second main valve body 4 shown in FIG. 1, the second main valve body 52 is provided in the same shape as the first main valve body 3 shown in FIG. At the first position 9C of the pilot valve 9, the pilot connection passage 37, which connects to the pilot passage 4F connected to the fluid chamber 4A of the second main valve body 52, is connected to the pilot valve 9 through the pilot connection passage 38.18. At the same time, at the second position 9D of the pilot valve 9, the pilot connection path 37 is switched into communication with the pilot load path 10B of the pilot valve 10 via the pilot connection path 53.20.21.22. The pilot operating channel 50A is connected to the pilot load channel 9B of the pilot valve 9 via a pilot connection channel 54.14.15. According to this configuration, when the main valve 2 is switched to the third position and a differential circuit is configured, the second main valve body 5
2 provides a counterbalance function.

第11図は本発明のさらにまt:他の実施例を示したも
ので、第1主弁体55、第2主弁体56を第1図に示す
第3主弁体5、第4主弁体6と同様の形状に設け、供給
路Pの圧力流体が第1主弁体55、第2主弁体560頭
部に作用するようにしている。この場合、パイロット路
3J、4Jは不要となるのでパイロット接続路38A1
39への接続個所で閉塞するようにしている。そして、
かかる構成によれば第1図に示したものと同様に主弁の
第4位置で4つの切換機能を変更自在に得ることができ
る。
FIG. 11 shows another embodiment of the present invention, in which the first main valve body 55 and the second main valve body 56 are replaced by the third main valve body 5 and the fourth main valve body shown in FIG. It is provided in the same shape as the valve body 6, so that the pressure fluid of the supply path P acts on the head of the first main valve body 55 and the second main valve body 560. In this case, the pilot paths 3J and 4J are unnecessary, so the pilot connection path 38A1
The connection point to No. 39 is closed. and,
With this configuration, four switching functions can be freely changed at the fourth position of the main valve, similar to that shown in FIG.

〔発明の効果〕〔Effect of the invention〕

このように、本発明は、圧力流体を供給する供給路と流
体アクチュエータに接続する第1負荷路間を連通遮断す
る第1主弁体、供給路と流体アクチュエータに接続する
第2負荷路間を連通遮断する第2主弁体、第1負荷路と
低圧側に接続する排出路間を連通遮断する第3主弁体、
第2負荷路と排出路間を連通遮断する第4主弁体を備え
た主弁と、4個の主弁体の背部に形成した流体室にパイ
ロット流体を導入したり流体室のパイロット流体を低圧
側へ排出したりするようパイロット供給路と一方のパイ
ロット負荷路間を連通ずると共にパイロット排出路と他
方のパイロット負荷路間を連通ずる第1位置およびパイ
ロット供給路と他方のパイロット負荷路間を連通ずると
共にパイロット排出路と一方のパイロット負荷路間を連
通ずる第2位置を切換操作自在に有した2個のパイロッ
ト弁と、主弁と2個のパイロット弁間に介在して設け4
個の主弁体背部の流体室と2個のパイロット弁の各パイ
ロット負荷路間を接続する複数のパイロット接続路を形
成した流路形成部材とを具備し、流路形成部材は内部に
形成のパイロット接続路をパイロット弁の一方を第1位
置に他方を第2位置に切換操作することで主弁が供給路
と第2負荷路間を連通すると共に排出路と第1負荷路間
を連通ずる第1位置に、パイロット弁の一方を第2位置
に他方を第1位置に切換操作することで主弁が供給路と
第1負荷路間を連通ずると共に排出路と第2負荷路間を
連通ずる第2位置に、両パイロット弁をともに第2位置
に切換操作することで主弁が排出路を遮断すると共に供
給路と第1負荷路と第2負荷路間を連通可能とする流体
アクチュエータの差動回路を構成する第3位置に、両パ
イロット弁をともに第1位置に切換操作することで主弁
が第4位置にそれぞれ切換するよう設け、流路形成部材
には一方のパイロット弁の第1位置と第2位置との切換
操作に応じて第3主弁体背部の流体室に接続のパイロッ
ト接続路を一方のパイロット弁の一方のパイロット負荷
路と他方のパイロット弁の他方のパイロット負荷路とに
切換連通する第1切換部材と、第3主弁体背部の流体室
に接続のパイロット接続路を他方のパイロット弁の他方
のパイロット負荷路に接続する第2切換部材とを変更自
在に選択して取付けると共に、他方のパイロット弁の第
1位置と第2位置との切換操作に応じて第4主弁体背部
の流体室に接続のパイロット接続路を他方のパイロット
弁の一方のパイロット負・荷路と一方のパイロット弁の
他方のパイロット負荷路とに切換連通する第3切換部材
と、第4主弁背部の流体室に接続のパイロット接続路を
一方のパイロット弁の他方のパイロット負荷路に接続す
る第4切換部材とを変更自在に選択して取付けして設け
、流路形成部材への各切換部材の選択取付けにより主弁
の第4位置を複数の切換機能に変更自在に有したことに
より、用途に応じて主弁の第4位置での切換機能を変更
できて広範囲の用途に対応することができる。
As described above, the present invention provides a first main valve body that cuts off communication between a supply path that supplies pressure fluid and a first load path that connects to a fluid actuator, and a first main valve body that disconnects communication between a supply path that supplies pressure fluid and a first load path that connects to a fluid actuator; a second main valve body that blocks communication; a third main valve body that blocks communication between the first load path and the discharge path connected to the low pressure side;
A main valve equipped with a fourth main valve body that disconnects communication between the second load path and the discharge path, and a main valve that introduces pilot fluid into the fluid chambers formed at the back of the four main valve bodies, or controls the pilot fluid in the fluid chamber. A first position that communicates between the pilot supply path and one pilot load path and communicates between the pilot discharge path and the other pilot load path so as to discharge to the low pressure side, and a first position that communicates between the pilot supply path and the other pilot load path. two pilot valves having a second position which can be freely switched and communicated with each other and which communicates between the pilot discharge passage and one of the pilot load passages;
The flow path forming member is provided with a fluid chamber on the back of the main valve body and a flow path forming member in which a plurality of pilot connection paths are formed to connect between each pilot load path of the two pilot valves. By switching the pilot connection path so that one of the pilot valves is in the first position and the other is in the second position, the main valve communicates between the supply path and the second load path, and also communicates between the discharge path and the first load path. By switching one of the pilot valves to the first position, one of the pilot valves to the second position, and the other to the first position, the main valve communicates between the supply path and the first load path, and also connects the discharge path and the second load path. The fluid actuator is configured to switch both pilot valves to the second position so that the main valve blocks the discharge path and enables communication between the supply path, the first load path, and the second load path. A third position constituting the differential circuit is provided so that when both pilot valves are switched to the first position, the main valve is switched to the fourth position. Depending on the switching operation between the 1st position and the 2nd position, the pilot connection path connected to the fluid chamber on the back of the third main valve body is connected to one pilot load path of one pilot valve and the other pilot load path of the other pilot valve. and a second switching member that connects the pilot connection path connected to the fluid chamber on the back of the third main valve body to the other pilot load path of the other pilot valve. At the same time, when the other pilot valve is switched between the first position and the second position, the pilot connecting path connected to the fluid chamber on the back of the fourth main valve body is connected to the negative or negative side of one of the pilot valves of the other pilot valve. A third switching member that switches between the load passage and the other pilot load passage of one pilot valve, and a pilot connection passage connected to the fluid chamber at the back of the fourth main valve to the other pilot load passage of one pilot valve. The fourth switching member to be connected can be freely selected and attached, and the fourth position of the main valve can be changed to a plurality of switching functions by selectively attaching each switching member to the flow path forming member. Therefore, the switching function at the fourth position of the main valve can be changed depending on the application, and it is possible to correspond to a wide range of applications.

また、流路形成部材に選択取付けする各切換部材は小型
に1で取扱い易(できるから、管理も容易で方向制御弁
装置の設置後も変更取付けを容易に行える効果を有する
In addition, each switching member selectively attached to the flow path forming member is small and easy to handle (as a single unit), so management is easy and changes and attachments can be easily made even after the directional control valve device is installed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第8図は本発明の一実施例を示すもので、
第1図は方向制御弁装置の一部断面で示す回路図、第2
図は第1図の方向制御弁装置における切換機能を示すシ
ンボル図、第3図、第5図、第7図はそれぞれ第1図と
第4位置で異なる切換機能を有する方向制御弁装置の一
部断面で示す回路図、第4図、第6図、第8図はそれぞ
れ第3図、第5図、第7図の方向制御弁装置における切
換機能を示すシンボル図、第9図は本発明の他の実施例
を示す方向制御弁装置の一部断面で示す回路図、第10
図は本発明のさらに他の実施例を示す方向制御弁装置の
一部断面で示す回路図、第11図は本発明のさらにまた
他の実施例を示す方向制御弁装置の一部断面で示す回路
図である。 1−−一流体アクチュエータ、2−m−主弁、3−一一
第1主弁体、4−m−第2主弁体、5−−一第3主弁体
、6一−−第4主弁体、9.10−一一パイロット弁、
11−m−流路形成部材、12−m−第1切換部材、1
3−m−第3切換部材、46一−−第2切換部材、47
一−−第4切換部材、P−m−供給路、A−−一第1負
荷路、B−−一第2負荷路、R−−一排出路。
1 to 8 show an embodiment of the present invention,
Figure 1 is a partial cross-sectional circuit diagram of the directional control valve device;
The figure is a symbol diagram showing the switching function in the directional control valve device shown in FIG. 1, and FIGS. 4, 6, and 8 are symbol diagrams showing switching functions in the directional control valve devices shown in FIGS. 3, 5, and 7, respectively, and FIG. 9 is a circuit diagram showing the present invention in cross section. A circuit diagram showing a partial cross section of a directional control valve device showing another embodiment, No. 10
The figure is a partial cross-sectional circuit diagram of a directional control valve device showing still another embodiment of the present invention, and FIG. 11 is a partially cross-sectional circuit diagram of a directional control valve device showing still another embodiment of the present invention. It is a circuit diagram. 1--solid fluid actuator, 2-m-main valve, 3-11 first main valve body, 4-m-2nd main valve body, 5--1 third main valve body, 61--4th Main valve body, 9.10-11 pilot valve,
11-m-flow path forming member, 12-m-first switching member, 1
3-m--third switching member, 46---second switching member, 47
1--4th switching member, P-m-supply path, A--1 first load path, B--1 second load path, R--1 discharge path.

