JPH0487525A - Power control system - Google Patents

Power control system

Info

Publication number
JPH0487525A
JPH0487525A JP2194639A JP19463990A JPH0487525A JP H0487525 A JPH0487525 A JP H0487525A JP 2194639 A JP2194639 A JP 2194639A JP 19463990 A JP19463990 A JP 19463990A JP H0487525 A JPH0487525 A JP H0487525A
Authority
JP
Japan
Prior art keywords
phase
power
transformer
high speed
synchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2194639A
Other languages
Japanese (ja)
Other versions
JP2903336B2 (en
Inventor
Ryuichi Shimada
隆一 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2194639A priority Critical patent/JP2903336B2/en
Publication of JPH0487525A publication Critical patent/JPH0487525A/en
Application granted granted Critical
Publication of JP2903336B2 publication Critical patent/JP2903336B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To feed rotary energy corresponding to the phase angle, as an effective power, to a system at high speed by interposing a semiconductor converter between the system and a synchronous machine and connecting with the secondary of a transformer thereby controlling the phase angle of the synchronous machine at high speed. CONSTITUTION:A power system controller connects a system 2 and a synchronous machine 8. A semiconductor converter 12 (inverter) is connected with the system 2 and produces, together with a transformer 13, a voltage Vc having phase shift of 90 deg. from the phase voltage which is then added on the system voltage V2. The amount of phase shift is controlled at high speed by the output voltage of the semiconductor converter. According to the constitution, a semiconductor phase shifter interposed between a system and a synchronous phase modifier controls the phase angle of the synchronous phase modifier at high speed thus controlling the effective power at high speed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は半導体化移相器と同期調相機のフライホイール
効果を利用した電力制御システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a power control system that utilizes the flywheel effect of a semiconductor phase shifter and a synchronous phase modifier.

(従来の技術) 需要家に対して良質の電気を供給するためには、電力系
統を安定化させる必要があり、そのための手法として系
統動揺に対して高速に有効電力を制御することが有効で
あることが知られている。有効電力の制御としては、ア
メリカにおいては移相変圧器を用いた潮流制御が行なわ
れているが、電力潮流の量の制御は変圧器のタップを切
換えることによって行なわれている。
(Conventional technology) In order to supply high-quality electricity to consumers, it is necessary to stabilize the power system, and an effective method for achieving this is to quickly control active power in response to system fluctuations. It is known that there is. In the United States, active power is controlled by power flow control using a phase-shifting transformer, and the amount of power flow is controlled by switching the taps of the transformer.

又、電池等の電源又は回転機等をインバータを介して直
接に系統接続すれば、有効電力を高速に制御できるが、
この場合は通過有効電力と同容量のインバータ設備を要
する。
In addition, if a power source such as a battery or a rotating machine is directly connected to the grid via an inverter, the effective power can be controlled at high speed.
In this case, inverter equipment with the same capacity as the passing active power is required.

(発明が解決しようとする課題) 上記したように、移相変圧器を用いたものは、タップ切
換操作が複雑であり、かつ有効電力の増加も段階的であ
って系統安定度にとって有利ではない。又、回転機等を
インバータを介して接続する方式は、容量の大きなイン
バータ設備を要して不利である。
(Problems to be Solved by the Invention) As mentioned above, in the case of using a phase-shifting transformer, the tap switching operation is complicated, and the increase in active power is also gradual, which is not advantageous for system stability. . Furthermore, the method of connecting a rotating machine or the like via an inverter is disadvantageous because it requires inverter equipment with a large capacity.

本発明は上記事情に鑑みてなされたものであり、系統安
定化に有利な電力制御システムを提供することを目的と
している。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a power control system that is advantageous for system stabilization.

[発明の構成] (課題を解決するための手段及び作用)上記目的を達成
するため、本発明は変圧器を介して連系する系統間の潮
流制御を行なう電力制御システムにおいて、系統と同期
機との間に半導体変換器を介在して前記変圧器の2次側
に接続すると共に、前記同期機の位相角を高速に制御す
るよう構成した。
[Structure of the Invention] (Means and Effects for Solving the Problems) In order to achieve the above object, the present invention provides a power control system that performs power flow control between grids interconnected via transformers. A semiconductor converter is interposed between the transformer and the transformer, and the transformer is connected to the secondary side of the transformer, and the phase angle of the synchronous machine is controlled at high speed.

したがって同期機の位相角を高速に制御することにより
、位相角に応じた回転エネルギーを有効電力として高速
に系統へ流出、流入することができる。
Therefore, by controlling the phase angle of the synchronous machine at high speed, rotational energy corresponding to the phase angle can be rapidly output and input into the grid as active power.

(実施例) 以下図面を参照して実施例を説明する。(Example) Examples will be described below with reference to the drawings.

第1図は本発明による電力制御システムを説明するため
の一実施例の構成図である。
FIG. 1 is a configuration diagram of an embodiment for explaining a power control system according to the present invention.

第1図において1は電力系統制御装置であり、系統2.
同期機8間を変圧器11−1.11−2を介して接続し
ている。12は半導体変換器(インバータ装置)であり
、変圧器4を介して系統2に接続され、電圧の移相は半
導体変換器12及び変圧器13によって相電圧と90°
位相の興なる電圧■。を発生し、これを変圧器を介して
系統電圧■2に加算する。
In FIG. 1, reference numeral 1 denotes a power system control device, and system 2.
The synchronous machines 8 are connected via transformers 11-1 and 11-2. Reference numeral 12 denotes a semiconductor converter (inverter device), which is connected to the system 2 via the transformer 4, and the phase shift of the voltage is 90° with respect to the phase voltage by the semiconductor converter 12 and the transformer 13.
Voltage that changes phase ■. is generated and added to the grid voltage (2) via a transformer.

なお、13−1.13−2は電圧注入用変圧器であり、
変圧器11−2の各相巻線の中性点寄位置に#続する。
In addition, 13-1.13-2 is a voltage injection transformer,
It is connected to the neutral position of each phase winding of the transformer 11-2.

5はPT、 6はCTであり、制御部7に入力される。5 is a PT, and 6 is a CT, which are input to the control unit 7.

8は同期調相機、9はフライホイールである。8 is a synchronous phase modifier, and 9 is a flywheel.

次に作用について説明する。Next, the effect will be explained.

電力系統において、電力の移動は下記(1)式で表わさ
れる。
In the power system, the movement of power is expressed by the following equation (1).

p=v  −v  sinθ/X     −−−−−
−(11S 但し、v、、v、・・・it&両端の電圧θ・・・・・
・・・・位相差 X・・・・・・・・・線路のりアクタンスこの場合、9
0°位相の異なる電圧■。を入力電圧v2に加算(第2
図(a))する。そして移相量は半導体変換器出力電圧
によって高速に制御される。
p=v −v sinθ/X -----
-(11S However, v,,v,...it&voltage at both ends θ...
・・・・Phase difference X・・・・・・・・・Line glue actance In this case, 9
Voltages with different phases at 0°■. is added to the input voltage v2 (second
Figure (a)). The amount of phase shift is controlled at high speed by the output voltage of the semiconductor converter.

なお、第2図(b)は制御後の有効・無効電力を表わし
たベクトル図である。
Note that FIG. 2(b) is a vector diagram showing active and reactive power after control.

いま、変換器の出力電圧の最大値を■ とすると、移相
範囲は±s + n  < v c II / vl 
)となり、制御可能な最大電力は下記(2)式となる。
Now, assuming that the maximum value of the output voltage of the converter is ■, the phase shift range is ±s + n < v c II / vl
), and the maximum controllable power is expressed by equation (2) below.

p  =v1 ・V o、/ X       ・・・
・・・(2)また、P と変換器設備容量P。lとの比
αは、■ 下記(3)式となる。
p = v1 ・V o, / X...
...(2) Also, P and converter installed capacity P. The ratio α with l is given by the following equation (3).

Pc1l  P、  X  P pu    l 但し、X、u・・・単位法で表わしたりアクタンス (3)式から、Xpuの小さい場合には、極めて小容量
の変換器により、大電力を制御できることがわかる。
Pc1lP,

なおインバータ出力電圧値とその位相角を任意に制御す
れば、有効電力のみならず、無効電力も同時に高速制御
できる。
Note that by arbitrarily controlling the inverter output voltage value and its phase angle, not only the active power but also the reactive power can be simultaneously controlled at high speed.

この場合、半導体変換器12の入出力電力を制御すれば
同期調相機の慣性質量を短時間のエネルギー蓄積要素と
して活用できる。
In this case, by controlling the input and output power of the semiconductor converter 12, the inertial mass of the synchronous phase modifier can be utilized as a short-time energy storage element.

このとき、同期調相機における機械方程式は下記となる Jdω / dt= P (/ωア    ・・・・・
・(4)γ ω  =dθ /dt            ・・・
・・・(5)γ       γ 但、 J・・・慣性質量 ω ・・・軸角速度 γ θ ・・・回転子m械角 γ Pl・・・同期機入力 いま時間Tの間、定電力を供給すると仮定すると、供給
できる最大電力P工及び供給可能なエネルギーEは、上
式及び(1)式より下式となる。
At this time, the mechanical equation for the synchronous phase modifier is as follows: Jdω / dt = P (/ωa...
・(4) γ ω = dθ /dt...
...(5) γ γ However, J...Inertial mass ω...Shaft angular velocity γ θ...Rotor m mechanical angle γ Pl...Synchronous machine input Constant power is supplied during the current time T Assuming this, the maximum power P that can be supplied and the energy E that can be supplied are determined by the following formula from the above formula and formula (1).

E=E  θ /ωoT S   摺 =4E、ωd/ω0     ・・・・・・(8)但し
、ω0=同期速度 θ :最大移相量 E、:慣性エネルギー ωa1大移摺移相速度1/T) Po:定格電力 T :慣性定数(ES/Pn) (6)〜(8)式から、運転時間Tを短くすれば、より
多くのエネルギーを利用できることがわかる。
E=E θ /ωoT S Sliding=4E, ωd/ω0 (8) However, ω0=synchronous speed θ: maximum phase shift amount E,: inertia energy ωa1 large shift phase shift speed 1/T ) Po: Rated power T: Inertia constant (ES/Pn) From equations (6) to (8), it can be seen that more energy can be used by shortening the operating time T.

例えば、最大移相量を±30°、慣性定数を2秒とすれ
ば、定格電力を0.16秒間供給できる。更に、JT−
60トロイダル磁場コイル電源用フライホイ一ル発電機
相当(同期機容量: 200HVA、慣性エネルギー;
8GJ、慣性定数=40秒)の機器を使用すれば、0.
73秒間定格電力を供給できる。
For example, if the maximum phase shift amount is ±30° and the inertia constant is 2 seconds, the rated power can be supplied for 0.16 seconds. Furthermore, JT-
Equivalent to a flywheel generator for power supply of 60 toroidal magnetic field coils (synchronous machine capacity: 200HVA, inertial energy;
8GJ, inertia constant = 40 seconds), 0.
Can supply rated power for 73 seconds.

これらの有効電力制御は、実線例で示すようにフライホ
イールを接続すればより大きな効果を得ることができる
が、同期調相機本体の持つフライホイール効果だけでも
有効な制御を行なうことが可能である。又、同期調相機
とした部分も、これに限定されるものではなく、同期機
であればよいことは勿論である。
These active power controls can achieve greater effects by connecting a flywheel as shown in the solid line example, but it is also possible to perform effective control with just the flywheel effect of the synchronous phase modifier itself. . Moreover, the part that is made into a synchronous phase modifier is not limited to this, and it goes without saying that any synchronous machine may be used.

[発明の効果コ 以上説明したように、本発明によれば系統と同期調相機
との間に半導体化移相器を接続し、同期調相機の位相角
を高速に制御するよう構成したのて、以下に列挙する効
果を奏する。
[Effects of the Invention] As explained above, according to the present invention, a semiconductor phase shifter is connected between the grid and the synchronous phase modulator, and the phase angle of the synchronous phase modulator is configured to be controlled at high speed. , produces the effects listed below.

■ 非常に高速に有効電力を制御できる。■ Active power can be controlled very quickly.

■ インバータは位相差分の電圧を発生させるだけでよ
いため、通過させる電力に比して、インバータ8備容量
が小さくてすむ。
■ Since the inverter only needs to generate a voltage corresponding to the phase difference, the capacity of the inverter is small compared to the power to be passed.

■ インバータ出力電圧値と系統電圧に対する位相を任
意に変えることにより、有効電力と無効電力の各々の値
及びその流れを自在に制御することができる。
(2) By arbitrarily changing the inverter output voltage value and the phase relative to the grid voltage, the values and flows of active power and reactive power can be freely controlled.

■ インバータ側回路を星形結線変圧器の中性点側に接
続することにより、インバータ側の絶縁を低減できる。
■ Insulation on the inverter side can be reduced by connecting the inverter side circuit to the neutral point side of the star-connected transformer.

■ 同期調相機を電源として利用するため、需要端での
有効電力制御が可能となり、系統安定化効果が大きい。
■ Since a synchronous phase modifier is used as a power source, active power control at the demand end is possible, which has a significant grid stabilizing effect.

■ 同期調相機と組み合わせて有効電力と無効電力を同
時に高速制御することにより、大きな系統安定化効果が
得られる。
■ A large system stabilization effect can be obtained by simultaneously controlling active power and reactive power at high speed in combination with a synchronous phase modifier.

■ 当システムの同期調相機に、内部リアクタンスが小
さい超電導発@機を使用すれば、より大きな系統安定化
効果を持たせることかできる。
■ If a superconducting generator with small internal reactance is used as the synchronous phase modifier in this system, a greater system stabilizing effect can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電力制御システムを説明する一実
施例の構成図、第2図は制御後の入出力電圧のベクトル
図である。 1・・・電力制御装置   2・・・電力系統4・・・
変圧器      5・・・PT6・・・CT    
    7・・・制御部8・・・同期調相機    9
・・・フライホイール11・・・変圧器      1
2・・・半導体変換器13・・・移相電圧注入用変圧器 14・・・同期機インピーダンス 特許出願人  東京電力株式会社 代理人弁理士  石 井   紀 男
FIG. 1 is a block diagram of an embodiment of the power control system according to the present invention, and FIG. 2 is a vector diagram of input and output voltages after control. 1... Power control device 2... Power system 4...
Transformer 5...PT6...CT
7... Control unit 8... Synchronous phase adjuster 9
... Flywheel 11 ... Transformer 1
2... Semiconductor converter 13... Phase-shifted voltage injection transformer 14... Synchronous machine impedance patent applicant Norio Ishii, Tokyo Electric Power Company's representative patent attorney

Claims (2)

【特許請求の範囲】[Claims] (1)変圧器を介して連系する系統間の潮流制御を行な
う電力制御システムにおいて、系統と同期機との間に半
導体変換器を介在して前記変圧器の2次側に接続すると
共に、前記同期機の位相角を高速に制御することを特徴
とする電力制御システム。
(1) In a power control system that performs power flow control between systems interconnected via a transformer, a semiconductor converter is interposed between the system and the synchronous machine and connected to the secondary side of the transformer, A power control system characterized in that the phase angle of the synchronous machine is controlled at high speed.
(2)半導体変換器を介した制御出力は星形結線変圧器
の中性点寄りに入力することを特徴とする請求項1項記
載の電力制御システム。
(2) The power control system according to claim 1, wherein the control output via the semiconductor converter is inputted to a point near the neutral point of the star-connected transformer.
JP2194639A 1990-07-23 1990-07-23 Power control system Expired - Lifetime JP2903336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2194639A JP2903336B2 (en) 1990-07-23 1990-07-23 Power control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2194639A JP2903336B2 (en) 1990-07-23 1990-07-23 Power control system

Publications (2)

Publication Number Publication Date
JPH0487525A true JPH0487525A (en) 1992-03-19
JP2903336B2 JP2903336B2 (en) 1999-06-07

Family

ID=16327863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2194639A Expired - Lifetime JP2903336B2 (en) 1990-07-23 1990-07-23 Power control system

Country Status (1)

Country Link
JP (1) JP2903336B2 (en)

Also Published As

Publication number Publication date
JP2903336B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
US5469044A (en) Transmission line power flow controller with unequal advancement and retardation of transmission angle
US3975646A (en) Asynchronous tie
US6741485B1 (en) Interconnection system for transmitting power between electrical systems
JPS61236393A (en) Control system for induction motor driver using load commutation type inverter
WO1993023910A9 (en) Vernier control system for subsynchronous resonance mitigation
US5841267A (en) Power flow control with rotary transformers
JPH0923651A (en) System for interconnecting electric systems having diffefentelectrical characteristics
US4873478A (en) Method and apparatus for controlling an alternating current motor particularly at low speeds
JP2660126B2 (en) Frequency fluctuation suppression device
JPH0638599A (en) Pumped-storage power generating apparatus
CN101388634A (en) Step motor controlling method
US5764499A (en) Direct a.c. converter
JPH0487525A (en) Power control system
EP0800717A1 (en) Interconnection system for transmitting power between electrical systems
Lipo et al. Design and control techniques for extending high frequency operation of a CSI induction motor drive
Banerjee et al. Transient performance comparison of switched doubly-fed machine propulsion drives
JP2575535B2 (en) Frequency converter
JPH0454832A (en) Rotary system linkage unit
JP3495140B2 (en) Voltage control device for wound induction machine
JPS62181698A (en) Controlling device for variable-speed generating system
SU771796A1 (en) Device for connecting two power systems
RU1780139C (en) Electric drive
RU2020689C1 (en) Asynchronized electromechanical frequency changer
SU1111234A1 (en) Rotor position transducer for drive with double feed electric machine
JPS6310672B2 (en)