JPH0487265A - Thin closed type battery - Google Patents
Thin closed type batteryInfo
- Publication number
- JPH0487265A JPH0487265A JP2200235A JP20023590A JPH0487265A JP H0487265 A JPH0487265 A JP H0487265A JP 2200235 A JP2200235 A JP 2200235A JP 20023590 A JP20023590 A JP 20023590A JP H0487265 A JPH0487265 A JP H0487265A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- synthetic resin
- resin body
- electrolyte
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920003002 synthetic resin Polymers 0.000 claims abstract description 40
- 239000000057 synthetic resin Substances 0.000 claims abstract description 40
- 239000003792 electrolyte Substances 0.000 claims abstract description 19
- 239000004020 conductor Substances 0.000 claims abstract description 11
- 238000010030 laminating Methods 0.000 claims abstract description 7
- 238000003860 storage Methods 0.000 claims description 24
- 239000007784 solid electrolyte Substances 0.000 claims description 5
- 230000000149 penetrating effect Effects 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 230000000717 retained effect Effects 0.000 claims 1
- 238000005304 joining Methods 0.000 abstract description 3
- 239000007788 liquid Substances 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 9
- 238000005192 partition Methods 0.000 description 8
- 239000002184 metal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Connection Of Batteries Or Terminals (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、薄形密閉形蓄電池の改良に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to improvements in thin sealed storage batteries.
[従来の技術]
従来、高電圧形の蓄電池を製造する場合には、第3図に
示したように単一セル12の電極端子13.14を外部
結線する方法や、単一セルを接触積層しケースに入れて
電池を形成する方法や、第4図に示したように電槽18
にセルごとの隔壁15を設は該隔壁間にセル16を入れ
、隣接するセルの正極、負極を隔壁15を通して貫通接
続するか、接続導体を隔壁15をわたして接続する方法
等があった。更には、第5図に示した所謂、バイポーラ
方式のもののように、セルごとに1枚のバイポーラ集電
体19を隔壁として用い液密閉を行ない、バイポーラ集
電体19の表・裏で正極20゜負極21を担うようにし
たものを、隣接するものどうしが異極で対向するように
して並設し、その両側には集電体19′が担う正極20
又は負極21を配設して、相対向する正極20と負極2
1の間に電解液保持体22を介在させて複合構成し、両
側端を封止体23で封止するものがあった。[Prior Art] Conventionally, when manufacturing a high-voltage storage battery, as shown in FIG. How to form a battery by putting it in a case
In addition to providing partition walls 15 for each cell, there are methods in which cells 16 are inserted between the partition walls and the positive and negative electrodes of adjacent cells are connected through the partition walls 15, or connecting conductors are connected across the partition walls 15. Furthermore, as in the so-called bipolar system shown in FIG.゜ Negative electrodes 21 are arranged side by side so that adjacent electrodes have different polarities and face each other, and on both sides there are positive electrodes 20 supported by current collectors 19'.
Alternatively, the negative electrode 21 is arranged so that the positive electrode 20 and the negative electrode 2 face each other.
There is a composite structure in which an electrolyte holder 22 is interposed between the electrolyte holder 1 and both ends thereof are sealed with sealing bodies 23.
[発明が解決しようとする課題]
上記従来の蓄電池のうち、第3図に示した単一セル12
の外部結線方式や接触積層方式では、電池のセルごとの
結線部や接触端子部11が必要であり、電池が太き(又
は重くなって、電池のエネルギ密1度か低下する。また
第4図に示した隔壁電槽方式では、接続コネクタ部17
が必要なこと、合成樹脂部が電極と離れており、極板を
個々にスクッキングしてセル積層しなければならず、更
に、必要電圧に応じただけの電槽18を金型成型しなけ
ればならない問題かある。次に、第5図に示したバイポ
ーラ方式のものは、セル間の液短絡を防止することが極
めて難しく、また、集電体19゜19′の腐食という問
題も加わってくる。[Problem to be solved by the invention] Among the conventional storage batteries described above, the single cell 12 shown in FIG.