Claims (1)

【特許請求の範囲】[Claims]  圧力流体を供給する供給路と流体アクチュエータに接
続する第1負荷路間を連通遮断する第1主弁体、供給路
と流体アクチュエータに接続する第2負荷路間を連通遮
断する第2主弁体、第1負荷路と低圧側に接続する排出
路間を連通遮断する第3主弁体、第2負荷路と排出路間
を連通遮断する第4主弁体を備えた主弁と、4個の主弁
体の背部に形成した流体室にパイロット流体を導入した
り流体室のパイロット流体を低圧側へ排出したりするよ
うパイロット供給路と一方のパイロット負荷路間を連通
すると共にパイロット排出路と他方のパイロット負荷路
間を連通する第1位置およびパイロット供給路と他方の
パイロット負荷路間を連通すると共にパイロット排出路
と一方のパイロット負荷路間を連通する第2位置を切換
操作自在に有した2個のパイロット弁と、主弁と2個の
パイロット弁間に介在して設け4個の主弁体背部の流体
室と2個のパイロット弁の各パイロット負荷路間を接続
する複数のパイロット接続路を形成した流路形成部材と
を具備し、流路形成部材は内部に形成のパイロット接続
路を、パイロット弁の一方を第1位置に他方を第2位置
に切換操作することで主弁が供給路と第2負荷路間を連
通すると共に排出路と第1負荷路間を連通する第1位置
に、パイロット弁の一方を第2位置に他方を第1位置に
切換操作することで主弁が供給路と第1負荷路間を連通
すると共に排出路と第2負荷路間を連通する第2位置に
、両パイロット弁をともに第2位置に切換操作すること
で主弁が排出路を遮断すると共に供給路と第1負荷路と
第2負荷路間を連通可能とする流体アクチュエータの差
動回路を構成する第3位置に、両パイロット弁をともに
第1位置に切換操作することで主弁が第4位置にそれぞ
れ切換するよう設け、流路形成部材には一方のパイロッ
ト弁の第1位置と第2位置との切換操作に応じて第3主
弁体背部の流体室に接続のパイロット接続路を一方のパ
イロット弁の一方のパイロット負荷路と他方のパイロッ
ト弁の他方のパイロット負荷路とに切換連通する第1切
換部材と、第3主弁体背部の流体室に接続のパイロット
接続路を他方のパイロット弁の他方のパイロット負荷路
に接続する第2切換部材とを変更自在に選択して取付け
ると共に、他方のパイロット弁の第1位置と第2位置と
の切換操作に応じて第4主弁体背部の流体室に接続のパ
イロット接続路を他方のパイロット弁の一方のパイロッ
ト負荷路と一方のパイロット弁の他方のパイロット負荷
路とに切換連通する第3切換部材と、第4主弁体背部の
流体室に接続のパイロット接続路を一方のパイロット弁
の他方のパイロット負荷路に接続する第4切換部材とを
変更自在に選択して取付けして設け、流路形成部材への
各切換部材の選択取付けにより主弁の第4位置を複数の
切換機能に変更自在に有したことを特徴とする方向制御
弁装置。
A first main valve body that disconnects communication between a supply path that supplies pressure fluid and a first load path that connects to the fluid actuator; and a second main valve body that disconnects communication between the supply path and a second load path that connects to the fluid actuator. , a main valve including a third main valve body that disconnects communication between the first load path and the discharge path connected to the low pressure side, and a fourth main valve body that disconnects communication between the second load path and the discharge path; The pilot supply path and one pilot load path communicate with each other so as to introduce pilot fluid into the fluid chamber formed at the back of the main valve body, and to discharge the pilot fluid in the fluid chamber to the low pressure side. It has a first position that communicates between the other pilot load path and a second position that communicates between the pilot supply path and the other pilot load path and communicates between the pilot discharge path and one pilot load path, which can be freely switched. Two pilot valves, and a plurality of pilot connections that are interposed between the main valve and the two pilot valves and connect between the fluid chambers on the backs of the four main valve bodies and each pilot load path of the two pilot valves. The flow path forming member has a pilot connection path formed inside the main valve by switching one of the pilot valves to a first position and the other to a second position. By switching one of the pilot valves to the second position and the other to the first position, the main valve is placed in the first position, which communicates between the supply path and the second load path, and also communicates between the discharge path and the first load path. is in the second position, which communicates between the supply path and the first load path, and also communicates between the discharge path and the second load path, and by switching both pilot valves to the second position, the main valve shuts off the discharge path. At the same time, by switching both the pilot valves to the first position, the main valve are provided to switch to the fourth position, respectively, and the flow path forming member has a pilot connection connected to the fluid chamber on the back of the third main valve body in response to switching operation between the first position and the second position of one pilot valve. a first switching member that switches the passage between one pilot load passage of one pilot valve and the other pilot load passage of the other pilot valve; and a pilot connection passage connected to the fluid chamber on the back of the third main valve body. The second switching member connected to the other pilot load path of the other pilot valve is changeably selected and installed, and the fourth switching member is connected to the other pilot load path in accordance with the switching operation between the first position and the second position of the other pilot valve. a third switching member that switches a pilot connection path connected to the fluid chamber on the back of the valve body to one pilot load path of the other pilot valve and the other pilot load path of the one pilot valve; and a fourth main valve body. A pilot connection path connected to the fluid chamber at the back and a fourth switching member connecting the other pilot load path of one pilot valve are freely selected and installed, and each switching member to the flow path forming member is provided. A directional control valve device characterized in that the fourth position of the main valve can be freely changed to a plurality of switching functions by selective attachment of the directional control valve device.
JP2202227A 1990-07-30 1990-07-30 Direction control valve device Expired - Fee Related JP3016576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2202227A JP3016576B2 (en) 1990-07-30 1990-07-30 Direction control valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2202227A JP3016576B2 (en) 1990-07-30 1990-07-30 Direction control valve device

Publications (2)

Publication Number Publication Date
JPH0488202A true JPH0488202A (en) 1992-03-23
JP3016576B2 JP3016576B2 (en) 2000-03-06

Family

ID=16454068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2202227A Expired - Fee Related JP3016576B2 (en) 1990-07-30 1990-07-30 Direction control valve device

Country Status (1)

Country Link
JP (1) JP3016576B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504990A (en) * 2007-11-28 2011-02-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Valve assembly
DE102018207929A1 (en) * 2018-05-18 2019-11-21 Hydac Systems & Services Gmbh Valve
US11199272B2 (en) 2018-05-18 2021-12-14 Hydac Systems & Services Gmbh Control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504990A (en) * 2007-11-28 2011-02-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Valve assembly
DE102018207929A1 (en) * 2018-05-18 2019-11-21 Hydac Systems & Services Gmbh Valve
US11199272B2 (en) 2018-05-18 2021-12-14 Hydac Systems & Services Gmbh Control device
US11378192B2 (en) 2018-05-18 2022-07-05 Hydac Systems & Services Gmbh Valve

Also Published As

Publication number Publication date
JP3016576B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
KR100234605B1 (en) Hydraulic control system having poppet and spool type valves
CN100549431C (en) Fluid pressure valve device
JPH01133503U (en)
JPH06505081A (en) Load sensing hydraulic control system
JPH0488202A (en) Directional control valve device
JPH02248702A (en) Hydraulic pressure valve with pressure compensation
JPH0755031A (en) Directional control valve for flow rate assistance
JPH0266305A (en) Pressure oil supply device for working machine cylinder
JPH07166890A (en) Multiple valve
JP3741244B2 (en) Hydraulic circuit for construction machinery
JP4578207B2 (en) Valve device
JPH0442563Y2 (en)
JPH0239042Y2 (en)
JPH0425524Y2 (en)
JP2565992Y2 (en) Fluid pressure actuator with flow controller
JPS58180877A (en) Directional control valve gear
JPH023926Y2 (en)
JPH0341685B2 (en)
JPH0122962Y2 (en)
JPS62127583A (en) Diaphragm type pilot operational direction selector valve
JPS6188008A (en) Hydraulic control device
JP3373923B2 (en) Composite solenoid switching valve
JP2652791B2 (en) Flow control device
JP2531933Y2 (en) Valve device
JP2544804Y2 (en) Direction control valve device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees