JP2646764B2 - Driving force distribution control device for four-wheel drive vehicle - Google Patents

Driving force distribution control device for four-wheel drive vehicle

Info

Publication number
JP2646764B2
JP2646764B2 JP1285788A JP28578889A JP2646764B2 JP 2646764 B2 JP2646764 B2 JP 2646764B2 JP 1285788 A JP1285788 A JP 1285788A JP 28578889 A JP28578889 A JP 28578889A JP 2646764 B2 JP2646764 B2 JP 2646764B2
Authority
JP
Japan
Prior art keywords
driving force
acceleration
force distribution
wheel
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1285788A
Other languages
Japanese (ja)
Other versions
JPH03148335A (en
Inventor
俊郎 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1285788A priority Critical patent/JP2646764B2/en
Publication of JPH03148335A publication Critical patent/JPH03148335A/en
Application granted granted Critical
Publication of JP2646764B2 publication Critical patent/JP2646764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、前後輪の駆動力配分が可変に制御されるト
ルクスプリット四輪駆動車の駆動力配分制御装置に関す
る。
Description: TECHNICAL FIELD The present invention relates to a driving force distribution control device for a torque split four-wheel drive vehicle in which the driving force distribution of front and rear wheels is variably controlled.

(従来の技術) まず、四輪駆動車の前後輪駆動力配分制御装置として
は、例えば、特開昭63−141831号公報に記載されている
装置が知られていて、この従来装置では、後輪駆動スペ
ースの四輪駆動車で、前後輪回転速度差が大きくなるに
従って前輪への伝達駆動力を増大して駆動力配分を4輪
駆動側にすると共に横加速度が大きくなるに従って駆動
輪スリップの発生に対する前輪への伝達駆動力の増大割
合を減少するようにしている。
(Prior Art) First, as a front and rear wheel driving force distribution control device of a four-wheel drive vehicle, for example, a device described in Japanese Patent Application Laid-Open No. 63-141831 is known. In a four-wheel drive vehicle in a wheel drive space, as the difference between the front and rear wheel rotational speeds increases, the drive force transmitted to the front wheels increases, and the drive force distribution is shifted to the four-wheel drive side. The rate of increase of the driving force transmitted to the front wheels with respect to the occurrence is reduced.

また、特開昭61−33325号公報には、前後加速度セン
サと横加速度センサを用い、これらのセンサ信号により
走行状態を判断し、4輪駆動状態と2輪駆動状態とを自
動的に切換える四輪駆動車の自動切換装置が示されてい
る。
Japanese Patent Application Laid-Open No. 61-33325 discloses a four-wheel drive state and a two-wheel drive state which automatically switch between a four-wheel drive state and a two-wheel drive state by using a longitudinal acceleration sensor and a lateral acceleration sensor to determine a traveling state based on these sensor signals. An automatic switching device for a wheel drive vehicle is shown.

(発明が解決しようとする課題) 前者の四輪駆動車の前後輪駆動力配分制御装置にあっ
ては、駆動輪スリップ及び旋回による横加速度の発生に
対応し、徐々に駆動力配分比を変更する駆動力配分制御
により車両のヨーコントロールが行なわれ、走行状況や
路面状況に対応した最適な前後輪駆動力配分が得られて
好ましい。
(Problems to be Solved by the Invention) In the former four-wheel drive vehicle front and rear wheel drive force distribution control device, the drive force distribution ratio is gradually changed in response to the occurrence of lateral acceleration due to drive wheel slip and turning. It is preferable that the yaw control of the vehicle is performed by the driving force distribution control, and the optimum front and rear wheel driving force distribution corresponding to the running condition and the road surface condition is obtained.

しかしながら、前後輪回転速度差情報を得るために車
輪速センサが4個必要である為、装置コスト的に不利で
ある。
However, since four wheel speed sensors are required to obtain the front and rear wheel rotational speed difference information, the apparatus cost is disadvantageous.

また、後者の四輪駆動車の自動切換装置にあっては、
前後加速度と横加速度の2個のセンサによる装置である
ことでコスト的には有利である。
In the latter automatic switching device for four-wheel drive vehicles,
It is advantageous in terms of cost because the device is composed of two sensors of longitudinal acceleration and lateral acceleration.

しかしながら、前後輪の駆動力配分比を徐々に変更す
るものではなく、2WD→4WDまたは4WD→2WDというよう
に、駆動力配分を急激に変更する装置である為、走行状
況や路面状況に最適に対応できないばかりでなく、駆動
力配分切換によりステア特性の急変や車両挙動の急変が
生じてしまう。
However, it is not a device that gradually changes the drive power distribution ratio between the front and rear wheels.It is a device that rapidly changes the drive power distribution, such as 2WD → 4WD or 4WD → 2WD, so it is optimal for driving conditions and road surface conditions Not only cannot it be handled, but also a sudden change in the steering characteristic and a sudden change in the vehicle behavior occur due to the switching of the driving force distribution.

本発明は、上述のような問題に着目してなされたもの
で、2輪駆動ベースの電子制御トルクスプリットによる
四輪駆動車の駆動力配分制御装置において、装置コスト
を有利にしながら、前後輪回転速度差を入力情報とする
場合と同等のトルクスプリット制御を達成することを課
題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems. In a driving force distribution control device for a four-wheel drive vehicle using a two-wheel drive-based electronically controlled torque split, the front and rear wheel rotation is reduced while the device cost is advantageously reduced. It is an object to achieve torque split control equivalent to a case where a speed difference is used as input information.

(課題を解決するための手段) 上記課題を解決するために本発明の四輪駆動車の駆動
力配分制御装置では、前後輪回転速度差情報に代え、前
後加速度情報を用いてトルクスプリット制御を行なう手
段とした。
(Means for Solving the Problems) In order to solve the problems described above, in the driving force distribution control device for a four-wheel drive vehicle, torque split control is performed using longitudinal acceleration information instead of longitudinal wheel rotational speed difference information. The means to do it.

即ち、第1図のクレーム対応図に示すように、前後輪
の一方へのエンジン直結駆動系に対し前後輪の他方への
駆動系の途中に設けられた可変駆動力配分クラッチa
と、車両の前後方向加速度を検出する前後加速度検出手
段bと、車両の横方向加速度を検出する横加速度検出手
段cと、前後加速度が大きくなるに従ってクラッチ締結
駆動輪への伝達駆動力を増大して駆動力配分を4輪駆動
側にすると共に横加速度が大きくなるに従って前後加速
度の発生に対するクラッチ締結駆動輪への伝達駆動力の
増大割合を減少する制御内容により前記可変駆動力配分
クラッチaの締結力制御を行なう前後輪駆動力配分制御
手段dと、を備えている事を特徴とする。
That is, as shown in the claim correspondence diagram of FIG. 1, a variable drive force distribution clutch a provided in the middle of the drive system to the other of the front and rear wheels with respect to the drive system directly connected to the engine to one of the front and rear wheels.
A longitudinal acceleration detecting means b for detecting the longitudinal acceleration of the vehicle, a lateral acceleration detecting means c for detecting the lateral acceleration of the vehicle, and increasing the driving force transmitted to the clutch engagement driving wheels as the longitudinal acceleration increases. The driving force distribution is set to the four-wheel drive side, and the variable driving force distribution clutch a is engaged by controlling the decrease in the rate of increase in the driving force transmitted to the clutch engagement driving wheels with respect to the occurrence of longitudinal acceleration as the lateral acceleration increases. And front and rear wheel driving force distribution control means d for performing force control.

(作 用) 直進走行時には、前後輪駆動力配分制御手段dにおい
て、前後加速度検出手段bにより検出される前後加速度
が大きくなるに従ってクラッチ締結駆動輪への伝達駆動
力を増大して駆動力配分を4輪駆動側にする制御が行な
われる。
(Operation) In straight running, the front and rear wheel drive force distribution control means d increases the drive force transmitted to the clutch engagement drive wheels as the longitudinal acceleration detected by the longitudinal acceleration detection means b increases, thereby increasing the drive force distribution. Control for the four-wheel drive side is performed.

従って、急発進や加速時には、加速状況に見合って駆
動力配分が最大50:50まで無段階に制御されることにな
り、エンジン直結駆動輪への過剰な伝達駆動力による駆
動輪スリップがクラッチ伝達駆動力への駆動力配分によ
り抑制され、駆動性能と走行安定性が図られる。
Therefore, at the time of sudden start or acceleration, the drive power distribution is controlled steplessly up to 50:50 in accordance with the acceleration situation, and the drive wheel slip due to excessive transmission drive force to the engine directly connected drive wheel is transmitted to the clutch. It is suppressed by the distribution of the driving force to the driving force, and the driving performance and the running stability are achieved.

旋回走行時には、前後輪駆動力配分制御手段dにおい
て、横加速度検出手段cにより検出される横加速度が大
きくなるに従って前後加速度の発生に対するクラッチ締
結駆動輪への伝達駆動力の増大割合を減少する制御が行
なわれる。
At the time of turning, the front and rear wheel driving force distribution control means d controls the increase rate of the transmission driving force to the clutch engagement driving wheel with respect to the occurrence of the longitudinal acceleration as the lateral acceleration detected by the lateral acceleration detecting means c increases. Is performed.

従って、横加速度の発生が小さい低μ路加速旋回時に
は加速の強さに応じてクラッチ締結駆動輪への駆動力配
分を大きくする制御が行なわれることになり、例えば、
後輪駆動ベースの車両である場合には、前輪側への駆動
力配分が加速の強さに応じて大きくなることで、オーバ
ステアの急増が防止され、車両のコントロール性が高ま
る。
Therefore, at the time of low μ road acceleration turning where the occurrence of lateral acceleration is small, control is performed to increase the distribution of driving force to the clutch engagement driving wheels in accordance with the acceleration strength.
In the case of a rear-wheel drive-based vehicle, the distribution of driving force to the front wheels increases in accordance with the level of acceleration, thereby preventing a sudden increase in oversteer and improving the controllability of the vehicle.

また、横加速度の発生が大きい高μ路加速旋回時には
全般的にクラッチ締結駆動輪への駆動力配分が小さい制
御が行なわれることになり、例えば、後輪駆動ベースの
車両である場合には、前輪側への駆動力配分を小さくし
て前輪のコーナリングフォース減少が抑制されること
で、旋回回頭性の向上が図られる。
In addition, during high-μ road acceleration turning where the occurrence of lateral acceleration is large, control is generally performed in which the driving force distribution to the clutch engagement driving wheels is small. For example, in the case of a rear-wheel drive-based vehicle, By reducing the distribution of the driving force to the front wheels and suppressing the decrease in the cornering force of the front wheels, the turning performance can be improved.

また、高μ路加速旋回時にも低μ路加速旋回時と同様
に、加速の強さに応じてクラッチ締結駆動輪への駆動力
配分を大きくする制御が行なわれることで、車両のコン
トロール性が高まる。
In addition, the control for increasing the distribution of the driving force to the clutch engagement driving wheels according to the acceleration level is performed at the time of the high μ road acceleration turning, similarly to the low μ road acceleration turning, thereby improving the controllability of the vehicle. Increase.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

まず、構成を説明する。 First, the configuration will be described.

第2図は実施例の四輪駆動車の駆動力配分制御装置を
示す全体システム図で、適用車両のパワートレーンは、
エンジン1、トランスミッション2、リヤプロペラシャ
フト3、リヤディファレンシャル4、左右のリヤドライ
ブシャフト5,6、左右の後輪7,8、湿式多板クラッチ9
(可変駆動力配分クラッチ)、フロントプロペラシャフ
ト10、フロントディファレンシャル11、左右のフロント
ドライブシャフト12,13、左右の前輪14,15を備えてい
る。
FIG. 2 is an overall system diagram showing a driving force distribution control device for a four-wheel drive vehicle according to an embodiment.
Engine 1, transmission 2, rear propeller shaft 3, rear differential 4, left and right rear drive shafts 5,6, left and right rear wheels 7,8, wet multi-plate clutch 9
(Variable driving force distribution clutch), a front propeller shaft 10, a front differential 11, left and right front drive shafts 12, 13, and left and right front wheels 14, 15.

そして、後輪7,8へは路面伝達駆動力が直接伝達され
るが、前輪14,15へは湿式多板クラッチ9を介して伝達
される。即ち、前後輪への駆動力配分は湿式多板クラッ
チ9の締結力を油圧によって制御することで、零油圧に
よる前輪:後輪=0:100(後輪駆動)から最大油圧によ
る前輪:後輪=50:50(リジット4WD状態)まで無段階に
変更させることが可能である。
The road surface transmission driving force is directly transmitted to the rear wheels 7 and 8, but is transmitted to the front wheels 14 and 15 via the wet multi-plate clutch 9. That is, the distribution of the driving force to the front and rear wheels is controlled by controlling the engagement force of the wet type multi-plate clutch 9 by hydraulic pressure, and the front wheel with zero hydraulic pressure: rear wheel = 0: 100 (rear wheel drive) to the front wheel with maximum hydraulic pressure: rear wheel = 50: 50 (rigid 4WD state).

前記湿式多板クラッチ9の締結力を制御する前後輪駆
動力配分制御装置は、電子制御系として、前後加速度セ
ンサ20と第1横加速度センサ21と第2横加速度センサ22
とETSコントローラ(ETSはElectronic Torque Split
の略称)23を備え、油圧制御系として、オイルポンプ24
とソレノイド制御弁25と制御圧油路26を備えている。
The front / rear wheel driving force distribution control device for controlling the engagement force of the wet multi-plate clutch 9 includes a longitudinal acceleration sensor 20, a first lateral acceleration sensor 21 and a second lateral acceleration sensor 22 as an electronic control system.
And ETS controller (ETS is Electronic Torque Split
), And an oil pump 24 as a hydraulic control system.
And a solenoid control valve 25 and a control pressure oil passage 26.

そして、ETSコントローラ26では、各センサ20〜23か
らの信号を入力し、前後加速度XGと横加速度YGとに基づ
く湿式多板クラッチ9の締結力制御により、前後加速度
XGが大きくなるに従って前輪14,15への伝達トルクTf
増大すると共に横加速度YGが大きくなるに従って前後加
速度XGに対する前輪側伝達トルクTfのゲインk(増大割
合)を減少する前後輪駆動力配分制御が行なわれる。
Then, the ETS controller 26 receives the signals from the respective sensors 20 to 23, the engagement force control of the wet multi-plate clutch 9 based on the longitudinal acceleration X G and the lateral acceleration Y G, longitudinal acceleration
Before and after the lateral acceleration Y G reduces the gain k (increase rate) for the front wheel transmission torque T f for the longitudinal acceleration X G according increases with X G increases the transmission torque T f to the front wheels 14, 15 in accordance with increased Wheel drive force distribution control is performed.

次に、作用を説明する。 Next, the operation will be described.

第3図は所定の制御周期によりETSコントローラ26で
行なわれる前後輪駆動力配分制御作動の流れを示すフロ
ーチャートであり、以下、各ステップの作動を順に説明
する。
FIG. 3 is a flowchart showing the flow of the front and rear wheel driving force distribution control operation performed by the ETS controller 26 at a predetermined control cycle. The operation of each step will be described below in order.

ステップ41では、前後加速度XGと第1横加速度YG1,第
2横加速度YG2が入力される。
In step 41, the longitudinal acceleration XG , the first lateral acceleration YG1 , and the second lateral acceleration YG2 are input.

ステップ42では、上記第1横加速度YG1と第2横加速
度YG2との平均値により横加速度YGが演算される。
In step 42, the lateral acceleration Y G is calculated by the average value between the first lateral acceleration Y G1 and the second lateral acceleration Y G2.

ステップ43では、前後加速度XGに対する前輪側伝達ト
ルクTfのゲインkが横加速度YGの逆数に基づいて下記の
式で演算される。
In step 43, the gain k of the front wheel side transmitted torque T f for the longitudinal acceleration X G is calculated by the following formula based on the reciprocal of the lateral acceleration Y G.

K=α/YG(但し、K≦β) であり、特性図としてあらわすと、第4図のような特性
を示す。
K = α / Y G (where K ≦ β), and when expressed as a characteristic diagram, the characteristics as shown in FIG. 4 are exhibited.

ステップ44では、ゲインkと前後加速度XGとによって
前輪側伝達トルクTf{=K・f(XG)} が演算される。
In step 44, the gain k and the front-wheel-side transfer by the acceleration X G longitudinal torque T f {= K · f ( X G)} is calculated.

尚、特性図としてあらわすと、第5図のような特性を
示す。
In addition, when it is expressed as a characteristic diagram, it shows characteristics as shown in FIG.

ステップ45では、前記ステップ44で求められた前輪側
伝達トルクTfが、予め与えられたTf−i特性テーブルに
よりソレノイド駆動電流iに変換される。
In step 45, the front-wheel-side transmission torque Tf obtained in step 44 is converted to a solenoid drive current i according to a Tf- i characteristic table given in advance.

ステップ46では、ソレノイド制御弁28へディザー電流
(例えば、i±0.1A100Hz)が出力される。
In step 46, a dither current i * (for example, i ± 0.1 A100 Hz) is output to the solenoid control valve 28.

以上のように湿式多板クラッチ9の締結力が、前後加
速度XGと横加速度YGに応じて制御されることにより、直
進走行時,旋回走行時,減速時においては、下記に述べ
る走行性能を示す。
By fastening force of the wet multi-plate clutch 9 as described above is controlled in accordance with the longitudinal acceleration X G and the lateral acceleration Y G, straight running, during turning, at the time of deceleration, running performance described below Is shown.

*直進走行時 直進走行時には、横加速度YGが零もしくは非常に小さ
な値となる為、ゲインKが最も大きな制御特性に基づ
き、前後加速度XGの大きさに応じて前輪側伝達トルクTf
を大きくする、即ち、加速の強さにより前後輪駆動力配
分比を0:100〜50:50とする制御が行なわれる。
* During straight running straight running, since the lateral acceleration Y G becomes zero or very small value, based on the greatest control characteristic gain K, the front wheel transmission torque T f according to the magnitude of the longitudinal acceleration X G
Is controlled, that is, the front / rear wheel driving force distribution ratio is set to 0: 100 to 50:50 depending on the acceleration intensity.

従って、前後加速度XGが非常に大きい急発進時には、
前輪側伝達トルクTfが大きいほぼリジット4WD状態とな
る為、車両の発進性と安定性が高められる。
Therefore, at the time of sudden start where the longitudinal acceleration XG is very large,
Since the vehicle is substantially in the rigid 4WD state in which the front wheel side transmission torque Tf is large, the startability and stability of the vehicle are enhanced.

また、直進加速時には、加速状況に見合って駆動力配
分が最大50:50まで無段階に制御される為、後輪7,8への
過剰な伝達駆動力による後輪輪スリップが前輪14,15へ
の駆動力配分により抑制され、加速性能と安定性とが高
められる。
In addition, during straight-ahead acceleration, the drive power distribution is controlled steplessly up to 50:50 in accordance with the acceleration situation, so rear wheel slip due to excessive transmission drive force to the rear wheels 7, 8 causes the front wheels 14, 15 to slip. The driving force is distributed to the vehicle, and acceleration performance and stability are enhanced.

*旋回走行時 旋回走行時には、横加速度YGが大きいほど小さなゲイ
ンK、また、横加速度YGが小さいほど大きなゲインKに
よる制御特性に基づき、前後加速度XGの大きさに応じて
前輪側伝達トルクTfが大きくする制御が行なわれる。
* When cornering during cornering, a small gain K as the lateral acceleration Y G is large also, based on the control characteristics due to a large gain K as the lateral acceleration Y G is small, the front-wheel-side transmission in accordance with the magnitude of the longitudinal acceleration X G Control for increasing the torque Tf is performed.

従って、横加速度の発生が小さい低μ路加速旋回時に
は、前輪側伝達トルクTfが加速の強さに応じて大きくな
ることで、オーバステアの急増が防止され、車両のコン
トロール性が高まる。
Therefore, at the time of low-μ road acceleration turning where the occurrence of lateral acceleration is small, the front-wheel-side transmission torque Tf increases in accordance with the acceleration intensity, thereby preventing a sudden increase in oversteer and improving the controllability of the vehicle.

また、横加速度の発生が大きい高μ路加速旋回時には
全般的に前輪側伝達トルクTfが小さい制御が行なわれる
ことで、前輪14,15のコーナリングフォース減少が抑制
され、ステアリングの効きが維持され、旋回回頭性の向
上が図られる。
In addition, during acceleration turning on a high μ road where lateral acceleration is large, the front wheel side transmission torque Tf is generally controlled to be small, whereby a decrease in the cornering force of the front wheels 14, 15 is suppressed, and the steering effectiveness is maintained. In addition, the turning property can be improved.

また、高μ路加速旋回時にも低μ路加速旋回時と同様
に、加速の強さに応じて前輪側伝達トルクTfを大きくす
る制御が行なわれることで、オーバステアの急増が防止
され、車両のコントロール性が高まる。
Also, at the time of high μ road acceleration turning, similarly to at the time of low μ road acceleration turning, control to increase the front wheel side transmission torque Tf according to the acceleration intensity is performed, thereby preventing a sudden increase in oversteer, and Controllability increases.

*減速時 車両減速時には、第5図の制御特性図に示すように、
減速度合に応じて前輪側伝達トルクTfを大きくする制御
が行なわれる。
* During deceleration When the vehicle decelerates, as shown in the control characteristic diagram of FIG.
Control is performed to increase the front-wheel-side transmission torque Tf according to the degree of deceleration.

従って、ブレーキ操作やエンジンブレーキによる制動
時には、前輪14,15側にブレーキ量に見合うブレーキト
ルクが伝達されることになり、前後輪の制動力バランス
によりブレーキの効きが高まる。
Therefore, at the time of braking operation or braking by the engine brake, a braking torque corresponding to the braking amount is transmitted to the front wheels 14, 15, and the braking effect is enhanced by the braking force balance between the front and rear wheels.

以上説明したように、実施例の四輪駆動車の駆動力配
分制御装置にあっては、従来の前後輪回転速度差情報に
代え、前後加速度XGを用いてトルクスプリット制御を行
なう装置とした為、1個の前後加速度センサ20を用いる
だけで装置コストを有利にしながら、前後輪回転速度差
を入力情報とする場合と同等のトルクスプリット制御を
達成することが出来る。
As described above, in the driving force distribution control device for a four wheel drive vehicle of Example, instead of the conventional front and rear wheel rotational speed difference information, and an apparatus for performing torque split control using the longitudinal acceleration X G Therefore, torque split control equivalent to the case where the front and rear wheel rotational speed difference is used as input information can be achieved while using only one longitudinal acceleration sensor 20 to improve the apparatus cost.

以上、実施例を図面に基づいて説明してきたが、具体
的な構成及び制御内容はこの実施例に限られるものでは
ない。
Although the embodiment has been described with reference to the drawings, the specific configuration and control contents are not limited to this embodiment.

例えば、実施例では、後輪駆動ベースの車両に前後輪
駆動力配分制御装置を適用した例を示したが、前輪駆動
ベースの車両に前後輪駆動力配分制御装置を適用しても
良い。
For example, in the embodiment, the example in which the front and rear wheel drive force distribution control device is applied to the rear wheel drive base vehicle is described, but the front and rear wheel drive force distribution control device may be applied to the front wheel drive base vehicle.

また、実施例では、前後輪駆動力配分装置として、外
部からの制御油圧により伝達トルクを変更できる多板摩
擦クラッチを用いた例を示したが、外部制御により伝達
トルクが変更可能なクラッチであれば、例えば、制御型
ビスカスクラッチや制御型オリフィスクラッチや電磁ク
ラッチ等を用いても良い。
Further, in the embodiment, as the front and rear wheel driving force distribution device, an example is shown in which a multi-plate friction clutch that can change the transmission torque by an external control hydraulic pressure is used, but any clutch that can change the transmission torque by external control is used. For example, a control type viscous clutch, a control type orifice clutch, an electromagnetic clutch, or the like may be used.

また、実施例では、前輪側伝達トルク特性として、第
5図に示す特性を用いて前後輪駆動力配分制御を行なう
装置を示したが、第6図に示すように、減速時であっ
て、所定の減速加速度を超える領域では前輪側伝達トル
クTfを一定値とする前輪側伝達トルク特性により制御す
るようにしても良い。
Further, in the embodiment, the apparatus for performing the front and rear wheel driving force distribution control using the characteristic shown in FIG. 5 as the front wheel side transmission torque characteristic is shown, but as shown in FIG. In a region exceeding a predetermined deceleration, the control may be performed based on the front wheel side transmission torque characteristic in which the front wheel side transmission torque Tf is a constant value.

この場合には、急制動時に車輪ロックを防止するABS
(アンチスキッド・ブレーキング・システム)との制御
干渉が防止されるし、急制動時に適度なタックインを起
すことも出来る。
In this case, ABS to prevent wheel lock during sudden braking
(Anti-skid braking system) can be prevented from interfering with control, and a moderate tack-in can be caused during sudden braking.

(発明の効果) 以上説明してきたように、本発明にあっては、2輪駆
動ベースの電子制御トルクスプリットによる四輪駆動車
の駆動力配分制御装置において、前後輪回転速度差情報
に代え、前後加速度情報を用いてトルクスプリット制御
を行う手段とした為、装置コストを有利にしながら、前
後輪回転速度差を入力情報とする場合と同等のトルクス
プリット制御を達成することができるという効果が得ら
れる。
(Effects of the Invention) As described above, according to the present invention, in the driving force distribution control device for the four-wheel drive vehicle using the electronically controlled torque split based on the two-wheel drive, instead of the front and rear wheel rotational speed difference information, Since the means for performing the torque split control using the longitudinal acceleration information is employed, the effect that the torque split control equivalent to the case where the difference between the front and rear wheel rotational speeds is used as the input information can be achieved with the advantage of the apparatus cost is obtained. Can be

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の四輪駆動車の駆動力配分制御装置を示
すクレーム対応図、第2図は実施例の駆動力配分制御装
置が適用された四輪駆動車の全体システム図、第3図は
実施例装置のETSコントローラでの前後輪駆動力配分制
御作動の流れを示すフローチャート、第4図はETSコン
トローラに設定されている横加速度に対するゲイン特性
図、第5図は前後加速度に対する前輪側伝達トルク特性
を示す制御特性図、第6図は前後加速度に対する前輪側
伝達トルク特性の他の例を示す制御特性図である。 a……可変駆動力配分クラッチ b……前後加速度検出手段 c……横加速度検出手段 d……前後輪駆動力配分制御手段
FIG. 1 is a claim correspondence diagram showing a driving force distribution control device for a four-wheel drive vehicle of the present invention, FIG. 2 is an overall system diagram of a four-wheel drive vehicle to which the driving force distribution control device of the embodiment is applied, FIG. 4 is a flowchart showing the flow of the front and rear wheel driving force distribution control operation by the ETS controller of the embodiment apparatus. FIG. 4 is a gain characteristic diagram with respect to the lateral acceleration set in the ETS controller. FIG. FIG. 6 is a control characteristic diagram showing another example of the front wheel side transmission torque characteristic with respect to the longitudinal acceleration. a: Variable driving force distribution clutch b: Forward / backward acceleration detecting means c: Lateral acceleration detecting means d: Front / rear wheel driving force distribution controlling means

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】前後輪の一方へのエンジン直結駆動系に対
し前後輪の他方への駆動系の途中に設けられた可変駆動
力配分クラッチと、 車両の前後方向加速度を検出する前後加速度検出手段
と、 車両の横方向加速度を検出する横加速度検出手段と、 前後加速度が大きくなるに従ってクラッチ締結駆動輪へ
の伝達駆動力を増大して駆動力配分を4輪駆動側にする
と共に横加速度が大きくなるに従って前後加速度の発生
に対するクラッチ締結駆動輪への伝達駆動力の増大割合
を減少する制御内容により前記可変駆動力配分クラッチ
の締結力制御を行なう前後輪駆動力配分制御手段と、 を備えている事を特徴とする四輪駆動車の駆動力配分制
御装置。
1. A variable driving force distribution clutch provided in the middle of a driving system to the other of the front and rear wheels with respect to a driving system directly connected to the engine to one of the front and rear wheels, and a longitudinal acceleration detecting means for detecting a longitudinal acceleration of the vehicle. Lateral acceleration detecting means for detecting the lateral acceleration of the vehicle; and increasing the longitudinal driving acceleration to increase the transmission driving force to the clutch engagement driving wheels to increase the driving force distribution to the four-wheel drive side and to increase the lateral acceleration. Control means for controlling the engagement force of the variable drive force distribution clutch according to the control content for decreasing the increase rate of the transmission drive force to the clutch engagement drive wheel with respect to the occurrence of the longitudinal acceleration. A driving force distribution control device for a four-wheel drive vehicle.
JP1285788A 1989-10-31 1989-10-31 Driving force distribution control device for four-wheel drive vehicle Expired - Fee Related JP2646764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1285788A JP2646764B2 (en) 1989-10-31 1989-10-31 Driving force distribution control device for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1285788A JP2646764B2 (en) 1989-10-31 1989-10-31 Driving force distribution control device for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPH03148335A JPH03148335A (en) 1991-06-25
JP2646764B2 true JP2646764B2 (en) 1997-08-27

Family

ID=17696082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1285788A Expired - Fee Related JP2646764B2 (en) 1989-10-31 1989-10-31 Driving force distribution control device for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JP2646764B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4334600B1 (en) 2008-05-28 2009-09-30 株式会社東芝 Electronic devices and connectors
JP4795444B2 (en) * 2009-02-09 2011-10-19 ホシデン株式会社 connector
US20100250799A1 (en) 2009-03-24 2010-09-30 Kabushiki Kaisha Toshiba Information processing apparatus and power supply controlling method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729554B2 (en) * 1987-02-19 1995-04-05 日産自動車株式会社 Drive force distribution controller for four-wheel drive vehicle
JPH01247222A (en) * 1988-03-28 1989-10-03 Mazda Motor Corp Device for controlling distribution of torque of four-wheel-drive vehicle

Also Published As

Publication number Publication date
JPH03148335A (en) 1991-06-25

Similar Documents

Publication Publication Date Title
JP2760865B2 (en) Traction control device for four-wheel drive vehicles
JP3409439B2 (en) Driving force distribution control system for left and right wheels and front and rear wheels
US5740877A (en) Driving-torque distribution control system for four-wheel drive vehicles
JP2830944B2 (en) Drive system clutch control device for vehicles
US6634451B2 (en) Power distribution control system for a vehicle
JP4638065B2 (en) Control device for four-wheel drive vehicle
JP3192768B2 (en) Comprehensive control system for front and rear wheel drive force distribution and traction
JP3214169B2 (en) Differential limit torque control device
US20090018742A1 (en) Device operable to control turning of vehicle
US6145614A (en) Four-wheel drive vehicle having differential-limiting control
EP1400390A2 (en) Power distribution control apparatus for four wheel drive vehicle
CA2339452A1 (en) Driving force control system for four-wheel drive vehicles
JP2583910B2 (en) Driving force distribution control method for front and rear wheel drive vehicles
JP2646764B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP2853474B2 (en) Driving force distribution device for four-wheel drive vehicles
JP2770670B2 (en) Driving force distribution control system for front and rear wheels and left and right wheels
JP2502758B2 (en) Integrated control device for front and rear wheel drive force distribution and drive force
JP2502755B2 (en) Integrated control device for driving force and front / rear wheel driving force distribution
JP3055709B2 (en) Control device for rear wheel differential limiter
JP2745992B2 (en) Driving force distribution device for four-wheel drive vehicles
JP2518444B2 (en) Driving force distribution switchable four-wheel drive vehicle
JP3100419B2 (en) Control device for rear wheel differential limiter
JPH0764218B2 (en) Driving force distribution clutch engagement force control device
JP2701308B2 (en) Differential limit torque control device
JP2857791B2 (en) 4-wheel drive vehicle with switching drive power distribution

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees