JPH0487020A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0487020A
JPH0487020A JP20352290A JP20352290A JPH0487020A JP H0487020 A JPH0487020 A JP H0487020A JP 20352290 A JP20352290 A JP 20352290A JP 20352290 A JP20352290 A JP 20352290A JP H0487020 A JPH0487020 A JP H0487020A
Authority
JP
Japan
Prior art keywords
magnetic
average roughness
roughness
conversion characteristics
electromagnetic conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20352290A
Other languages
Japanese (ja)
Inventor
Seiichi Ikuyama
生山 清一
Yuko Echizen
越前 優子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP20352290A priority Critical patent/JPH0487020A/en
Publication of JPH0487020A publication Critical patent/JPH0487020A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain electromagnetic conversion characteristics of a high level and an excellent traveling property by specifying the stylus type two-dimensional surface roughness on the surface of a nonmagnetic base on the side opposite from the surface to be formed with a magnetic layer. CONSTITUTION:The stylus type two-dimensional surface roughness of the nonmagnetic base on the side opposite from the surface to be formed with the magnetic layer is so specified as to have >=15nm center line average roughness Ra, <=350nm max. height Rmax and <=300nm ten point average roughness Rz. There is the possibility that the traveling durability is deteriorated if the center line average roughness Ra is below 15nm. There is the possibility that the electromagnetic conversion characteristics are deteriorated if the max. height Rmax exceeds 350nm or the ten point average roughness Rz exceeds 300nm. The surface roughness of the back surface of the nonmagnetic base can be set within this range simply by providing an extremely thin layer on at least the back surface by, for example, co-extrusion or inline coating, etc., or by forming microprojections of SiO2, etc., by a vapor deposition method on the back surface side. The electromagnetic conversion characteristics and traveling property are assured at the high level in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ビデオテープ等の磁気記録媒体に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to magnetic recording media such as video tapes.

〔発明の概要〕[Summary of the invention]

本発明は、非磁性支持体上に磁性層か形成されてなる磁
気記録媒体において、非磁性支持体の磁性層形成面とは
反対側の面の表面粗度を最適化することにより、高いレ
ベルの電磁変換特性と優れた走行性を兼ね備えた磁気記
録媒体を提供しようとするものである。
The present invention provides a magnetic recording medium in which a magnetic layer is formed on a non-magnetic support, by optimizing the surface roughness of the surface of the non-magnetic support opposite to the surface on which the magnetic layer is formed. The objective is to provide a magnetic recording medium that has both electromagnetic conversion characteristics and excellent running properties.

〔従来の技術〕[Conventional technology]

例えば、磁気テープの電磁変換特性を向上するためには
、ベースフィルム表面をできる限り鏡面化し、磁性層表
面を平滑化して凹凸を減らす方か有利である。
For example, in order to improve the electromagnetic conversion characteristics of a magnetic tape, it is advantageous to make the surface of the base film as mirror-finished as possible and smooth the surface of the magnetic layer to reduce unevenness.

したかって、高い電磁変換特性か要求される磁気記録媒
体の非磁性支持体には、表面性の良い(表面粗度の小さ
い)ベースフィルムを使用する必要かある。
Therefore, it is necessary to use a base film with good surface properties (low surface roughness) for the nonmagnetic support of a magnetic recording medium that requires high electromagnetic conversion characteristics.

これは、磁性層の下地となるベースフィルムの表面性か
その上に形成される磁性層の表面性に反映するためであ
る。
This is because it is reflected in the surface properties of the base film underlying the magnetic layer or the surface properties of the magnetic layer formed thereon.

しかしながら、非磁性支持体の平滑化か進むと走行性に
支障をきたし、磁気テープの円滑な走行が難しくなる。
However, as the nonmagnetic support becomes smoother, running properties are affected, making it difficult for the magnetic tape to run smoothly.

逆に、走行性、耐久性を改善するために表面性の悪い(
表面粗度の大きい)ベースフィルムを使用すると、こん
とは電磁変換特性の劣化か問題となる。
On the other hand, in order to improve runnability and durability,
If a base film (with a large surface roughness) is used, there is a problem of deterioration of electromagnetic conversion characteristics.

これらはいずれも、ベースフィルムの磁性層形成面とは
反対側の面の表面性の影響によるものである。すなわち
、磁気記録媒体の走行性や電磁変換特性には、ベースフ
ィルムの磁性層形成面側の表面性の影響よりも、磁性層
形成面とは反対側の面(以下バック面と称する。)の表
面性の影響か非常に大きい。
All of these are due to the influence of the surface properties of the surface of the base film opposite to the surface on which the magnetic layer is formed. In other words, the runnability and electromagnetic conversion characteristics of a magnetic recording medium are affected more by the surface properties of the surface opposite to the magnetic layer forming surface (hereinafter referred to as the back surface) than by the surface properties of the magnetic layer forming surface of the base film. The influence of superficiality is very large.

これは、磁性層塗布後に行うロール状態での熱処理によ
り、ベースフィルムのバック面の表面性か磁性層表面に
転写されるためである。
This is because the surface properties of the back surface of the base film are transferred to the surface of the magnetic layer due to the heat treatment performed in a roll state after coating the magnetic layer.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

このように、磁気記録媒体用のベースフィルムのバック
面の表面性は非常に重要であり、電磁変換特性と走行性
を両立させるためには、前記バック面の表面性の最適化
か望まれる。
As described above, the surface properties of the back surface of a base film for a magnetic recording medium are very important, and in order to achieve both electromagnetic conversion characteristics and runnability, it is desirable to optimize the surface properties of the back surface.

本発明は、かかる従来の実情に鑑みて提案されたもので
あって、非磁性支持体のバック面の表面性の最適化を図
り、高いレベルで電磁変換特性及び走行性を確保するこ
とか可能な磁気記録媒体を提供することを目的とする。
The present invention was proposed in view of the conventional situation, and it is possible to optimize the surface properties of the back surface of a non-magnetic support and ensure high levels of electromagnetic conversion characteristics and runnability. The purpose of this invention is to provide a magnetic recording medium.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上述の目的を達成するために、本発明の磁気記録媒体は
、非磁性支持体上に磁性層か形成されてなる磁気記録媒
体において、前記非磁性支持体の前記磁性層形成面とは
反対側の面の触針式2次元の表面粗度が、中心線平均粗
さR6≧15nm、最大高さR3,、≦350 nm、
十点平均粗さR5≦300nmであることを特徴とする
ものである。
In order to achieve the above object, the magnetic recording medium of the present invention has a magnetic layer formed on a non-magnetic support, in which a magnetic layer is formed on a side of the non-magnetic support opposite to the surface on which the magnetic layer is formed. The two-dimensional stylus surface roughness of the surface is center line average roughness R6≧15 nm, maximum height R3, ≦350 nm,
It is characterized in that the ten-point average roughness R5≦300 nm.

本発明の磁気記録媒体においては、非磁性支持体のバッ
ク面の表面性か重要である。これまて、磁気記録媒体に
おける表面性の評価は、主に中心線平均粗さRaによる
のか一般的であるが、本発明者等か種々検討を重ねた結
果、前記中心線平均粗さRaのみては特に非磁性支持体
のバック面の評価には不十分であるとの結論を得た。そ
こで本発明では、日本工業規格JIS  B  060
1に従って非磁性支持体のバック面における触針式2次
元の表面粗度を測定し、このときの表面粗度が、中心線
平均粗さRa≧15nm、最大高さRa,。
In the magnetic recording medium of the present invention, the surface quality of the back surface of the nonmagnetic support is important. Generally speaking, the evaluation of the surface properties of magnetic recording media is mainly based on the center line average roughness Ra, but as a result of various studies conducted by the present inventors, the center line average roughness Ra It was concluded that the method was insufficient for evaluating the back surface of non-magnetic supports. Therefore, in the present invention, the Japanese Industrial Standard JIS B 060
The two-dimensional surface roughness using a stylus on the back surface of the non-magnetic support was measured in accordance with 1, and the surface roughness at this time was: center line average roughness Ra≧15 nm, maximum height Ra.

≦350nm、十点平均粗さR5≦300nmとなるよ
うに設定することとする。
The roughness is set to be ≦350 nm, and the ten-point average roughness R5≦300 nm.

上記中心線平均粗さR6が15nm未満であると、走行
耐久性か劣化する虞れがある。また、最大高さR,,8
か350nmを越えたり、十点平均粗さRaが300n
mを越えると、電磁変換特性が劣化する虞れかある。
If the center line average roughness R6 is less than 15 nm, there is a risk that the running durability will deteriorate. Also, the maximum height R,,8
or exceeds 350nm, or the ten-point average roughness Ra is 300n.
If it exceeds m, there is a risk that the electromagnetic conversion characteristics will deteriorate.

非磁性支持体のバック面の表面粗度を上述の範囲に設定
するには、例えば共押し出しやインラインコーティング
等により少なくともバック面に極薄層を設けたり、バッ
ク面側に蒸着法により5i02等の微小突起を形成すれ
ばよい。
In order to set the surface roughness of the back surface of the non-magnetic support within the above-mentioned range, for example, it is necessary to provide at least an extremely thin layer on the back surface by co-extrusion or in-line coating, or to coat the back surface with a material such as 5i02 by vapor deposition. What is necessary is to form minute protrusions.

例えば、共押し出しフィルムは、各層を構成する樹脂材
料を別々の押し出し機で可塑化し、別々の導管を通して
集めて1個のダイを通して冷却ドラム上に押し出し、こ
れを通常の条件で2軸延伸することにより作成されるも
のであり、バック面側の極薄層に非磁性微粒子を混入す
ることて、バック面の表面性をコントロールすることか
できる。
For example, coextruded films can be produced by plasticizing the resin materials making up each layer in separate extruders, collecting them through separate conduits and extruding them through a single die onto a cooling drum, which is then biaxially stretched under normal conditions. The surface properties of the back surface can be controlled by mixing non-magnetic fine particles into the ultra-thin layer on the back surface side.

非磁性微粒子としては、粒径分布が狭く単分散可能なも
のか好ましく、球状シリカやベンゾグアナミン樹脂、ス
チレン樹脂、アクリル樹脂の微粒子等か用いられ、その
平均粒径や添加量を調整することて、任意の表面性か得
られる。
The non-magnetic fine particles preferably have a narrow particle size distribution and can be monodispersed, such as spherical silica, benzoguanamine resin, styrene resin, acrylic resin fine particles, etc., and the average particle size and amount added can be adjusted. Any superficiality can be obtained.

勿論、前記極薄層や微小突起か形成されたバック面に、
さらにバックコート層を形成することも可能である。こ
の場合には、バックコート層の厚さを薄くすることによ
り、ベースフィルムのバック面の表面性を生かすことか
てき、表面性をコントロールするうえて好適である。
Of course, on the back surface on which the ultra-thin layer or minute protrusions are formed,
Furthermore, it is also possible to form a back coat layer. In this case, by reducing the thickness of the back coat layer, the surface properties of the back surface of the base film can be utilized, which is suitable for controlling the surface properties.

また、非磁性支持体の材質としては、通常この種の磁気
記録媒体に用いられるものがいずれも使用できるが、ポ
リエチレンテレフタレート、ポリブチレンテレフタレー
ト、ポリエチレン−2,6−ナフタレート、さらにはこ
れらに他のモノマーを15モル%以下の割合で共重合し
たもの等、ポリエステル系のベースフィルムか好適であ
る。
Furthermore, as the material for the non-magnetic support, any material normally used for this type of magnetic recording medium can be used, including polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, and other materials. A polyester base film, such as one copolymerized with monomers in a proportion of 15 mol % or less, is suitable.

一方、磁性層を形成するための磁性塗料に含まれる結合
剤、磁性粉末、各種添加剤等は、通常の塗布型の磁気記
録媒体において用いられるものかいずれも使用でき、何
ら限定されるものではない。
On the other hand, the binder, magnetic powder, various additives, etc. contained in the magnetic paint for forming the magnetic layer may be those used in ordinary coated magnetic recording media, and are not limited in any way. do not have.

〔作用〕[Effect]

磁気記録媒体においては、非磁性支持体のバック面の表
面粗度か電磁変換特性や走行性に大きく影響を与えるが
、最適な表面粗度を例えば中心線平均粗さR6のみによ
り決めようとしても、電磁変換特性あるいは走行性の何
れか一方か劣化することか多い。
In magnetic recording media, the surface roughness of the back surface of the non-magnetic support has a large influence on electromagnetic conversion characteristics and running properties, but even if one attempts to determine the optimum surface roughness only by the center line average roughness R6, In many cases, either the electromagnetic conversion characteristics or the running performance deteriorate.

本発明の磁気記録媒体では、中心線平均粗さRaのみな
らず、最大高さR□8及び十点平均粗さR2についても
検討を加え、これらを勘案して非磁性支持体のバック面
の表面性か最適化されているので、電磁変換特性と走行
性か高いレベルて両立される。
In the magnetic recording medium of the present invention, not only the center line average roughness Ra, but also the maximum height R Since the surface properties have been optimized, a high level of both electromagnetic conversion characteristics and runnability can be achieved.

〔実施例〕〔Example〕

以下、本発明を具体的な実験結果に基づいて説明する。 The present invention will be explained below based on specific experimental results.

各実施例、比較例で用いた磁性塗料並びにバックコート
塗料の組成は下記の通りである。
The compositions of the magnetic paint and back coat paint used in each Example and Comparative Example are as follows.

磁性塗料 金属磁性粉末        ・・・100重量部(比
表面積55n(/g) 塩化ビニル酢酸ビニル共重合体・・・ 12重量部(U
、C,C社製、VYHH) ポリウレタン樹脂      ・・・  7重量部(日
本ポリウレタン社製、 N−3109)アルミナ   
       ・・・  5重量部(商品名AKP−5
0) カーボン          ・・・  2重量部(商
品名 コンダクテックスSC) ブチルステアレート     ・・・ 2.5重量部ミ
リスチン酸        ・・・  1重量部メチル
エチルケトン     ・・・150重量部トルエン 
         ・・・ 50重量部バックコート塗
料 カーホン          ・・・ 97重量部(三
菱化成社製、 #980 B) 添加剤           ・・・  3重量部(キ
ャポット社製、 5TERLING NS)塩化ビニル
酢酸ビニル共重合体・・・ 80重量部(U、C,C社
製、VAGH) ポリウレタン樹脂      ・・・ 20重量部(日
本ポリウレタン社製、 N−2304)オレイン酸  
       ・・・ 0.3重量部メチルエチルケト
ン     ・・・700重量部トルエン      
    ・・・300重量部実施例1〜実施例5 本実施例は、磁性層か形成される磁性面とは反対側のバ
ック面に共押し出しにより非磁性微粒子を分散した極薄
層を形成してなる共押し出しフィルム(厚さ7.5μm
)を非磁性支持体として用いた例である。各実施例で使
用した共押し出しフィルムの前記極薄層の厚さ、非磁性
微粒子の種類、平均粒径は第1表に示す通りである。な
お、非磁性微粒子の添加量は一律0.4%とした。また
、前記極薄層の厚さは、透過型電子顛微鏡で測定し、添
加した非磁性微粒子の平均粒径は、粒子を透過型電子顧
微鏡で観察し100個の平均値を求めた。
Magnetic paint Metal magnetic powder...100 parts by weight (specific surface area 55n(/g) Vinyl chloride vinyl acetate copolymer...12 parts by weight (U
, manufactured by C, C Company, VYHH) Polyurethane resin... 7 parts by weight (manufactured by Nippon Polyurethane Company, N-3109) Alumina
... 5 parts by weight (product name AKP-5
0) Carbon...2 parts by weight (product name Conductex SC) Butyl stearate...2.5 parts by weight Myristic acid...1 part by weight Methyl ethyl ketone...150 parts by weight Toluene
... 50 parts by weight Back coat paint Carphone ... 97 parts by weight (manufactured by Mitsubishi Kasei Co., Ltd., #980B) Additives ... 3 parts by weight (manufactured by Capot Co., Ltd., 5TERLING NS) Vinyl chloride vinyl acetate copolymer ... 80 parts by weight (manufactured by U, C, C Company, VAGH) Polyurethane resin ... 20 parts by weight (manufactured by Nippon Polyurethane Co., Ltd., N-2304) Oleic acid
...0.3 parts by weight methyl ethyl ketone ...700 parts by weight toluene
...300 parts by weight Examples 1 to 5 In this example, an ultrathin layer in which non-magnetic fine particles were dispersed was formed by co-extrusion on the back surface opposite to the magnetic surface on which the magnetic layer was formed. coextruded film (thickness 7.5μm)
) is used as a nonmagnetic support. The thickness of the ultra-thin layer of the coextruded film used in each example, the type of nonmagnetic fine particles, and the average particle size are as shown in Table 1. Note that the amount of nonmagnetic fine particles added was uniformly 0.4%. The thickness of the ultra-thin layer was measured using a transmission electron microscope, and the average particle diameter of the added non-magnetic fine particles was determined by observing the particles using a transmission electron microscope and obtaining the average value of 100 particles. Ta.

第1表 一方、磁性面側には、非磁性微粒子として平均粒径0.
1μmの球状シリカを0.01%添加し、中心線平均粗
さR,−5nm、最大高さRa,っ=6Onm、十点平
均粗さR,=50nmとした。
Table 1 On the other hand, on the magnetic side, non-magnetic fine particles with an average particle size of 0.
0.01% of 1 μm spherical silica was added, and the center line average roughness R was −5 nm, the maximum height Ra was 6 Onm, and the ten point average roughness R was 50 nm.

上述の磁性塗料をサンドミルにて5時間混練した後、硬
化剤(商品名コロネートし)2重量部を添加し、各共押
し出しフィルムの磁性面に乾燥後の膜厚か4,0μmと
なるように塗布した。次いて、カレンダー処理を行い、
80°Cて48時間熱処理を行った。
After kneading the above magnetic paint in a sand mill for 5 hours, 2 parts by weight of a hardening agent (trade name: Coronate) was added to the magnetic surface of each coextruded film so that the film thickness after drying was 4.0 μm. Coated. Next, perform calendar processing,
Heat treatment was performed at 80°C for 48 hours.

その後、バック面に先のバックコート塗料を乾燥後の膜
厚が1.0μmとなるように塗布し、8−輻にスリット
してカセットに組み込んだ。なお、バックコート塗料は
、ボールミルにて48時間混練し、硬化剤(商品名コロ
ネートし)10重量部を添加した後、バック面に塗布し
た。
Thereafter, the previous back coat paint was applied to the back surface so that the film thickness after drying was 1.0 .mu.m, and an 8-line slit was made to incorporate it into a cassette. The back coat paint was kneaded in a ball mill for 48 hours, and after adding 10 parts by weight of a hardening agent (trade name: Coronate), it was applied to the back surface.

したインラインコートフィルムの前記極薄層の厚さ、コ
ーティング樹脂の種類、非磁性微粒子の種類、平均粒径
は第2表に示す通りである。なお、非磁性微粒子の添加
量は一律0.35%とした。また、磁性面側には、先の
実施例と同様非磁性微粒子として平均粒径0.1μmの
球状ソリ力を0.01%添加し、中心線平均粗さR,=
5nm、最大高さRm a、=60nm、十点平均粗さ
R,=50nmとした。
The thickness of the ultra-thin layer, the type of coating resin, the type of non-magnetic fine particles, and the average particle size of the in-line coated film are as shown in Table 2. Note that the amount of nonmagnetic fine particles added was uniformly 0.35%. In addition, on the magnetic surface side, 0.01% of spherical warping force with an average particle diameter of 0.1 μm was added as non-magnetic fine particles as in the previous example, and the center line average roughness R,=
5 nm, maximum height Rm a = 60 nm, and ten point average roughness R, = 50 nm.

磁性層及びバックコート層の形成方法も先の実施例と同
様である。
The method of forming the magnetic layer and back coat layer is also the same as in the previous example.

第2表 実施例6〜実施例IO 本実施例は、磁性層か形成される磁性面とは反対側のバ
ック面にインラインコーティングにより非磁性微粒子を
分散した極薄層を形成してなるインラインコートフィル
ム(厚さ7.5μm)を非磁性支持体として用いた例で
ある。各実施例で使用本例においては、非磁性支持体と
して一層タイブのベースフィルムを用いた。
Table 2 Example 6 to Example IO This example is an in-line coating in which an ultra-thin layer in which non-magnetic fine particles are dispersed is formed by in-line coating on the back surface opposite to the magnetic surface on which the magnetic layer is formed. This is an example in which a film (thickness: 7.5 μm) was used as a nonmagnetic support. Used in each Example In this example, a single-layer base film was used as the non-magnetic support.

磁性層及びバックコート層の形成方法は先の実施例と同
様である。
The method of forming the magnetic layer and back coat layer is the same as in the previous example.

上述の各実施例、比較例について、それぞれ非磁性支持
体のバック面の中心線平均粗さRa、最大高さR+m 
a y及び十点平均粗さRaを測定した。
For each of the above-mentioned Examples and Comparative Examples, the centerline average roughness Ra and maximum height R+m of the back surface of the non-magnetic support, respectively.
ay and ten point average roughness Ra were measured.

測定には、小板研究所製、ET−30HK+5PA−1
1を使用し、接触式により二次元粗さを求めた。測定条
件は下記の通りである。
For measurement, ET-30HK+5PA-1 manufactured by Koita Research Institute
1 was used to determine the two-dimensional roughness by a contact method. The measurement conditions are as follows.

測定条件 針圧 6■(針径2μmR) 倍率 高さ方向 X50000 カットオフ 0.0’8mm 測定スピード 20μm/秒 結果を第3表に示す。Measurement condition Needle pressure 6■ (needle diameter 2μmR) Magnification Height direction X50000 Cutoff 0.0’8mm Measurement speed: 20μm/sec The results are shown in Table 3.

さらに、以上の各実施例、比較例で得られたサンプルテ
ープについて、電磁変換特性、ドロップアウト及び走行
耐久性を測定した。
Furthermore, electromagnetic conversion characteristics, dropout, and running durability were measured for the sample tapes obtained in each of the above Examples and Comparative Examples.

電磁変換特性は、7MHzの信号を記録し、7μmの出
力と6.5 MHzの出力(ノイズ)を測定した。
For electromagnetic conversion characteristics, a 7 MHz signal was recorded, and the 7 μm output and 6.5 MHz output (noise) were measured.

ドロップアウトは、白50%信号を入力した後、再生し
て一16dB/μ秒以上のドロップアウトをカウントし
た。走行耐久性は、温度40°C1相対湿度80%の環
境下で走行させたとき、出力レベルが3dB下がった時
のパス回数を測定した。
As for dropouts, after inputting a white 50% signal, playback was performed and dropouts of -16 dB/μsec or more were counted. The running durability was determined by measuring the number of passes when the output level decreased by 3 dB when running in an environment with a temperature of 40° C. and a relative humidity of 80%.

結果を第4表に示す。The results are shown in Table 4.

(以下余白) 第3表 第4表 この表を見ても明らかなように、各実施例のサンプルテ
ープにおいては、いずれも良好な走行性と電磁変換特性
か達成されており、ドロップアウトも少ないものとなっ
ている。
(Leaving space below) Table 3 Table 4 As is clear from this table, the sample tapes of each example achieved good runnability and electromagnetic conversion characteristics, and there were few dropouts. It has become a thing.

これに対して、例えば中心線平均粗さR8か15nmを
下回る比較例1では、電磁変換特性の低下は抑えられて
いるものの、走行性か大きく劣っている。逆に最大高さ
Ra,1や十点平均粗さR8か大きい比較例2.比較例
3においては、走行性はある程度確保されているものの
、電磁変換特性の劣化か見られる。
On the other hand, in Comparative Example 1, for example, where the center line average roughness R8 is less than 15 nm, although the deterioration of the electromagnetic conversion characteristics is suppressed, the runnability is significantly inferior. On the other hand, Comparative Example 2 has a large maximum height Ra, 1 and a ten-point average roughness R8. In Comparative Example 3, although running performance was secured to some extent, deterioration of electromagnetic conversion characteristics was observed.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明の磁気記録媒
体においては、非磁性支持体のバック面の表面粗度を、
中心線平均粗さのみならず最大高さや十点平均粗さにつ
いても最適化しているので、電磁変換特性と走行性を高
いレベルで両立することが可能である。
As is clear from the above explanation, in the magnetic recording medium of the present invention, the surface roughness of the back surface of the nonmagnetic support is
Since not only the centerline average roughness but also the maximum height and ten-point average roughness are optimized, it is possible to achieve both high levels of electromagnetic conversion characteristics and runnability.

手続補正書(自発) 平成2年11月5日Procedural amendment (voluntary) November 5, 1990

Claims (1)

【特許請求の範囲】 非磁性支持体上に磁性層が形成されてなる磁気記録媒体
において、 前記非磁性支持体の前記磁性層形成面とは反対側の面の
触針式2次元の表面粗度が、中心線平均粗さR_a≧1
5nm、最大高さR_m_a_x≦350nm)十点平
均粗さR_■≦300nmであることを特徴とする磁気
記録媒体。
[Scope of Claims] A magnetic recording medium in which a magnetic layer is formed on a non-magnetic support, comprising: a stylus-type two-dimensional surface roughening of a surface of the non-magnetic support opposite to the surface on which the magnetic layer is formed; center line average roughness R_a≧1
5 nm, maximum height R_m_a_x≦350 nm) and ten-point average roughness R_■≦300 nm.
JP20352290A 1990-07-31 1990-07-31 Magnetic recording medium Pending JPH0487020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20352290A JPH0487020A (en) 1990-07-31 1990-07-31 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20352290A JPH0487020A (en) 1990-07-31 1990-07-31 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0487020A true JPH0487020A (en) 1992-03-19

Family

ID=16475545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20352290A Pending JPH0487020A (en) 1990-07-31 1990-07-31 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0487020A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024207A (en) * 2005-07-19 2007-02-01 Ntn Corp Needle roller bearing
US7896556B2 (en) 2005-03-14 2011-03-01 Ntn Corporation Needle roller bearing
US7896557B2 (en) 2005-03-14 2011-03-01 Ntn Corporation Needle roller bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7896556B2 (en) 2005-03-14 2011-03-01 Ntn Corporation Needle roller bearing
US7896557B2 (en) 2005-03-14 2011-03-01 Ntn Corporation Needle roller bearing
JP4757254B2 (en) * 2005-03-14 2011-08-24 Ntn株式会社 Needle roller bearing
JP2007024207A (en) * 2005-07-19 2007-02-01 Ntn Corp Needle roller bearing

Similar Documents

Publication Publication Date Title
US6207252B1 (en) Magnetic recording medium and production method thereof
JP2861306B2 (en) Magnetic recording media
JPS6038725A (en) Magnetic recording medium
JPH0487020A (en) Magnetic recording medium
US4476195A (en) Magnetic recording medium and process for the production thereof
US5066534A (en) Magnetic recording medium
US5433999A (en) Magnetic recording medium comprising specific backcoat layer
US5431983A (en) Magnetic recording tape comprising a polyethylene-2,6-napthalate substrate, magnetic metal thin film, and a backcoat layer
JPS63317926A (en) Coating type magnetic medium
JPS62157323A (en) Magnetic recording medium
JP3200347B2 (en) Laminated film
JPH10188256A (en) Magnetic recording medium
JPS6159622A (en) Magnetic recording medium
JPH01319127A (en) Magnetic recording medium
JP2695647B2 (en) Magnetic recording media
JPH04276311A (en) Magnetic recording medium
JPH01263918A (en) Magnetic recording tape for audio purpose
JPS63127422A (en) Magnetic recording medium
JPH01173422A (en) Magnetic recording medium provided with back coat layer containing nonmagnetic powder
JP2003067913A (en) Biaxial orientation polyester film for magnetic recording medium
JPS63317925A (en) Coating type magnetic medium
JPH09180187A (en) Production of magnetic recording medium
JPH10275322A (en) Magnetic recording medium
JP2001266332A (en) Magnetic recording medium
JPH09171618A (en) Production of magnetic recording medium