In the external connection method and contact stacking method, a connection section and a contact terminal section 11 are required for each cell of the battery, which makes the battery thicker (or heavier) and reduces the energy density of the battery by 1 degree. In the bulkhead battery case method shown in the figure, the connection connector part 17
The synthetic resin part is separated from the electrode, the electrode plates must be individually stacked to stack the cells, and furthermore, the battery case 18 must be molded according to the required voltage. There is an unavoidable problem. Next, in the bipolar system shown in FIG. 5, it is extremely difficult to prevent liquid short circuit between cells, and there is also the problem of corrosion of the current collectors 19 and 19'.
口課題を解決するための手段]
上記の問題を解決するために、本発明の薄形密閉形蓄電
池では、実施例の図面にみられるように、フィルム状又
はシート状の合成樹脂体1の片面に正極3が他の片面に
負極4がそれぞれ接合され、正極3及び負極4が合成樹
脂体1を貫通する接続導体5により接続されてなる複数
個の電極ユニット6と、電解質を含む隔離体7とを順次
積層して電極ユニット積層体を構成する。合成樹脂体]
への正極3及び負極4の接合は、接合及び溶着により行
なわれる。そしてこの積層体の積層方向両側に、フィル
ム状又はシート状の合成樹脂体1′の片面に正極3又は
負極4が接合されてなる単極ユニット9を当接配置し、
電極ユニット6及び単極ユニット9の各合成樹脂体1,
1′をそれぞれ周辺部IAで一体に接合する。Means for Solving the Problem] In order to solve the above problem, in the thin sealed storage battery of the present invention, as shown in the drawings of the embodiment, one side of the film-like or sheet-like synthetic resin body 1 is A plurality of electrode units 6 each having a positive electrode 3 and a negative electrode 4 bonded to one side thereof, the positive electrode 3 and the negative electrode 4 being connected by a connecting conductor 5 penetrating the synthetic resin body 1, and a separator 7 containing an electrolyte. are sequentially stacked to form an electrode unit laminate. Synthetic resin body]
The positive electrode 3 and the negative electrode 4 are joined to each other by joining and welding. Then, on both sides of this laminate in the stacking direction, a monopolar unit 9, which is formed by bonding a positive electrode 3 or a negative electrode 4 to one side of a film-like or sheet-like synthetic resin body 1', is placed in contact with it,
Each synthetic resin body 1 of the electrode unit 6 and monopolar unit 9,
1' are each joined together at the peripheral portion IA.
1個の電極ユニットにおいて、接続導体5の数は少なく
とも1本あればよい。そして各合成樹脂体1.1−の接
合は、溶着や接着等を用いることかできる。In one electrode unit, the number of connection conductors 5 may be at least one. The respective synthetic resin bodies 1.1- can be joined by welding, adhesion, or the like.
電解質を含む隔離体7には、電解液保持体又は固体電解
質を用いることができる。As the separator 7 containing the electrolyte, an electrolyte holder or a solid electrolyte can be used.
[作 用]
本発明の蓄電池においては、セル間の隔壁が1枚の合成
樹脂体1て形成されるので、従来のセルごとの単なる積
層の場合のように、隣接するセルごとの外装体が重複し
て積層されるものに比し、極めて薄形の電池が得られる
。また合成樹脂体1を貫通する接続導体5により隣接す
るセルの正極と負極とが電気的に接続されているので、
セルどうしを電気的に接続するための外部結線部や接触
端子部、あるいは接続コネクタ部等を必要としないので
、電池を小形・軽量化することができ、電池のエネルギ
密度が高めることができる。[Function] In the storage battery of the present invention, the partition walls between the cells are formed by one synthetic resin body 1, so that the exterior body of each adjacent cell is different from the conventional case where each cell is simply laminated. An extremely thin battery can be obtained compared to a battery that is stacked overlappingly. Furthermore, since the positive and negative electrodes of adjacent cells are electrically connected by the connecting conductor 5 penetrating the synthetic resin body 1,
Since there is no need for external wiring sections, contact terminal sections, connection connector sections, etc. for electrically connecting the cells, the battery can be made smaller and lighter, and the energy density of the battery can be increased.
