JPH0487882A - Distribution of driving power to front and rear wheel and composite control device for auxiliary steering angle - Google Patents

Distribution of driving power to front and rear wheel and composite control device for auxiliary steering angle

Info

Publication number
JPH0487882A
JPH0487882A JP20308290A JP20308290A JPH0487882A JP H0487882 A JPH0487882 A JP H0487882A JP 20308290 A JP20308290 A JP 20308290A JP 20308290 A JP20308290 A JP 20308290A JP H0487882 A JPH0487882 A JP H0487882A
Authority
JP
Japan
Prior art keywords
steering angle
inner wheel
wheel
auxiliary steering
force distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20308290A
Other languages
Japanese (ja)
Inventor
Toshihiro Yamamura
智弘 山村
Fukashi Sugasawa
菅沢 深
Masatsugu Yokote
正継 横手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP20308290A priority Critical patent/JPH0487882A/en
Publication of JPH0487882A publication Critical patent/JPH0487882A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the most suitable steering characteristics and to control the idle running of an inner wheel by distinguishing a change caused by the idle running of the inner wheel in the distribution of driving power from a changed caused by the variation of the friction u of a road surface in the distribution of the driving power, and correctively controlling an auxiliary steering angle according to the idle running quantity of the inner wheel at the time, when the idle running of the inner wheel occurs, of turning at highly increasing acceleration. CONSTITUTION:A control device (a) for distributing front and rear wheel driving power controls the driving power so that it may be distributed to front and rear wheels according to a difference in the rotating speeds of the front and rear wheels. An auxiliary steering angle control device (b) controls the steering angle of at least either of the front and the rear wheel at the time of steering the front wheel. In addition to that, an inner wheel idle running detecting means (c) detects the idle running quantity of the inner wheel or its equivalent quantity of the front and rear wheels at the time of turning. A corrective control means (d) for an auxiliary steering angle controls the auxiliary steering angle so that, in the case of the large detected quantity of the inner wheel idle running of the front wheel, the auxiliary steering angle may be corrected according to the idle running quantity of the inner wheel so as to reduce the lateral slip angle of a body, and in the case of the large detected quantity of the inner wheel idle running of the rear wheel, the auxiliary steering angle may be corrected according to the idle running quantity of the inner wheel so as to increase the lateral slip angle of the body.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、前後輪駆動力配分制御装置と補助舵角制御装
置とが同時に搭載された車両の前後輪駆動力配分と補助
舵角の総合制御装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a method for integrating front and rear wheel drive force distribution and auxiliary steering angle of a vehicle in which a front and rear wheel drive force distribution control device and an auxiliary steering angle control device are simultaneously installed. Regarding a control device.

(従来の技術) 従来、前後輪駆動力配分と補助舵角の総合制御装置とし
ては、例えば、特開昭62−120276号公報に記載
の装置が知られている。
(Prior Art) Conventionally, as a comprehensive control device for front and rear wheel drive force distribution and auxiliary steering angle, a device described in, for example, Japanese Patent Application Laid-open No. 120276/1983 is known.

この従来出典には、駆動力配分割合にかかわらずステア
特性を最適にすることを狙いとし、前後輪の回転数を見
て駆動力配分割合を算出し、それに応じて前後輪舵角比
を補正する装置が示されている。
This conventional source aims to optimize steering characteristics regardless of the driving force distribution ratio, calculates the driving force distribution ratio by looking at the rotation speed of the front and rear wheels, and corrects the front and rear wheel steering angle ratio accordingly. A device is shown.

(発明が解決しようとする課題) しかしながら、上記従来装置にあっては、下記に述べる
ような問題が生じる。
(Problems to be Solved by the Invention) However, the above-mentioned conventional device has the following problems.

■ 内輪空転が発生するような高横加速度旋回走行時に
は、車両のステア特性を最適に制御する様考慮されてい
ない。
■ No consideration has been given to optimally controlling the vehicle's steering characteristics when turning at high lateral accelerations, where inner wheel slip occurs.

即ち、内輪空転によるステア特性の変化代は、駆動力配
分の変化による分だけではなく、内輪が空転することに
よってその車輪に発生する駆動力が減少し、LSD効果
によるオーバステアモーメント(以下、LSDモーメン
ト)が減少する分も含まれるのに対し、LSDモーメン
ト減少分が全く考慮されていない。
In other words, the amount of change in steering characteristics due to inner wheel slipping is not only due to the change in driving force distribution, but also due to the reduction of the driving force generated in the wheel due to the inner wheel slipping, and the oversteer moment (hereinafter referred to as LSD moment) due to the LSD effect. ) is also included, whereas the LSD moment decrease is not taken into account at all.

例えば、高横加速度旋回時に後内輪が空転した場合、後
輪駆動力が減少することによるLSDモーメント減少分
によるアンダーステア成分は残ってしまう(第13図)
For example, if the rear inner wheels spin during a turn with high lateral acceleration, the understeer component due to the decrease in LSD moment due to the decrease in rear wheel drive force will remain (Figure 13).
.

同様に、高横加速度旋回時に前内輪が空転した場合、前
輪駆動力が減少することによるLSDモーメント減少分
によるアンダーステア成分は残ってしまう。
Similarly, if the front inner wheels idle during a turn with high lateral acceleration, an understeer component due to the decrease in LSD moment due to the decrease in front wheel drive force remains.

■ 路面μ変化等で内輪が空転を原因としないで前輪駆
動力配分割合が高くなった場合、旋回安定性が低下する 即ち、前輪駆動力配分割合が増加するに従って前後輪舵
角比を逆相側に補正することでステア特性を一定にする
ように制御特性を設定すると、雪道や凍結路等の低μ路
で前輪駆動力配分が大きくなるような状況では補正され
過ぎて旋回安定性が十分確保できない。
■ If the front wheel drive force distribution ratio increases due to a change in the road surface μ, etc. without the inner wheels idling, turning stability will decrease.In other words, as the front wheel drive force distribution ratio increases, the front and rear wheel steering angle ratios will be reversed. If the control characteristics are set to keep the steering characteristics constant by correcting to the side, in situations where the front wheel drive force distribution becomes large on low μ roads such as snowy roads or frozen roads, the steering characteristics will be overcorrected and the turning stability will deteriorate. We cannot secure enough.

つまり、低μ路走行時等の内輪空転が起きない場合には
、第14図に示すように、前輪駆動力配分が高い側では
同相側に補正して安定性を得るのが理想的な制御である
In other words, if the inner wheels do not spin when driving on a low μ road, as shown in Figure 14, the ideal control would be to correct the front wheels to the same phase side on the side where the front wheel drive force distribution is high to obtain stability. It is.

そこで、従来制御で、理想的なラインに沿って補助舵角
の補正制御を行なうようにした場合には、内輪空転によ
り前輪駆動力配分が大きくなってしまった時に低μ路で
ないにもかかわらず同相側の補正が加わることで、ステ
ア特性が強アンダーステアとなってしまうし、内輪空転
を抑制することができない。
Therefore, when using conventional control to correct the auxiliary steering angle along the ideal line, when the front wheel drive force distribution becomes large due to inner wheel slipping, even if the road is not low μ, By adding correction on the in-phase side, the steering characteristic becomes strong understeer, and it is not possible to suppress the inner wheel slip.

本発明は、上述のような問題に着目してなされたもので
、前後輪駆動力配分制御装置と補助舵角制御装置とが同
時に搭載された車両の前後輪駆動力配分と補助舵角の総
合制御装置において、内輪空転を原因として駆動力配分
が変化する高横加速度旋回時に最適なステア特性を得る
と共に内輪空転を抑制することを課題とする。
The present invention has been made by focusing on the above-mentioned problems, and is aimed at improving the overall balance between front and rear wheel drive force distribution and auxiliary steering angle of a vehicle in which a front and rear wheel drive force distribution control device and an auxiliary steering angle control device are installed simultaneously. An object of the present invention is to obtain optimal steering characteristics in a control device during high lateral acceleration turns where driving force distribution changes due to inner wheel slipping, and to suppress inner wheel slipping.

(課題を解決するための手段) 上記課題を解決するために本発明の前後輪駆動力配分と
補助舵角の総合制御装置では、内輪空転による駆動力配
分変化を路面μ等の変化による駆動力配分の変化とは区
別し、内輪空転が発生する高横加速度旋回時には内輪空
転量に応じて補助舵角を補正制御する手段とした。
(Means for Solving the Problems) In order to solve the above problems, in the comprehensive control device for front and rear wheel drive force distribution and auxiliary steering angle of the present invention, changes in drive force distribution due to inner wheel slipping are replaced by changes in drive force due to changes in road surface μ, etc. Distinguishing this from changes in distribution, the system corrects and controls the auxiliary steering angle according to the amount of inner wheel slip during high lateral acceleration turns where inner wheel slip occurs.

即ち、第1図のクレーム対応図に示すように、前後輪回
転速度差に応じて前後輪に駆動力を配分する前後輪駆動
力配分制御装置aと、前輪または後輪の少なくとも一方
の舵角を前輪操舵時に制御する補助舵角制御装置すと、
旋回時に前後輪の内輪空転量もしくは内輪空転相当量を
検出する内輪空転検出手段Cと、前輪の内輪空転検出量
が大きい時には車体横滑り角を減少させる方向に内輪空
転量に応じて補助舵角を補正し、後輪の内輪空転検出量
が大きい時には車体の横滑り角を増加させる方向に内輪
空転量に応じて補助舵角を補正する補助舵角補正制御手
段dとを備えている事を特徴とする。
That is, as shown in the complaint correspondence diagram of FIG. 1, there is a front and rear wheel drive force distribution control device a that distributes drive force between the front and rear wheels according to the difference in rotational speed of the front and rear wheels, and a steering angle of at least one of the front wheels or the rear wheels. When the auxiliary steering angle control device controls the front wheel steering,
An inner wheel slip detecting means C detects the amount of inner wheel slip of the front and rear wheels or an equivalent amount of inner wheel slip when turning, and when the detected amount of inner wheel slip of the front wheels is large, an auxiliary steering angle is provided in accordance with the amount of inner wheel slip in a direction to reduce the vehicle body sideslip angle. and an auxiliary steering angle correction control means d for correcting the auxiliary steering angle in accordance with the amount of inner wheel slip in a direction of increasing the sideslip angle of the vehicle body when the detected amount of inner wheel slip of the rear wheels is large. do.

(作 用) 高横加速度旋回時で内輪空転検圧手段Cにより前輪の内
輪空転検出量が大きい時には、補助舵角補正制御手段d
において、車体横滑り角を減少させる方向に内輪空転量
に応じて補助舵角を補正する指令が出力される。
(Function) When turning with high lateral acceleration and the amount of front wheel slip detected by the inner wheel slip pressure detection means C is large, the auxiliary steering angle correction control means d
At this point, a command is output to correct the auxiliary steering angle in a direction that reduces the vehicle sideslip angle in accordance with the amount of inner wheel slip.

従って、前輪の内輪空転時には、後輪側駆動力配分が増
加することによりオーバステア方向にステア特性が変化
するのに対し車体横滑り角を減少させるアンダーステア
方向に補助舵角が補正され、しかも、この補助舵角補正
は駆動力配分の変化による分と前輪側でのし、SDモー
メント減少分による分との両者が考慮されたものとなる
為、高横加速度旋回時に最適なステア特性が得られるだ
けではなく前輪の内輪空転も抑制される。
Therefore, when the inner wheels of the front wheels are spinning, the steering characteristics change in the oversteer direction due to an increase in the rear wheel drive force distribution, but the auxiliary steering angle is corrected in the understeer direction that reduces the vehicle sideslip angle. Steering angle correction takes into consideration both the change in driving force distribution and the reduction in SD moment exerted on the front wheels, so it is not enough to obtain optimal steering characteristics when turning with high lateral acceleration. This also suppresses the inner wheels of the front wheels from spinning.

高横加速度旋回時で内輪空転検出手段Cにより後輪の内
輪空転検出量が大きい時には、補助舵角補正制御手段d
において、車体横滑り角を増加させる方向に内輪空転量
に応じて補助舵角を補正する指令が出力される。
When turning with high lateral acceleration and the amount of inner wheel slipping of the rear wheels detected by the inner wheel slipping detection means C is large, the auxiliary steering angle correction control means d
At this point, a command is output to correct the auxiliary steering angle in a direction that increases the vehicle sideslip angle in accordance with the amount of inner wheel slip.

従って、後輪の内輪空転時には、前輪側駆動力配分が増
加することによりアンダーステア方向にステア特性が変
化するのに対し車体横滑り角を増加させるオーバステア
方向に補助舵角が補正され、しかも、この補助舵角補正
は駆動力配分の変化による分と後輪側でのLSDモーメ
ント減少分による分との両者が考慮されたものとなる為
、高横加速度旋回時に最適なステア特性が得られるだけ
ではなく後輪の内輪空転も抑制される。
Therefore, when the inner wheels of the rear wheels are idling, the steering characteristics change in the understeer direction due to an increase in the front wheel drive force distribution, but the auxiliary steering angle is corrected in the oversteer direction, which increases the vehicle sideslip angle. Since the steering angle correction takes into account both the change in driving force distribution and the reduction in LSD moment on the rear wheel side, it not only provides optimal steering characteristics when turning with high lateral acceleration. Inner wheel spinning of the rear wheels is also suppressed.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

まず、構成を説明する。First, the configuration will be explained.

第2図は前後輪駆動力配分制御装置と前後輪舵角制御装
置(補助舵角制御装置の一例)が同時に搭載された車両
を示す全体システム図である。
FIG. 2 is an overall system diagram showing a vehicle equipped with a front and rear wheel drive force distribution control device and a front and rear wheel steering angle control device (an example of an auxiliary steering angle control device).

各制御システムが搭載された車両は、後輪駆動ベースの
トルクスプリット四輪駆動車で、左右の後輪IR,+L
には、エンジン2.トランスミッション3.リアプロペ
ラシャフト4.リアディファレンシャル5.左右のリア
ドライフシャフト6R,6Lを介してエンジン駆動力が
伝達される。
The vehicle equipped with each control system is a rear-wheel drive based torque split four-wheel drive vehicle, with left and right rear wheels IR, +L
The engine 2. Transmission 3. Rear propeller shaft 4. Rear differential 5. Engine driving force is transmitted via left and right rear dry shafts 6R, 6L.

左右の前輪7R,7Lには、リアプロペラシャフト4の
途中に設けられたトランスファ8からフロントプロペラ
シャフト9.フロントディファレンシャル10.左右の
フロントドライブシャフト11R911Lを介してエン
ジン駆動力が伝達される。
A front propeller shaft 9. is connected to the left and right front wheels 7R, 7L from a transfer 8 provided in the middle of the rear propeller shaft 4. Front differential 10. Engine driving force is transmitted via the left and right front drive shafts 11R911L.

そして、前輪7R,7Lを操舵するフロントステアリン
グギア装置12に供給油圧によるビストンストロークで
前輪7R,7Lに補助舵角を与える前輪油圧パワーシリ
ンダ13が設けられ、左右後輪+R91L間には供給油
圧によるビストンストロークで後輪+R,+Lに補助舵
角を与える後輪油圧パワーシリンダ14が設けられる。
A front wheel hydraulic power cylinder 13 is provided in the front steering gear device 12 that steers the front wheels 7R, 7L, and provides an auxiliary steering angle to the front wheels 7R, 7L by a piston stroke using supplied hydraulic pressure. A rear wheel hydraulic power cylinder 14 is provided which provides an auxiliary steering angle to the rear wheels +R and +L with a piston stroke.

また、前記トランスファ8には、締結圧制御により前輪
側へ可変の伝達トルクを与える前後輪駆動力配分制御ア
クチュエータとしての油圧多板クラッチ15が内蔵され
る。
Further, the transfer 8 includes a hydraulic multi-plate clutch 15 as a front and rear wheel drive force distribution control actuator that provides variable transmission torque to the front wheels through engagement pressure control.

前記油圧多板クラッチ15への供給油圧制御は、駆動力
配分制御バルブ21に対する駆動力配分コントローラ2
2からのバルブ作動制御指令により行なわれるもので、
駆動力配分コントローラ22には右前輪回転センサ23
.左前輪回転センサ24.右後輪回転センサ25.左後
輪回転センサ26.横加速度センサ27等からの検出信
号が入力される。
The hydraulic pressure supplied to the hydraulic multi-disc clutch 15 is controlled by the driving force distribution controller 2 for the driving force distribution control valve 21.
This is performed by the valve operation control command from 2.
The driving force distribution controller 22 includes a right front wheel rotation sensor 23.
.. Left front wheel rotation sensor 24. Right rear wheel rotation sensor 25. Left rear wheel rotation sensor 26. A detection signal from a lateral acceleration sensor 27 or the like is input.

そして、第3図は前後輪駆動力配分制御装置のみを示す
システム図で、第4図は前輪側駆動力配分量特性図であ
り、第5図は制御ゲイン特性図で、前後輪回転速度差Δ
Nの増大に応じて駆動カ配分ヲ後輪駆動(0:100)
カラリジット4WD(5o:50)まで連続的に制御す
ると共に、路面摩擦係数を横加速度Y6の大きさとして
検出し、横加速度Y6が大きくなるに従って制御ゲイン
Kを低下させるようにしている。即ち、発進時や直進加
速時等では後輪+R,11の駆動軸スリップを抑えて駆
動性能を向上させ、旋回時には前輪7R,7Lへの駆動
力配分を減じて後輪駆動傾向とすることで旋回性能を向
上させるようにしている。
Fig. 3 is a system diagram showing only the front and rear wheel drive force distribution control device, Fig. 4 is a front wheel drive force distribution characteristic chart, and Fig. 5 is a control gain characteristic chart showing the front and rear wheel rotational speed difference. Δ
Drive power distribution is rear wheel drive (0:100) according to the increase in N.
The control is continuously performed up to the color rigidity 4WD (5o:50), and the road surface friction coefficient is detected as the magnitude of the lateral acceleration Y6, and the control gain K is decreased as the lateral acceleration Y6 increases. In other words, when starting or accelerating straight ahead, driving performance is improved by suppressing the drive shaft slip of the rear wheels +R and 11, and when turning, the distribution of drive force to the front wheels 7R and 7L is reduced so that the vehicle tends to drive the rear wheels. We are trying to improve turning performance.

前記前輪油圧パワーシリンダ13及び後輪油圧パワーシ
リンダ14への供給油圧制御は、油圧制御バルブ17に
対する舵角制御コントローラ18からのバルブ作動制御
指令により行なわれるもので、舵角制御コントローラ1
8には前輪舵角センサ19.車速センサ20.各車輸輸
回転センサ23.24.25.26から検出信号が入力
されると共に駆動力配分コントローラ22からの駆動力
配分指令が入力される。
The hydraulic pressure supplied to the front wheel hydraulic power cylinder 13 and the rear wheel hydraulic power cylinder 14 is controlled by a valve operation control command from the steering angle control controller 18 to the hydraulic control valve 17.
8 is a front wheel steering angle sensor 19. Vehicle speed sensor 20. Detection signals are input from each vehicle rotation sensor 23, 24, 25, 26, and a driving force distribution command from the driving force distribution controller 22 is input.

そして、第6図は前後輪舵角制御装置のみを示すシステ
ム図で、第7図は内輪空転非発生時の前後輪舵角の補正
制御特性図で、基本的な前後輪舵角制御は、車両のヨー
レート応答モデル及び横加速度応答モデル(規範モデル
)を設定し、車両の応答がこれに一致するように前後輪
に補助舵角を与えるという制御とし、ヨーレートと横加
速度の運動特性を高度に両立させて理想的な旋回性能を
得るようにしている。
Fig. 6 is a system diagram showing only the front and rear wheel steering angle control device, and Fig. 7 is a correction control characteristic diagram of the front and rear wheel steering angles when no inner wheel slip occurs.The basic front and rear wheel steering angle control is as follows. The vehicle's yaw rate response model and lateral acceleration response model (reference model) are set, and the control is performed by applying auxiliary steering angles to the front and rear wheels so that the vehicle response matches these models, and the dynamic characteristics of yaw rate and lateral acceleration are highly refined. We are trying to achieve ideal turning performance by achieving both.

そして、舵角制御コントローラ18には、駆動力配分コ
ントローラ22からの駆動力配分指令を入力すると共に
各車輸輪回転センサ23,24,25.26からの検出
信号を入力し、内輪空転非発生時に、駆動力配分の変化
によるステア特性の影響を考慮し、第7図に示すように
、前輪駆動力配分割合が大きくなればなるほどステア特
性がアンダーステア側となるこれを逆相側に補正してス
テア特性の変化を防止すると共に、前輪駆動力配分割合
が大きな領域では過度に逆相補正を与えると安定性を失
うので同相側に補正する内輪空転非発生時舵角補正制御
部と、内輪空転時に、最適なステア特性を得ると共に内
輪空転を抑制する内輪空転発生時舵角補正制御部とが補
正制御プログラムとして組み込まれている。
The steering angle control controller 18 receives the driving force distribution command from the driving force distribution controller 22 and also inputs the detection signals from the wheel rotation sensors 23, 24, 25, and 26 of each vehicle to prevent inner wheel slipping. Sometimes, considering the influence of changes in the driving force distribution on the steering characteristics, as shown in Figure 7, the larger the front wheel driving force distribution ratio, the more the steering characteristics become understeer.This is corrected to the opposite phase side. In addition to preventing changes in steering characteristics, in regions where the front wheel drive force distribution ratio is large, if too much negative phase correction is given, stability will be lost, so the steering angle correction control unit corrects it to the same phase side when inner wheel slipping does not occur. Sometimes, a steering angle correction control section when an inner wheel slip occurs is incorporated as a correction control program to obtain optimal steering characteristics and suppress inner wheel slip.

次に、作用を説明する。Next, the effect will be explained.

まず、高横加速度旋回時に内輪が空転する理由について
述べる。
First, we will explain why the inner wheels spin during turns with high lateral acceleration.

車両の前後輪のロール剛性は、通常旋回時のステア特性
等を最適化するように決定され、前後輪同じということ
はほとんどなく、どちらか一方のロール剛性が大きく設
定されている。旋回時に横Gが発生することにより左右
方向の荷重移動が生じるが、この荷重移動量はロール剛
性に比例して前後輪に発生するため、前後輪のうちロー
ル剛性の大きな方が荷重移動量が大きい。横Gが大きく
なるほど荷重移動量は増大し、荷重移動量が定常状態で
の一輪の輪荷重を超えるとその内輪は浮き上がり空転す
る。従って、ロール剛性の前後配分により、前後輪のう
ちどちらかが高横Gで空転するようになる。
The roll stiffness of the front and rear wheels of a vehicle is usually determined to optimize the steering characteristics during cornering, and the roll stiffness of the front and rear wheels is rarely the same, and one of the wheels is set to have a larger roll stiffness. Lateral G is generated when turning, causing a load shift in the left and right direction, but this load shift occurs on the front and rear wheels in proportion to the roll stiffness, so the load shift is greater on the front and rear wheels with greater roll stiffness. big. As the lateral G increases, the amount of load movement increases, and when the amount of load movement exceeds the wheel load of one wheel in a steady state, the inner ring lifts up and idles. Therefore, due to the front-rear distribution of roll stiffness, one of the front and rear wheels will idle with high lateral G.

また、舵角制御装置により後輪を制御した場合には、例
えば、逆相制御時には車体の横滑り角が増加し、横Gが
前から後ろ方向への成分をもってしまい、後外輪側が沈
み、反対に前内輪側が浮き上がり、前内輪が空転しやす
くなる(第8図)。
In addition, when the rear wheels are controlled by a steering angle control device, for example, during reverse phase control, the sideslip angle of the vehicle body increases, the lateral G has a component from the front to the rear, the rear outer wheels sink, and vice versa. The front inner wheel side will lift up, making it easier for the front inner wheel to spin (Figure 8).

逆に、同相制御時には、車体横滑り角が減少し、横Gが
後ろから前方向への成分をもってしまい、前外輪側が沈
み、反対に後内輪側が浮き上がり、後内輪が空転しやす
くなる(第9図)。
Conversely, during in-phase control, the vehicle sideslip angle decreases and the lateral G has a component from the rear to the front, causing the front outer wheels to sink and the rear inner wheels to rise, making the rear inner wheels more likely to spin (Figure 9). ).

第10図は舵角制御コントローラ18で行なわれる補正
制御処理作動の流れを示すフローチャートで、以下、各
ステップについて説明する。
FIG. 10 is a flowchart showing the flow of the correction control process performed by the steering angle controller 18, and each step will be explained below.

ステップ101では、前内輪空転検出値Nfvと後内輪
空転検圧値Nrvと駆動力配分指令値とが読み込まれる
In step 101, the front inner wheel slip detection value Nfv, the rear inner wheel slip detection pressure value Nrv, and the driving force distribution command value are read.

尚、前後内輪空転検出値Nfv 、Nrvは、前後輪の
回転数の差の絶対値により予め算出しておく。
Note that the front and rear inner wheel slip detection values Nfv and Nrv are calculated in advance from the absolute value of the difference between the rotation speeds of the front and rear wheels.

ステップ102では、前内輪空転検圧値Nfvが所定値
(内輪空転判断しきい値)以上かどうかが判断される。
In step 102, it is determined whether the front inner wheel slipping detection pressure value Nfv is greater than or equal to a predetermined value (inner wheel slipping determination threshold).

ステップ103では、後内輪空転検出値Nrvが所定値
(内輪空転判断しきい値)以上がどうかが判断される。
In step 103, it is determined whether the rear inner wheel slip detection value Nrv is greater than or equal to a predetermined value (inner wheel slip determination threshold).

そして、ステップ102及びステップ103でNoと判
断された内輪空転非発生の場合には、ステップ104へ
進み、制御特性が前輪駆動力配分割合で第7図に示すよ
うに補正され、ステップ1゜5で制御指令値が圧力され
る。
If the inner wheels do not spin, which is determined as No in step 102 and step 103, the process proceeds to step 104, where the control characteristics are corrected as shown in FIG. The control command value is pressured.

ステップ102で前内輪空転検出値Nfvが所定値以上
であり、前内輪が空転状態であると判断された時には、
ステップ106へ進み、第11四に示すように、前内輪
空転の大きさに応じて制御特性が車体滑り角を減少させ
るアンダーステア側に補正される。
When it is determined in step 102 that the front inner wheel slip detection value Nfv is equal to or higher than a predetermined value and that the front inner wheel is in a slip state,
Proceeding to step 106, as shown in step 114, the control characteristics are corrected to the understeer side, which reduces the vehicle body slip angle, depending on the magnitude of the front inner wheel slip.

ステップ103で後内輪空転検出値Nrvがが所定値以
上であり、後内輪が空転状態であると判断された時には
、ステップ107へ進み、第12図に示すように、後内
輪空転の大きさに応じて制御特性が車体滑り角を増加さ
せるオーバステア側に補正される。
When it is determined in step 103 that the rear inner wheel slip detection value Nrv is greater than a predetermined value and that the rear inner wheel is in a slipping state, the process proceeds to step 107, and as shown in FIG. Accordingly, the control characteristics are corrected toward oversteer, which increases the vehicle body slip angle.

上記補正制御により、内輪空転非発生時及び内輪空転発
生時には下記のような旋回性能が実現される。
Through the above correction control, the following turning performance is achieved when the inner wheel does not slip and when the inner wheel slips.

(イ)内輪空転非発生時 内輪空転非発生時には、第7図に示すように、前輪駆動
力配分割合が増加するに従って前後輪舵角比を逆相側に
補正することでステア特性を一定にする方向に制御特性
が補正されることで駆動力配分によるステア特性の変化
が修正されてドライバーの操舵違和感を与えることが無
い。
(B) When inner wheel slipping does not occur When inner wheel slipping does not occur, the steering characteristics are kept constant by correcting the front and rear wheel steering angle ratio to the opposite phase side as the front wheel drive force distribution ratio increases, as shown in Figure 7. By correcting the control characteristics in the direction of steering, changes in steering characteristics due to driving force distribution are corrected, and the driver does not feel any discomfort in steering.

さらに、雪道や凍結路等の低μ路で前輪駆動力配分が非
常に大きくなるような状況では前後輪舵角比の逆相側補
正から安定側の同相側補正へと変化させていることで旋
回安定性が確保される。
Furthermore, in situations where the front wheel drive force distribution becomes extremely large on low μ roads such as snowy roads or frozen roads, the front and rear wheel steering angle ratios are changed from negative phase side correction to stable side in-phase side correction. This ensures turning stability.

(ロ)前内輪空転発生時 前輪の内輪空転発生時には、後輪側駆動力配分が増加す
ることによりオーバステア方向にステア特性が変化する
(b) When front inner wheel slip occurs When front inner wheel slip occurs, steering characteristics change in the oversteer direction due to an increase in rear wheel drive force distribution.

これに対し補正制御において、第11図に示すように、
車体横滑り角を減少させるアンダーステア方向に内輪空
転量に応じて前輪補助舵角ろ、及び後輪補助舵角6.が
補正される。
On the other hand, in correction control, as shown in FIG.
5. Front wheel auxiliary steering angle and rear wheel auxiliary steering angle in accordance with the amount of inner wheel slip in the understeer direction to reduce the vehicle sideslip angle.6. is corrected.

従って、前内輪空転に基づくステア特性の変化が修正さ
れ、しかも、この補助舵角補正は駆動力配分の変化によ
る分と前輪側でのLSDモーメント減少分による分との
両者が考慮されたものとなる為、前内輪空転が発生する
高横加速度旋回時に最適なステア特性が得られるだけで
はなく前輪の内輪空転も抑制される。
Therefore, the change in steering characteristics due to front inner wheel slipping is corrected, and this supplementary steering angle correction takes into account both the change in driving force distribution and the reduction in LSD moment on the front wheel side. This not only provides optimal steering characteristics during high lateral acceleration turns where front inner wheel slip occurs, but also suppresses front inner wheel slip.

(ハ)後内輪空転発生時 後輪の内輪空転発生時には、前輪側駆動力配分が増加し
て4輪駆動力配分方向となることによりアンダーステア
方向にステア特性が変化する。
(c) When rear inner wheel slip occurs When inner wheel slip occurs in the rear wheels, the front wheel side drive force distribution increases and becomes the four wheel drive force distribution direction, thereby changing the steering characteristic in the understeer direction.

これに対し補正制御において、第12図に示すように、
虫体横滑り角を増加させるオーバステア方向に内輪空転
量に応じて前輪補助舵角ろ、及び後輪補助舵角ろ、が補
正される。
On the other hand, in the correction control, as shown in FIG.
The front wheel auxiliary steering angle and the rear wheel auxiliary steering angle are corrected in accordance with the amount of inner wheel slip in the oversteer direction that increases the insect sideslip angle.

従って、後内輪空転の基づくステア特性の変化が修正さ
れ、しかも、この補助舵角補正は駆動力配分の変化によ
る分と後輪側でのLSDモーメント減少分による分との
両者が考慮されたものとなる為、後内輪空転が発生する
高横加速度旋回時に最適なステア特性が得られるだけで
はなく後輪の内輪空転も抑制される。
Therefore, the change in steering characteristics due to the rear inner wheel slipping is corrected, and this auxiliary steering angle correction takes into account both the change in driving force distribution and the reduction in LSD moment on the rear wheel side. As a result, not only is optimal steering characteristics obtained when turning at high lateral accelerations where rear inner wheel slip occurs, but also the rear inner wheel slip is suppressed.

以上説明したように、実施例の前後輪駆動力配分と補助
舵角の総合制御装置にあっては、下記に列挙する効果が
発揮される。
As explained above, the comprehensive control device for front and rear wheel drive force distribution and auxiliary steering angle according to the embodiment exhibits the effects listed below.

■ 内輪空転による駆動力配分変化を路面μ等の変化に
よる駆動力配分の変化とは区別し、内輪空転が発生する
高横加速度旋回時には、第11図及び第12図に示Tよ
うに、内輪空転量に応じて補助舵角を補正制御する装置
とした為、内輪空転を原因として駆動力配分が変化する
高横加速度旋回時に最適なステア特性を得ることが出来
ると共に内輪空転を抑制することが出来る。
■ Changes in driving force distribution due to inner wheel slipping are distinguished from changes in driving force distribution due to changes in road surface μ, etc., and when turning at high lateral acceleration where inner wheel slipping occurs, the inner wheel Since the device is designed to correct and control the auxiliary steering angle according to the amount of wheel slip, it is possible to obtain optimal steering characteristics during turns with high lateral acceleration, where the drive force distribution changes due to inner wheel slip, and to suppress inner wheel slip. I can do it.

■ 内輪空転による駆動力配分変化を路面μ等の変化に
よる駆動力配分の変化とは区別し、内輪空転が発生しな
いで路面μ等の変化による駆動力配分の変化する時には
、第7図に示すように、前輪駆動力配分割合に応じて補
助舵角を補正制御する装置とした為、駆動力配分変化に
対しステア特性の一定性が保たれることによる操舵違和
感の解消と駆動輪スリップが大きく発生し前輪駆動力配
分割合が大きくなった時の安定性の確保とを達成出来る
■ Changes in driving force distribution due to inner wheel slipping are distinguished from changes in driving force distribution due to changes in road surface μ, etc. When inner wheel slipping does not occur and driving force distribution changes due to changes in road surface μ, etc., the change is shown in Figure 7. As shown in the figure, the device corrects and controls the auxiliary steering angle according to the front wheel drive force distribution ratio, which maintains the stability of the steering characteristics despite changes in the drive force distribution, eliminating steering discomfort and greatly reducing drive wheel slip. It is possible to achieve stability when the front wheel drive force distribution ratio increases.

以上、実施例を図面に基づいて説明してきたが、具体的
な構成はこの実施例に限られるものではない。
Although the embodiment has been described above based on the drawings, the specific configuration is not limited to this embodiment.

例えば、実施例では補助舵角制御装置として、前後輪を
共に舵角制御する装置の例を示したが、前輪または後輪
の一方のみを舵角制御する補助舵角制御装置であっても
良(、この場合、車体横滑り角を減少したい時には前輪
舵角を減少させる補助舵角を前輪に与えるか後輪を前輪
と同方向に転舵させる補助舵角を与えるかで行ない、圭
体横滑り角を増加したい時には前輪舵角を増加させる補
助舵角を前輪に与えるか後輪を前輪とは逆相に転舵させ
る補助舵角を与えるかで行なう。
For example, in the embodiment, an example of a device that controls the steering angle of both the front and rear wheels is shown as the auxiliary steering angle control device, but it may also be an auxiliary steering angle control device that controls the steering angle of only one of the front wheels or the rear wheels. (In this case, if you want to reduce the vehicle sideslip angle, you can do so by giving the front wheels an auxiliary steering angle that reduces the front wheel steering angle, or by giving an auxiliary steering angle that turns the rear wheels in the same direction as the front wheels. When it is desired to increase the front wheel steering angle, an auxiliary steering angle is given to the front wheels to increase the front wheel steering angle, or an auxiliary steering angle is given to the rear wheels to steer the rear wheels in the opposite phase to the front wheels.

また、前後輪駆動力配分制御装置として、後輪駆動ベー
スの前後輪駆動力配分装置の例を示したが、前輪駆動ベ
ースの前後輪駆動力配分制御装置に対しても同様に適用
することができし1、前後輪回転速度差で駆動力配分が
行なわれる四輪駆動ならば、ビスカスカップリングや流
体ポンプ式カップリング等を用いた重両であっても良い
In addition, although an example of a rear wheel drive-based front and rear wheel drive force distribution control device is shown as a front and rear wheel drive force distribution control device, it can be similarly applied to a front and rear wheel drive force distribution control device based on a front wheel drive. First, as long as it is a four-wheel drive vehicle in which driving force is distributed based on the difference in rotational speed between the front and rear wheels, a heavy vehicle using a viscous coupling, a fluid pump type coupling, or the like may be used.

また、実施例では、内輪空転を車輪回転速度により直接
検出する例を示したが、所定値以上の横加速度検出やロ
ール剛性の前後配分等により内輪空転を推定検圧するよ
うにしても良い。
Further, in the embodiment, an example was shown in which inner wheel slipping is directly detected by wheel rotation speed, but inner wheel slipping may be estimated and detected by detecting lateral acceleration of a predetermined value or more, front and rear distribution of roll rigidity, etc.

(発明の効果) 以上説明してきたように、本発明にあっては、前後輪駆
動力配分制御装置と補助舵角制御装置とが同時に搭載さ
れた車両の前後輪駆動力配分と補助舵角の総合制御装置
において、内輪空転による駆動力配分変化を路面μ等の
変化による駆動力配分の変化とは区別し、内輪空転が発
生する高横加速度旋回時に内輪空転量に応じて補助舵角
を補正制御する手段とした為、内輪空転を原因として駆
動力配分が変化する高横加速度旋回時に最適なステア特
性を得ると共に内輪空転を抑制することが出来るという
効果が得られる。
(Effects of the Invention) As explained above, in the present invention, the front and rear wheel drive force distribution and the auxiliary steering angle of a vehicle in which the front and rear wheel drive force distribution control device and the auxiliary steering angle control device are simultaneously installed are as follows. The integrated control system distinguishes changes in drive force distribution due to inner wheel slip from changes in drive force distribution due to changes in road surface μ, etc., and corrects the auxiliary steering angle according to the amount of inner wheel slip during high lateral acceleration turns where inner wheel slip occurs. Since this is a control means, it is possible to obtain the optimum steering characteristics during turns with high lateral acceleration where the driving force distribution changes due to the inner wheel slipping, and also to suppress the inner wheel slipping.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の前後輪駆動力配分と補助舵角の総合制
御装置を示すクレーム対応図、第2図は前後輪駆動力配
分制御装置と前後輪舵角制御装置とが同時に搭載された
車両を示す全体システム図、第3図は前後輪駆動力配分
制御装置の具体例を示すシステム図、第4図は前輪側駆
動力配分量特性図、第5図は駆動力配分の制御ゲイン特
性図、第6図は前後輪舵角制御装置の具体例を示すシス
テム図、第7図は内輪空転非発生時における補正制御特
性図、第8図は高横加速度旋回時での前内輪空転状態を
示す作用説明図、第9図は高横加速度旋回時での後内輪
空転状態を示す作用説明図、第10図は舵角制御コント
ローラで行なわれる前後輪補助舵角制御の補正制御作動
の流れを示すフローチャート、第11図は前内輪空転発
生時における前後輪の補助舵角補正制御特性図、第12
図は後内輪空転発生時における前後輪の補助舵角補正制
御特性図、第13図は後内輪空転時におけるステア特性
のアンダーステア化を説明する作動ブロック図、第14
図は従来のステア特性一定制御での補助舵角補正制御特
性図である。 a・・・前後輪駆動力配分制御装置 b・・・補助舵角制御装置 C・・・内輪空転検出手段 d・・・補助舵角補正制御手段
Fig. 1 is a complaint-corresponding diagram showing a comprehensive control device for front and rear wheel drive force distribution and auxiliary steering angle of the present invention, and Fig. 2 is a diagram showing a system in which a front and rear wheel drive force distribution control device and a front and rear wheel steering angle control device are installed simultaneously. Figure 3 is a system diagram showing a specific example of the front and rear wheel drive force distribution control device, Figure 4 is a front wheel drive force distribution characteristic diagram, and Figure 5 is a control gain characteristic of drive force distribution. Fig. 6 is a system diagram showing a specific example of the front and rear wheel steering angle control device, Fig. 7 is a correction control characteristic diagram when inner wheel slipping does not occur, and Fig. 8 is a front inner wheel slipping state when turning with high lateral acceleration. FIG. 9 is an explanatory diagram of the operation showing the rear inner wheel slipping state during a turn with high lateral acceleration. FIG. 10 is the flow of the correction control operation of the front and rear wheel auxiliary steering angle control performed by the steering angle control controller. FIG. 11 is a characteristic diagram of the auxiliary steering angle correction control of the front and rear wheels when front inner wheel slip occurs, and FIG.
The figure is a characteristic diagram of the auxiliary steering angle correction control for the front and rear wheels when the rear inner wheel is slipping, FIG. 13 is an operation block diagram illustrating how the steering characteristics become understeer when the rear inner wheel is slipping, and FIG.
The figure is a characteristic diagram of auxiliary steering angle correction control in conventional constant steering characteristic control. a... Front and rear wheel drive force distribution control device b... Auxiliary steering angle control device C... Inner wheel slip detection means d... Auxiliary steering angle correction control device

Claims (1)

【特許請求の範囲】 1)前後輪回転速度差に応じて前後輪に駆動力を配分す
る前後輪駆動力配分制御装置と、前輪または後輪の少な
くとも一方の舵角を前輪操舵時に制御する補助舵角制御
装置と、 旋回時に前後輪の内輪空転量もしくは内輪空転相当量を
検出する内輪空転検出手段と、 前輪の内輪空転検出量が大きい時には車体横滑り角を減
少させる方向に内輪空転量に応じて補助舵角を補正し、
後輪の内輪空転検出量が大きい時には車体の横滑り角を
増加させる方向に内輪空転量に応じて補助舵角を補正す
る補助舵角補正制御手段と、 を備えている事を特徴とする前後輪駆動力配分と補助舵
角の総合制御装置。
[Claims] 1) A front and rear wheel drive force distribution control device that distributes drive force between the front and rear wheels according to the difference in rotational speed between the front and rear wheels, and an assistant that controls the steering angle of at least one of the front wheels or the rear wheels when the front wheels are steered. a steering angle control device; an inner wheel slip detecting means for detecting the amount of inner wheel slip or an equivalent amount of inner wheel slip of the front and rear wheels during a turn; to correct the auxiliary rudder angle,
A front and rear wheel characterized by comprising: auxiliary steering angle correction control means for correcting an auxiliary steering angle according to the amount of inner wheel slip in a direction that increases the sideslip angle of the vehicle body when the detected amount of inner wheel slip of the rear wheels is large. Comprehensive control device for driving force distribution and auxiliary steering angle.
JP20308290A 1990-07-31 1990-07-31 Distribution of driving power to front and rear wheel and composite control device for auxiliary steering angle Pending JPH0487882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20308290A JPH0487882A (en) 1990-07-31 1990-07-31 Distribution of driving power to front and rear wheel and composite control device for auxiliary steering angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20308290A JPH0487882A (en) 1990-07-31 1990-07-31 Distribution of driving power to front and rear wheel and composite control device for auxiliary steering angle

Publications (1)

Publication Number Publication Date
JPH0487882A true JPH0487882A (en) 1992-03-19

Family

ID=16468066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20308290A Pending JPH0487882A (en) 1990-07-31 1990-07-31 Distribution of driving power to front and rear wheel and composite control device for auxiliary steering angle

Country Status (1)

Country Link
JP (1) JPH0487882A (en)

Similar Documents

Publication Publication Date Title
JP2534730B2 (en) 4-wheel steering / Differential limiting force integrated control device
JP5257414B2 (en) Driving force distribution control device for four-wheel drive vehicle
US20020107628A1 (en) Apparatus and method for controlling a four-wheel drive vehicle
JPH01145229A (en) Driving power distribution-controller for four-wheel drive vehicle
JP2528484B2 (en) Drive force distribution controller for four-wheel drive vehicle
US6145614A (en) Four-wheel drive vehicle having differential-limiting control
JPH0829670B2 (en) Front and rear wheel drive force distribution control vehicle auxiliary steering method
WO2012005260A1 (en) Device for controlling torque distribution to left and right wheels on a vehicle
WO2012005262A1 (en) Device for controlling torque distribution to left and right wheels on a vehicle
US5201382A (en) Four-wheel-steered vehicle control system
JPH0725249B2 (en) Roll rigidity / differential limiting force comprehensive control device
JPH03189241A (en) Four-wheel drive device
US7657357B2 (en) Vehicle motion control device
JP3079538B2 (en) Comprehensive control system for auxiliary steering angle and braking / driving force
WO2012005259A1 (en) Device for controlling torque distribution to left and right wheels on a vehicle
JP2552327B2 (en) Four-wheel steering control system for vehicles with limited slip differential
JPH0487882A (en) Distribution of driving power to front and rear wheel and composite control device for auxiliary steering angle
WO2012005265A1 (en) Device for controlling torque distribution to left and right wheels on a vehicle
JP3416970B2 (en) Vehicle yawing momentum control device
JP2646764B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP3132695B2 (en) Vehicle yawing momentum control device
JP2746002B2 (en) Driving force distribution device for four-wheel drive vehicle with four-wheel steering device
JPH0764218B2 (en) Driving force distribution clutch engagement force control device
JPH0415114A (en) Synthetic controller for front and rear wheel drive force distribution and wheel load distribution
JP2861611B2 (en) Left and right driving force control device for vehicles