隔離体7が電解液保持体からなる液式の電池に本発明を
適用した場合に、合成樹脂体1によりセル間の液密性を
確実に保つことかできる。また電極3,4か合成樹脂体
1に接合されているため、電極と合成樹脂体1との開に
は電解液が浸入せず、電極の集電体の腐食が両面で起き
ずに片面からのみ起きるため、腐食速度が通常の場合の
1772に低下し、それだけ寿命が長くなる。When the present invention is applied to a liquid type battery in which the separator 7 is an electrolyte holder, the synthetic resin body 1 can reliably maintain liquid tightness between the cells. In addition, since the electrodes 3 and 4 are bonded to the synthetic resin body 1, the electrolyte does not enter the gap between the electrodes and the synthetic resin body 1, and corrosion of the current collector of the electrode does not occur on both sides. Since the corrosion rate only occurs in the normal case, the corrosion rate is reduced to 1772 times compared to the normal case, and the life span is increased accordingly.
また隔離体7を固体電解質とすると、1枚の薄い合成樹
脂体1によりセル間の気密性か中部に保たれた薄形密閉
形の固体電解質蓄電池が得られる。If the separator 7 is a solid electrolyte, a thin sealed solid electrolyte storage battery is obtained in which the single thin synthetic resin body 1 maintains the airtightness between the cells in the middle.
[実施例コ
以下、本発明の実施例を図面を参照して説明する。第1
図は本発明を密閉形蓄電池に適用する場合に用いる電極
ユニットの構成を示したもので、1はフィルム状又はシ
ート状のポリプロピレンのごとき合成樹脂体、3は正極
、4は負極である。[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1st
The figure shows the structure of an electrode unit used when the present invention is applied to a sealed storage battery, in which 1 is a film-like or sheet-like synthetic resin body such as polypropylene, 3 is a positive electrode, and 4 is a negative electrode.
これらの電極はそれぞれ集電体を基体として、その上に
活物質が設けられて構成される。集電体としては、金属
箔や金属片、又は格子状金属、あるいはメツキ、蒸着、
溶射、スパッタリング、イオンブレーティング、CVD
、又は分子線エピタキシ法等による金属薄膜、更には導
電性ポリマ等の電子伝導性を備えるものであればよい。These electrodes each have a current collector as a base and an active material provided thereon. As a current collector, metal foil, metal piece, grid metal, plating, vapor deposition,
Thermal spraying, sputtering, ion blating, CVD
Alternatively, a metal thin film formed by molecular beam epitaxy or the like, or even a conductive polymer, which has electron conductivity, may be used.
そして、正極集電体の表面又は格子目内に正極活物質を
塗布又は充填して正極3とし、また、負極集電体の表面
又は格子目内に負極活物質を塗布又は充填して負極4と
する。Then, a positive electrode active material is applied or filled on the surface or inside the grid of the positive electrode current collector to form a positive electrode 3, and a negative electrode active material is applied or filled on the surface or inside the grid of the negative electrode current collector to form a negative electrode 4. shall be.
2は上記の電極3.4の合成樹脂体1に対向する面に塗
布されたラミネート剤で、このラミネート剤は例えばエ
ポキシ樹脂と塩素化ポリプピレンの2層コートやアクリ
ル系接着剤からなる。電極3.4はこのラミネート剤2
を介して合成樹脂体1の両面に接着又は熱溶着されてい
る。そして、フレキシブル・プリント配線板の技術を用
いて、合成樹脂体1と電極3,4を貫通する孔を少なく
とも1箇所以上あけて、該貫通孔を介し無電解メツキや
クリームハンダのりフローにより電極3゜4の両者を接
続する接続導体5を設ける。なお、メツキにより接続導
体5を形成した場合、接続導体5は貫通孔の壁面上に筒
状に形成されるため、貫通導体5の内部に残された貫通
孔部分を樹脂や永久レジスト等で封止する。ハンダ・リ
フローの場合は、貫通孔がハンダによってほぼ埋まるの
で上記の封止は不要である。以上のようにして、第1図
に示したような電極ユニット6が形成される。Reference numeral 2 denotes a laminating agent applied to the surface of the electrode 3.4 facing the synthetic resin body 1, and this laminating agent is made of, for example, a two-layer coating of epoxy resin and chlorinated polypropylene or an acrylic adhesive. Electrode 3.4 is made of this laminating agent 2
It is adhered or thermally welded to both sides of the synthetic resin body 1 via. Then, using flexible printed wiring board technology, at least one hole is made through the synthetic resin body 1 and the electrodes 3 and 4, and the electrode 3 is formed by electroless plating or cream solder paste flow through the through hole. A connecting conductor 5 is provided to connect both of the two. Note that when the connecting conductor 5 is formed by plating, the connecting conductor 5 is formed in a cylindrical shape on the wall surface of the through hole, so the through hole portion left inside the through conductor 5 is sealed with resin, permanent resist, etc. Stop. In the case of solder reflow, the above-mentioned sealing is not necessary because the through hole is almost filled with solder. In the manner described above, the electrode unit 6 as shown in FIG. 1 is formed.
本発明の蓄電池は、かかる電極ユニット6を複数個、第
2図に示す実施例では2個を、隣接するもの同士の正、
負両極面を対向させ、間に電解質を含む隔離体7を介在
させて順次積層して電極ユニット積層体を形成する。上
記の隔離体7としては、密閉形鉛蓄電池のような液式の
蓄電池ではセパレータや電解液保持体を用い、固体蓄電
池では固体電解質を用いる。The storage battery of the present invention includes a plurality of such electrode units 6, two in the embodiment shown in FIG.
An electrode unit laminate is formed by sequentially stacking the electrode units with their negative electrode surfaces facing each other and interposing a separator 7 containing an electrolyte therebetween. As the separator 7, a separator or an electrolyte holder is used in a liquid type storage battery such as a sealed lead acid battery, and a solid electrolyte is used in a solid storage battery.
上記の積層体の積層方向両側には、前述と同要領で合成
樹脂体1−の片面に正極3又は負極4が接合された正、
負の単極ユニット9が隔離体7を間に介して配置されて
いる。正、負の単極ユニット9には、それぞれ正極又は
負極に固着された端子8が、合成樹脂体1−を貫通して
設けられている。この電池の積層構成体のすべての合成
樹脂体1.1−の周辺部IAは、熱溶着等により接合さ
れて一体化され、本実施例の蓄電池が形成される。On both sides of the above laminate in the stacking direction, a positive electrode 3 or a negative electrode 4 is bonded to one side of the synthetic resin body 1- in the same manner as described above.
A negative monopolar unit 9 is arranged with a separator 7 in between. The positive and negative single-pole units 9 are each provided with a terminal 8 fixed to a positive electrode or a negative electrode, penetrating the synthetic resin body 1-. The peripheral portions IA of all the synthetic resin bodies 1.1- of the laminated structure of this battery are joined and integrated by thermal welding or the like to form the storage battery of this embodiment.
本実施例の液式蓄電池では、電極3,4の集電体を合成
樹脂体1上に接着または溶着し、且つ合成樹脂体1,1
′の周囲を接合することにより、セル間の液密化(液漏
れの防止)を図るこきができるので、セル間の液密化の
ためにわざわざ追加加工をする必要がない。また、固体
電池では合成樹脂体1によりセル間の気密性が十分に保
たれる。In the liquid storage battery of this embodiment, the current collectors of the electrodes 3 and 4 are adhered or welded onto the synthetic resin body 1, and
By joining the periphery of ', it is possible to make the cells liquid-tight (to prevent liquid leakage), so there is no need for additional processing to make the cells liquid-tight. Further, in a solid battery, the synthetic resin body 1 sufficiently maintains airtightness between cells.
そして、セル間の隔壁は、電極が担うバイポーラ方式と
異なり、合成樹脂体1なので、腐食等のおそれもない。Unlike the bipolar system in which the partition walls between the cells are formed by electrodes, the synthetic resin body 1 eliminates the risk of corrosion.
また本発明の蓄電池では電槽を用いないので、金型が不
要であり、所要の電圧の電池が同一の電極構成でできる
。更に、従来セルを単にる積層の場合のように、各セル
ごとの外装壁や外装フィルムが重複して積層されるもの
とは異なり、隣接セルごとで1枚の薄い合成樹脂体1で
済むので、それだけ従来品よりも薄形に構成される。Furthermore, since the storage battery of the present invention does not use a container, no mold is required, and batteries of the required voltage can be produced with the same electrode configuration. Furthermore, unlike conventional cell lamination, in which the exterior walls and exterior films for each cell are laminated in duplicate, only one thin synthetic resin body 1 is required for each adjacent cell. This makes it thinner than conventional products.
また、電極3.4等の集電体は、隔壁である合成樹脂体
1に接合されているので、液式の電池の場合、この接合
側には液が浸入しない。従って、電極集電体の腐食は両
面では起らず片面からのみに制限されて、腐食速度は両
面からの場合の1/2となり、それだけ寿命か長くなる
。更に、すべての電極ユニット6、隔離体7、及び単極
ユニット9を積層して、各合成樹脂体1,1′の周辺部
IAを接合、一体止する場合、加圧力を適宜大きくして
積層構成することにより、電池のある程度の高容量化も
可能である。Furthermore, since the current collectors such as the electrodes 3.4 are bonded to the synthetic resin body 1, which is a partition wall, in the case of a liquid type battery, liquid does not enter into this bonded side. Therefore, corrosion of the electrode current collector does not occur on both sides, but is limited to only from one side, and the corrosion rate is 1/2 of that from both sides, resulting in a correspondingly longer life. Furthermore, when all the electrode units 6, separators 7, and monopolar units 9 are stacked and the peripheral parts IA of each synthetic resin body 1, 1' are joined and fixed together, the pressing force is increased appropriately and the stacking is performed. By configuring this structure, it is possible to increase the capacity of the battery to some extent.
[発明の効果]
以上述べたように、本発明の薄形密閉形蓄電池によれば
、セル間の隔壁かフィルム状又はシート状の1枚の合成
樹脂体で形成されるので、従来のセルごとの単なる積層
の場合のように、隣接するセルごとの外装体が重複して
積層されるものに比し、極めて薄形の密閉形蓄電池を得
ることかできる。また、セル間どうしを外部で電気的に
接続するための結線部材や接触端子部、あるいは接続コ
ネクタ部等が不要であり、電池を小形・計量化すること
ができて、電池のエネルギ密度を高めることができる。[Effects of the Invention] As described above, according to the thin sealed storage battery of the present invention, the partition walls between the cells are formed of a single film-like or sheet-like synthetic resin body, so that each cell can be It is possible to obtain a sealed storage battery that is extremely thin compared to a case in which the exterior bodies of adjacent cells are laminated in an overlapping manner, such as in the case of simple lamination. In addition, there is no need for wiring members, contact terminals, or connectors for external electrical connection between cells, making it possible to make the battery smaller and weigh more, increasing the energy density of the battery. be able to.
そして、請求項2の発明によれば、液式蓄電池において
、合成樹脂体によりセル間の液密性が十分に保たれ、ま
た電極の合成樹脂体への接合側にに電解液が浸入しない
ので、電極集電体の腐食が両面から進行せずに片面から
のみ進行するので、腐食速度を通常の場合の1/2に低
下でき、長寿命化を図ることができる。According to the invention of claim 2, in the liquid storage battery, the synthetic resin body sufficiently maintains the liquid tightness between the cells, and the electrolyte does not infiltrate into the side where the electrode is joined to the synthetic resin body. Since the corrosion of the electrode current collector does not proceed from both sides but only from one side, the corrosion rate can be reduced to 1/2 of the normal rate, and the service life can be extended.
また請求項3の発明によれば、1枚の薄い合成樹脂体に
よりセル間の気密性が十分に保たれた薄形密閉形の固定
電解質蓄電池を得ることができる。Further, according to the third aspect of the present invention, it is possible to obtain a thin sealed fixed electrolyte storage battery in which airtightness between cells is sufficiently maintained using a single thin synthetic resin body.
第1は本発明の実施例の蓄電池に用いられる電極ユニッ
トの構成例を示す断面図、第2図は本発明の一実施例の
概略構成を示す断面図、第3図及び第4図はそれぞれ従
来の高電圧タイプの蓄電池の異なる構成例を示す斜視図
、第5図は従来のバイポーラ方式の密閉形蓄電池の構成
例を示す断面図である。
1.1′・・・フィルム状又はシート状の合成樹脂体、
3・・・正極、4・・・負極、5・・・接続導体、6・
・・電極ユニット、7・・・電解質を含む隔離体、8・
・・端子、9・・・単極ユニット。
手続補正書(師)
平成 2年 9月14日
特願平2−200235号
2、
発明の名称
3゜
4゜
薄形密閉形蓄電池
補正をする者
事件との関係 特許出願人
(120)新神戸電機株式会社1 is a cross-sectional view showing an example of the structure of an electrode unit used in a storage battery according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing a schematic structure of an embodiment of the present invention, and FIGS. 3 and 4 are respectively FIG. 5 is a perspective view showing different configuration examples of a conventional high-voltage type storage battery, and FIG. 5 is a sectional view showing a configuration example of a conventional bipolar type sealed storage battery. 1.1'...Film-like or sheet-like synthetic resin body,
3... Positive electrode, 4... Negative electrode, 5... Connection conductor, 6...
... Electrode unit, 7... Separator containing electrolyte, 8.
...Terminal, 9...Single pole unit. Procedural amendment (teacher) September 14, 1990 Japanese Patent Application No. 2-200235 2 Title of invention 3゜4゜ Thin sealed storage battery Amendment case Relationship to the case Patent applicant (120) Shin-Kobe Denki Co., Ltd.
Claims (3)
面に正極(3)が他の片面に負極(4)がそれぞれ接合
され、前記正極(3)及び負極(4)が前記合成樹脂体
(1)を貫通する接続導体(5)により接続されてなる
複数個の電極ユニット(6)と、電解質を含む隔離体(
7)とが順次積層されて電極ユニット積層体が構成され
、 前記電極ユニット積層体の積層方向両側にフィルム状又
はシート状の合成樹脂体(1′)の片面に正極(3)又
は負極(4)が接合されてなる単極ユニット(9)が当
接配置され、 前記電極ユニット(6)及び単極ユニット(9)の各合
成樹脂体(1)、(1′)がそれぞれ周辺部で一体に接
合されてなる薄形密閉形蓄電池。(1) A positive electrode (3) is bonded to one side of a film-like or sheet-like synthetic resin body (1), and a negative electrode (4) is bonded to the other side, and the positive electrode (3) and negative electrode (4) are bonded to the synthetic resin. A plurality of electrode units (6) connected by a connecting conductor (5) penetrating the body (1), and a separator containing an electrolyte (
7) are sequentially laminated to form an electrode unit laminate, and a positive electrode (3) or a negative electrode (4) is placed on one side of a film-like or sheet-like synthetic resin body (1') on both sides of the electrode unit laminate in the laminating direction. ) are arranged in contact with each other, and the synthetic resin bodies (1) and (1') of the electrode unit (6) and the monopolar unit (9) are integrated at their peripheral parts, respectively. A thin sealed storage battery that is bonded to
持した電解液保持体からなる請求項(1)に記載の薄形
密閉形蓄電池。(2) The thin sealed storage battery according to claim (1), wherein the separator (7) containing the electrolyte comprises an electrolyte holder impregnated with and retained an electrolyte.
なる請求項(1)に記載の薄形密閉形蓄電池。(3) The thin sealed storage battery according to claim 1, wherein the separator (7) containing the electrolyte is made of a solid electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2200235A JP2585847B2 (en) | 1990-07-27 | 1990-07-27 | Thin sealed storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2200235A JP2585847B2 (en) | 1990-07-27 | 1990-07-27 | Thin sealed storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0487265A true JPH0487265A (en) | 1992-03-19 |
JP2585847B2 JP2585847B2 (en) | 1997-02-26 |
Family
ID=16421060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2200235A Expired - Lifetime JP2585847B2 (en) | 1990-07-27 | 1990-07-27 | Thin sealed storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2585847B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022201834A1 (en) * | 2021-03-26 | 2022-09-29 | 古河電気工業株式会社 | Bipolar storage battery and manufacturing method for bipolar storage battery |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2021353160A1 (en) * | 2020-09-30 | 2023-06-08 | Furukawa Electric Co., Ltd. | Bipolar lead-acid battery |
JPWO2022123937A1 (en) * | 2020-12-10 | 2022-06-16 | ||
JPWO2022123936A1 (en) * | 2020-12-10 | 2022-06-16 | ||
WO2022215349A1 (en) * | 2021-04-05 | 2022-10-13 | 古河電気工業株式会社 | Bipolar storage battery and manufacturing method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4733817U (en) * | 1971-05-10 | 1972-12-15 | ||
JPS61240563A (en) * | 1985-04-18 | 1986-10-25 | Matsushita Electric Ind Co Ltd | Sealed lead-acid battery |
-
1990
- 1990-07-27 JP JP2200235A patent/JP2585847B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4733817U (en) * | 1971-05-10 | 1972-12-15 | ||
JPS61240563A (en) * | 1985-04-18 | 1986-10-25 | Matsushita Electric Ind Co Ltd | Sealed lead-acid battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022201834A1 (en) * | 2021-03-26 | 2022-09-29 | 古河電気工業株式会社 | Bipolar storage battery and manufacturing method for bipolar storage battery |
Also Published As
Publication number | Publication date |
---|---|
JP2585847B2 (en) | 1997-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5470679A (en) | Method of assembling a bipolar lead-acid battery and the resulting bipolar battery | |
KR101106429B1 (en) | Secondary battery | |
JP6315269B2 (en) | Sealed battery module and manufacturing method thereof | |
JP5300788B2 (en) | Secondary battery | |
JP3333606B2 (en) | Battery | |
KR102618844B1 (en) | Lead tabs for battery terminals | |
JP2004014516A (en) | Battery equipped with housing | |
JP2019079791A (en) | Composite battery cell | |
JP2006252855A (en) | Thin secondary battery for high-current discharge and battery module | |
US20030228517A1 (en) | Electrochemical element with thin electrodes | |
US20040126654A1 (en) | Electrochemical cell laminate for alkali metal polymer batteries and method for making same | |
WO2001024302A1 (en) | Battery box | |
JP7489406B2 (en) | Cell battery | |
KR102017781B1 (en) | Battery pack improved in fixing structure of cell lead | |
KR20120115092A (en) | Secondary battery and battery assembly using the same | |
JP2585847B2 (en) | Thin sealed storage battery | |
KR20210061113A (en) | The Electrode Assembly And The Method For Thereof | |
JP7347384B2 (en) | secondary battery | |
JP7388305B2 (en) | Energy storage cell, energy storage device, and manufacturing method of energy storage device | |
WO2021220994A1 (en) | Power storage cell, power storage device, and method for manufacturing power storage device | |
US20220223986A1 (en) | Cell battery | |
JP2000299130A (en) | Thin battery | |
JP2001052659A (en) | Layer-built polymer electrolyte battery | |
CN110036501B (en) | Secondary battery | |
WO2022215349A1 (en) | Bipolar storage battery and manufacturing method thereof |