JPH0485924A - Photo-reaction device - Google Patents

Photo-reaction device

Info

Publication number
JPH0485924A
JPH0485924A JP19919390A JP19919390A JPH0485924A JP H0485924 A JPH0485924 A JP H0485924A JP 19919390 A JP19919390 A JP 19919390A JP 19919390 A JP19919390 A JP 19919390A JP H0485924 A JPH0485924 A JP H0485924A
Authority
JP
Japan
Prior art keywords
thin film
vacuum
filter
light beam
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19919390A
Other languages
Japanese (ja)
Inventor
Yuichi Uchiumi
裕一 内海
Tsuneo Urisu
恒雄 宇理須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19919390A priority Critical patent/JPH0485924A/en
Publication of JPH0485924A publication Critical patent/JPH0485924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To conduct an optional wave-length selection corresponding to a reactive kind and make a loss of light intensity extremely-small by a method wherein a thin film filter is positioned between a light source and a substrate so that the thin film can be exchanged without breaking a vacuum in accordance with a selected wave-length region and can be passed through, and a vacuum degree on the side of light sources of the thin film is equalized to that on the substrate. CONSTITUTION:When a photo-reaction is desired to induce on the substrate surface by changing a wave-length region, a filter holder 17 is moved with employment of a straight-line introductive device 19 in a filter exchanging mechanism to exchange thin films 14, 15, and 16. Here, the thin film is so placed in a desired position as to transmit a vacuum ultraviolet light beam L. In addition, by passing the vacuum ultraviolet light beam L through an empty inlet 18, the vacuum ultraviolet light beam having a large amount of intensity is directly introduced into a reactive container not through the thin film. In addition, when the vacuum of a reactive container 6 is broken, or when evacuation from the atmosphere, a vacuum valve 13 of a vacuum single pipe 12 for a bypass is opened to equalize pressure before and after a thin film filter 4.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光励起によって反応ガスを分解し、半導体素
子の製造に必要なCVD、エピタキシャル成長、エツチ
ングなどの反応を行う光反応装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photoreaction device that decomposes a reactive gas by photoexcitation and performs reactions such as CVD, epitaxial growth, and etching necessary for manufacturing semiconductor devices.

[従来の技術] 真空紫外光を励起光源とする光反応装置は、例えば、ツ
ネオウリスとハカルキュラギによる「シンクロトロン 
レイデイエイションエクサイテイドCVD アンドエツ
チング」 (”5ynchrotron  Radia
tion  Excited  CVD  andEt
ching”  Tsuneo  Urisu  an
d  Hakaru  Kyuragi、  J。
[Prior art] A photoreaction device that uses vacuum ultraviolet light as an excitation light source is, for example, the "synchrotron" developed by Tsuneouris and Hakarkyuragi.
5ynchrotron Radia
tion Excited CVD andEt
“Ching” Tsuneo Urisuan
d Hakaru Kyuragi, J.

Vac、Sci and Tech、B5.1987.
 p1436)に開示されたものが知られている。
Vac, Sci and Tech, B5.1987.
p1436) is known.

これは光源として、スペクトル帯域幅の広いシンクロト
ロン放射光装置を使用したもので、反応容器内に反応ガ
スを流し、これに該シンクロトロン放射光装置からの真
空紫外光を照射すると、基板表面に各種の光反応を誘起
することができる。
This uses a synchrotron radiation device with a wide spectral bandwidth as a light source. When a reaction gas is flowed into a reaction vessel and vacuum ultraviolet light from the synchrotron radiation device is irradiated, the substrate surface is illuminated. It can induce various photoreactions.

例えばS i H,ガスやSi、H,ガスを流せば基板
上にシリコン薄膜が堆積する。また、CH4などのカー
ボンを含むガスを流せばカーボン膜が堆積する。また、
SF、やC1,ガスなどのガスを流すと、半導体、絶縁
膜などをエツチングすることができる。
For example, by flowing S i H gas or Si H gas, a silicon thin film is deposited on the substrate. Further, if a gas containing carbon such as CH4 is flowed, a carbon film is deposited. Also,
By flowing a gas such as SF, C1 gas, etc., semiconductors, insulating films, etc. can be etched.

〔発明が解決しようとする課題] ところで、これらの反応は照射する光の波長に大きく依
存する。例えばアモルファスシリコン膜の堆積に用いる
SiH,ガスは、波長80人と107OAでより効率良
く分解する。従って、アモルファスシリコン膜を堆積し
たいときは、この波長を含んだ領域の光を照射する必要
がある。また、カーボン膜の堆積には、カーボンの吸収
端近くの50人程度の短波長光が重要な役割を果たすの
で、これを堆積するためにはこの短波長光を含む光を照
射する必要がある。逆に、シリコン基板上の自然酸化膜
などをエツチングによって除き、表面清浄化を行いたい
ときは、カーボンの堆積は、望ましくないので、50Å
以上のより長波長の光のみで反応を起こさせることが望
ましい。このように、反応の種類に応じて波長領域を選
択することは、真空紫外光、特にシンクロトロン放射光
を用いた光反応においては重要である。
[Problems to be Solved by the Invention] By the way, these reactions largely depend on the wavelength of the irradiated light. For example, SiH gas used for depositing an amorphous silicon film is more efficiently decomposed at a wavelength of 80 OA and 10 7 OA. Therefore, when it is desired to deposit an amorphous silicon film, it is necessary to irradiate light in a region including this wavelength. In addition, in the deposition of a carbon film, short wavelength light near the absorption edge of carbon plays an important role, so in order to deposit this, it is necessary to irradiate light containing this short wavelength light. . On the other hand, if you want to clean the surface by removing the natural oxide film on the silicon substrate by etching, the deposition of carbon is undesirable, so
It is desirable to cause the reaction only with the above-mentioned longer wavelength light. As described above, it is important to select a wavelength range depending on the type of reaction in a photoreaction using vacuum ultraviolet light, especially synchrotron radiation light.

そこで、従来技術においては反応の波長依存性を考慮し
、反応に有効な波長領域を選択するのに多層膜ミラーや
ガスの吸収を利用するという提案がなされているが、光
源から反応容器に光を導く光学系全体での強度の減衰が
太きいという問題があった。また約500Å以上の長波
長の光のカットが不可能であり任意の波長を自由に選択
できないなどの問題があり、これらに対する対策がなん
ら提案されていなかった。
Therefore, in the prior art, proposals have been made to consider the wavelength dependence of the reaction and use multilayer mirrors or gas absorption to select an effective wavelength range for the reaction. There is a problem in that the intensity attenuation is large throughout the optical system that guides the light. Furthermore, there are problems in that it is impossible to cut out light with long wavelengths of about 500 Å or more and it is not possible to freely select any wavelength, and no countermeasures have been proposed for these problems.

従って、本発明の目的は、上述したような問題を解決し
、反応の種類に応じて任意に波長選択を行うと共に、光
強度の損失を極力少なくできる光反応装置を提供するこ
とにある。
Therefore, an object of the present invention is to provide a photoreaction device that can solve the above-mentioned problems, arbitrarily select wavelengths depending on the type of reaction, and minimize loss of light intensity.

[課題を解決するための手段] 本発明は、上記目的を達成するために、本発明の光反応
装置は、真空紫外光から紫外線にわたる領域の光ビーム
を出射する光源と、所定の反応を行う基板が設置される
反応容器と、上記反応に必要な上記光ビームの波長に応
じて所定の透過率を有する複数個の薄膜フィルタが備え
られ、上記薄膜フィルタは選択したい波長領域に応じて
真空を破ることなく交換可能にまたは上記薄膜フィルタ
を通さないことが可能なように(上記薄膜フィルタを通
さないことが可能になっていなくてもよい)上記光源と
上記基板との間に配置され、かつ、上記薄膜フィルタの
上記光源側と上記基板側の真空度が等しくできるように
なっていることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a photoreaction device that performs a predetermined reaction with a light source that emits a light beam in a range from vacuum ultraviolet light to ultraviolet light. A reaction vessel in which a substrate is placed and a plurality of thin film filters each having a predetermined transmittance depending on the wavelength of the light beam necessary for the reaction are provided, and the thin film filters are provided with a vacuum filter depending on the wavelength range to be selected. disposed between the light source and the substrate such that it can be replaced without breaking or does not allow the thin film filter to pass through (the thin film filter does not need to be able to pass through the light source), and , characterized in that the degree of vacuum on the light source side and the substrate side of the thin film filter can be made equal.

[作用] 本発明は、光ビームの波長を選択するために薄膜フィル
タを用いているために、得られる光ビームの強度が多層
膜ミラーを用いた従来の方法と比較し、1桁〜2桁程度
大きい。また、必要な波長領域以外の光を完全にカット
することができる。
[Function] Since the present invention uses a thin film filter to select the wavelength of the light beam, the intensity of the obtained light beam is one to two orders of magnitude higher than that of the conventional method using a multilayer mirror. To a large extent. Furthermore, it is possible to completely cut out light outside the necessary wavelength range.

また、複数個の薄膜フィルタを配置し、これらを選択し
たい波長領域に応じて交換使用することにより波長選択
が真空を破ることなく行われる。さらに、該薄膜フィル
タの上記光源側と上記基板側、すなわち前後部分が、該
薄膜フィルタによって真空的に遮断できるために、反応
ガス圧を数10Torr程度まで高くすることができる
。一方、必要に応じて薄膜フィルタ前後の真空度を、バ
イパス用真空単管を通じて等しくすることもできるので
、該簿膜フィルタの気圧差による破損が防げる。また、
光ビームの反応ガスによる吸収距離を小さくできるため
、光強度の減衰が小さくでき、光を有効利用できる。ま
た、光源の真空保護のための差動排気をする必要がない
ので、装置の排気系を簡便にすることができる。さらに
、光源から出射した光ビームを曲面ミラー等を用いて反
応容器内もしくは反応容器への入射部に集光することに
より、該入射部の口径を小さくでき、反応ガスのフィル
タ近傍への流入を極力小さくでき、薄膜フィルタ表面へ
の光反応による堆積、エツチング等を防ぎ、薄膜フィル
タの光学特性を一定に保つことができる。
In addition, wavelength selection can be performed without breaking the vacuum by arranging a plurality of thin film filters and using them interchangeably according to the desired wavelength range. Furthermore, since the light source side and the substrate side, that is, the front and rear portions of the thin film filter can be isolated from the vacuum by the thin film filter, the reaction gas pressure can be increased to about several tens of Torr. On the other hand, if necessary, the degree of vacuum before and after the thin film filter can be made equal through a single vacuum tube for bypass, so that damage to the thin film filter due to pressure differences can be prevented. Also,
Since the absorption distance of the light beam by the reactive gas can be reduced, the attenuation of the light intensity can be reduced and the light can be used effectively. Further, since there is no need for differential pumping for vacuum protection of the light source, the pumping system of the device can be simplified. Furthermore, by concentrating the light beam emitted from the light source into the reaction vessel or at the entrance to the reaction vessel using a curved mirror, the aperture of the entrance can be made smaller and the inflow of reaction gas into the vicinity of the filter can be reduced. It can be made as small as possible, prevent deposition, etching, etc. due to photoreaction on the surface of the thin film filter, and keep the optical characteristics of the thin film filter constant.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第1図は、本発明に係る光反応装置の一実施例を示す構
成図で、lは真空紫外光ビームLを出射する光源として
のシンクロトロン放射光装置、2は該真空紫外光ビーム
Lを反射、集光する曲面ミラー、3は該真空紫外光ビー
ムLを通すための真空単管、4は薄膜フィルタ、5はフ
ィルタチャンバ、6は反応容器、7は反応ガスGを噴呂
するノズル、8は基板ホルダ、9は基板、10はフィル
タチャンバ5と反応容器6とを接続する入射部、11は
フィルタチャンバ5と入射部10を接続する単管である
。該光ビームLは、曲面ミラー2によって入射部10に
集光される。このように光ビームLを集光すると、該光
ビームの強度が大きくなり、光反応の反応速度を増すこ
とができる。また入射部10の断面積を極力小さくでき
、これによって反応ガスGのこの部分の真空排気コンダ
クタンスを充分小さくし、差動排気によって単管11と
反応容器6の間に大きな真空度差を維持できるようにし
ている。ちなみに、単’Ir1lの真空度を10−’ 
Torr程度に維持したままで、反応容器6の真空度を
数10Torr程度まで高めることも可能である。この
ため、反応ガスの単管11への流入を極力小さくでき、
薄膜フィルタ4の表面への光反応による薄膜堆積、エツ
チング等を防ぎ、該フィルタの光学特性を一定に保つこ
とができる。また反応容器6の真空を破る場合、もしく
は大気から真空排気する場合は、バイパス用真空単管]
2の真空バルブ13を開け、該薄膜フィルタ4前後の圧
力を等しくすることにより、該薄膜フィルタの圧力差に
よる破損を防ぐことができる。
FIG. 1 is a configuration diagram showing one embodiment of a photoreaction device according to the present invention, where l is a synchrotron radiation device as a light source that emits a vacuum ultraviolet light beam L, and 2 is a synchrotron radiation device that emits the vacuum ultraviolet light beam L. 3 is a vacuum tube for passing the vacuum ultraviolet light beam L; 4 is a thin film filter; 5 is a filter chamber; 6 is a reaction container; 7 is a nozzle for spraying reaction gas G; 8 is a substrate holder, 9 is a substrate, 10 is an entrance part that connects the filter chamber 5 and the reaction container 6, and 11 is a single tube that connects the filter chamber 5 and the entrance part 10. The light beam L is focused onto an incident section 10 by a curved mirror 2. When the light beam L is focused in this manner, the intensity of the light beam increases, and the reaction rate of the photoreaction can be increased. In addition, the cross-sectional area of the entrance part 10 can be made as small as possible, thereby making it possible to sufficiently reduce the evacuation conductance of this part of the reaction gas G and maintain a large degree of vacuum difference between the single tube 11 and the reaction vessel 6 by differential evacuation. That's what I do. By the way, the degree of vacuum of Ir1l is 10-'
It is also possible to increase the degree of vacuum in the reaction vessel 6 to about several tens of Torr while maintaining the pressure at about Torr. Therefore, the inflow of reaction gas into the single tube 11 can be minimized,
Thin film deposition, etching, etc. due to photoreaction on the surface of the thin film filter 4 can be prevented, and the optical characteristics of the filter can be kept constant. In addition, when breaking the vacuum in the reaction vessel 6 or evacuating from the atmosphere, use a single vacuum tube for bypass]
By opening the second vacuum valve 13 and equalizing the pressure before and after the thin film filter 4, damage to the thin film filter due to the pressure difference can be prevented.

反応容器6に反応ガスGを流し、これに真空紫外光ビー
ムを照射すると、前述した通り、基板9の表面に、各種
の光反応を誘起することができ、これらの光反応は照射
する光の波長領域に大きく依存する。従って、反応に応
じた波長領域を選択することが重要となる。
By flowing the reaction gas G into the reaction container 6 and irradiating it with a vacuum ultraviolet light beam, various photoreactions can be induced on the surface of the substrate 9, as described above, and these photoreactions are caused by the irradiation light. It is highly dependent on the wavelength range. Therefore, it is important to select a wavelength range depending on the reaction.

そこで、この波長領域選択の方法として、第1図の実施
例においては、薄膜フィルタ4に真空紫外光ビームLを
透過させ、波長領域の選択を行うようにしている。
Therefore, as a method for selecting the wavelength range, in the embodiment shown in FIG. 1, the vacuum ultraviolet light beam L is transmitted through the thin film filter 4 to select the wavelength range.

すなわち、本実施例は薄膜フィルタの透過特性を利用し
たものである。例えば薄膜フィルタの材料が厚さ100
OAのカーボンあるいはアルミニウムあるいは厚さ50
0人のインジウムである場合、第2図の実線a、b、c
で示すような透過率スペクトルを示す。電子エネルギが
2,5GeV、 電子の曲率半径が866cm、蓄積電
流が100mAの電子シンクロトロン放射光装置から出
射する放射光を斜入射角4度のミラーで反射して得た真
空紫外光ビームのフォトン数スペクトルを第3図の実線
Sで示す。
That is, this embodiment utilizes the transmission characteristics of a thin film filter. For example, the material of a thin film filter has a thickness of 100 mm.
OA carbon or aluminum or thickness 50
In the case of 0 people's indium, the solid lines a, b, c in Figure 2
The transmittance spectrum is shown as shown in . Photons of a vacuum ultraviolet light beam obtained by reflecting synchrotron radiation emitted from an electron synchrotron radiation device with an electron energy of 2.5 GeV, an electron radius of curvature of 866 cm, and a storage current of 100 mA by a mirror with an oblique incidence angle of 4 degrees. The numerical spectrum is shown by the solid line S in FIG.

該真空紫外光ビームを該カーボン、アルミニウムあるい
はインジウムの薄膜フィルタに透過させると、第3図の
実線a′、b′、c′で示すような、異なる波長領域の
フォトン数スペクトルが得られる。このようにして得ら
れるフォトン数スペクトルの波長積分値、すなわち総フ
ォトン数はフィルタ透過前の真空紫外光ビームSの総フ
ォトン数の30〜40%(a’ 、b’ )もしくは数
%(C′)であり、従来の多層膜ミラーによって波長選
択する方法と比較し、1桁〜2桁大きい値を示す。発明
者らの試験によれば、厚さ1000人のカーボンフィル
タは、第3図のSで示した真空紫外光ビームの総フォト
ン数に対し40%の総フォトン数を示した。
When the vacuum ultraviolet light beam is transmitted through the carbon, aluminum or indium thin film filter, photon number spectra in different wavelength regions as shown by solid lines a', b' and c' in FIG. 3 are obtained. The wavelength integral value of the photon number spectrum obtained in this way, that is, the total number of photons, is 30 to 40% (a', b') or several % (C') of the total number of photons of the vacuum ultraviolet light beam S before passing through the filter. ), which is one to two orders of magnitude larger than the conventional method of wavelength selection using a multilayer mirror. According to the tests conducted by the inventors, a carbon filter having a thickness of 1000 mm showed a total number of photons that was 40% of the total number of photons of the vacuum ultraviolet light beam shown by S in FIG.

また、30時間の照射の後でもこの値は変わらず、光学
特性は一定であった。その他、反応に応じた波長領域を
選択する薄膜フィルタの構成材料としては、Be、B、
C,Si、Ge、Al、Sb、Te、Rd、Ti、In
もしくはこれらの化合物および合金が考えられ、上記の
カーボン、アルミニウムあるいはインジウムの薄膜フィ
ルタと同様に、元の真空紫外光ビームの総フォトン数に
対し数%から数10%の総フォトン数が得られる。
Furthermore, this value did not change even after 30 hours of irradiation, and the optical properties remained constant. In addition, the constituent materials of the thin film filter that selects the wavelength range according to the reaction include Be, B,
C, Si, Ge, Al, Sb, Te, Rd, Ti, In
Alternatively, compounds and alloys of these can be considered, and as with the carbon, aluminum, or indium thin film filters described above, a total number of photons ranging from several % to several 10% of the total number of photons of the original vacuum ultraviolet light beam can be obtained.

波長領域を変えて基板表面に光反応を誘起させたいとき
は、異なる材料の薄膜フィルタを用いれば良いが、第4
図に示すフィルタ交換機構を用いることにより、光反応
装置の真空を破らずに、簡便に薄膜フィルタの交換がで
きる。第4図に示すフィルタ交換機構においては直進導
入機19を用いてフィルタホルダ17を移動させること
により、14.15.16の薄膜フィルタを交換する。
If you want to induce a photoreaction on the substrate surface by changing the wavelength range, you can use a thin film filter made of a different material.
By using the filter exchange mechanism shown in the figure, the thin film filter can be easily exchanged without breaking the vacuum of the photoreaction device. In the filter exchange mechanism shown in FIG. 4, the thin film filters 14, 15, and 16 are exchanged by moving the filter holder 17 using the linear feeder 19.

ここでは、真空紫外光ビームLが透過するように所望の
薄膜フィルタを位置させればよい。また、空口18に真
空紫外光ビームLを通すことにより、簿膜フィルタを通
さずに、直に強度の大きい真空紫外光ビームを反応容器
に導くことができ、波長領域の選択を行う必要のない光
反応を誘起する場合は、光強度の損失をなくし、光を有
効利用できる。またフランジ21を直進導入機23を用
い、フィルタ14.15.16および空口18を囲んで
フィルタホルダ17に取り付けられたOリング22に密
着させることにより、単管25とベローズ20の付いた
単管26は薄膜フィルタによって真空的に遮断すること
ができ、前述したごとく、反応容器内の反応ガス圧を高
くすることができるとともに、反応ガスによる光強度の
減衰が小さくでき、光を有効利用できる。また、装置の
排気系を簡便にすることができる。
Here, a desired thin film filter may be positioned so that the vacuum ultraviolet light beam L is transmitted therethrough. Furthermore, by passing the vacuum ultraviolet light beam L through the cavity 18, it is possible to directly guide the vacuum ultraviolet light beam with high intensity into the reaction vessel without passing through the membrane filter, and there is no need to select a wavelength range. When inducing a photoreaction, the loss of light intensity can be eliminated and light can be used effectively. In addition, by using the straight introduction machine 23 to bring the flange 21 into close contact with the O-ring 22 attached to the filter holder 17 surrounding the filters 14, 15, 16 and the cavity 18, a single pipe 25 and a single pipe with bellows 20 are attached. 26 can be vacuum-blocked by a thin film filter, and as described above, the pressure of the reaction gas in the reaction vessel can be increased, and the attenuation of light intensity due to the reaction gas can be reduced, allowing effective use of light. Furthermore, the exhaust system of the device can be simplified.

以上の構成によって、真空紫外光ビームLの波長領域を
選択した光反応を誘起することが可能であるが、本発明
は上記の実施例に限定されず、種々の変更が可能である
ことはいうまでもない。例えば、該真空紫外光ビームL
の発散角が、充分小さく、ビーム径が一定であれば、該
真空紫外光ビームを反射、集光する曲面ミラーを用いず
ども同様の効果が得られることは明白である。また、フ
ィルタホルダ17に空口18を設けなくてもよい。
With the above configuration, it is possible to induce a photoreaction in a selected wavelength range of the vacuum ultraviolet light beam L. However, it should be noted that the present invention is not limited to the above embodiments, and various modifications can be made. Not even. For example, the vacuum ultraviolet light beam L
It is clear that the same effect can be obtained even without using a curved mirror to reflect and condense the vacuum ultraviolet light beam, as long as the divergence angle is sufficiently small and the beam diameter is constant. Further, the filter holder 17 does not need to be provided with the cavity 18.

[発明の効果] 以上説明したように、本発明の光反応装置においては、
反応の種類に応じて波長領域の選択を簡便に行うことが
できると共に、光強度の損失を極力少なくでき、流せる
反応ガスの圧力範囲も広くすることができるので、高い
反応制御性と反応効率を有する光反応装置を提供するこ
とができて、半導体素子製造に必要な光CVD、光エピ
タキシャル成長、光エッチングなどに用いて好適である
[Effect of the invention] As explained above, in the photoreaction device of the present invention,
The wavelength range can be easily selected according to the type of reaction, the loss of light intensity can be minimized, and the pressure range of the reactant gas that can be flowed can be widened, resulting in high reaction controllability and reaction efficiency. It is possible to provide a photoreaction device having the following characteristics, and it is suitable for use in photoCVD, photoepitaxial growth, photoetching, etc. necessary for semiconductor device manufacturing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の光反応装置の一実施例を示す構成図
、第2図は、カーボン、アルミニウム、インジウム簿膜
フィルタの透過特性を示す図、第3図は、電子シンクロ
トロン放射光装置から出射する放射光を斜入射角4度の
ミラーで反射して得た真空紫外光ビームのフォト・ン数
スペクトル、および該真空紫外光ビームをカーボン、ア
ルミニウム、インジウム薄膜フィルタに透過して得たフ
ォトン数スペクトルを示す図、第4図は、光反応装置の
真空を破らずに、簡便に薄膜フィルタの交換ができる機
構を示す図である。 1・・・シンクロトロン放射光装置 2・・・曲面ミラー 3・・真空単管 4・・・薄膜フィルタ 5・・・フィルタチャンバ 6・・・反応容器 7・・・反応ガス噴出用ノズル 8・・・基板ホルダ 9・・・基板 1o・・・反応容器の入射部 11・・・単管 12・・・バイパス用真空単管 13・・・真空バルブ 14・・・薄膜フィルタ 15・・・薄膜フィルタ 6・・・薄膜フィルタ 7・・・フィルタホルダ 8・・・光ビームを直接通す穴 9・・フィルタホルダ用直進導入機 0・・・ベローズ ト・・フランジ 2・・・Oリング 3・・・フランジ用直進導入機 4・・・フィルタチャンバ
Fig. 1 is a block diagram showing an embodiment of the photoreaction device of the present invention, Fig. 2 is a diagram showing the transmission characteristics of carbon, aluminum, and indium film filters, and Fig. 3 is a diagram showing electron synchrotron radiation light. The photon number spectrum of the vacuum ultraviolet light beam obtained by reflecting the synchrotron radiation emitted from the device by a mirror with an oblique incidence angle of 4 degrees, and the photon number spectrum of the vacuum ultraviolet light beam obtained by transmitting the vacuum ultraviolet light beam through a carbon, aluminum, and indium thin film filter. FIG. 4 is a diagram showing a mechanism for easily replacing the thin film filter without breaking the vacuum of the photoreaction device. 1... Synchrotron synchrotron radiation device 2... Curved mirror 3... Vacuum single tube 4... Thin film filter 5... Filter chamber 6... Reaction container 7... Nozzle for ejecting reaction gas 8. ...Substrate holder 9...Substrate 1o...Incidence part 11 of reaction vessel...Single tube 12...Vacuum single tube for bypass 13...Vacuum valve 14...Thin film filter 15...Thin film Filter 6... Thin film filter 7... Filter holder 8... Hole 9 through which the light beam passes directly... Straight introduction device for filter holder 0... Bellows... Flange 2... O-ring 3... Straight introduction machine for flange 4...Filter chamber

Claims (1)

【特許請求の範囲】[Claims] 1、真空紫外光から紫外線にわたる領域の光ビームを出
射する光源と、所定の反応を行う基板が設置される反応
容器と、上記反応に必要な上記光ビームの波長に応じて
所定の透過率を有する複数個の薄膜フィルタが備えられ
、上記薄膜フィルタは選択したい波長領域に応じて真空
を破ることなく交換可能にまたは上記薄膜フィルタを通
さないことが可能なように上記光源と上記基板との間に
配置され、かつ、上記薄膜フィルタの上記光源側と上記
基板側の真空度が等しくできるようになっていることを
特徴とする光反応装置。
1. A light source that emits a light beam in the range from vacuum ultraviolet light to ultraviolet light, a reaction vessel in which a substrate for performing a predetermined reaction is installed, and a predetermined transmittance depending on the wavelength of the light beam necessary for the reaction. A plurality of thin film filters are provided between the light source and the substrate such that the thin film filters can be replaced without breaking the vacuum or the thin film filters can be replaced depending on the wavelength range to be selected. 1. A photoreaction device, wherein the light source side of the thin film filter and the substrate side of the thin film filter have the same degree of vacuum.
JP19919390A 1990-07-30 1990-07-30 Photo-reaction device Pending JPH0485924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19919390A JPH0485924A (en) 1990-07-30 1990-07-30 Photo-reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19919390A JPH0485924A (en) 1990-07-30 1990-07-30 Photo-reaction device

Publications (1)

Publication Number Publication Date
JPH0485924A true JPH0485924A (en) 1992-03-18

Family

ID=16403694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19919390A Pending JPH0485924A (en) 1990-07-30 1990-07-30 Photo-reaction device

Country Status (1)

Country Link
JP (1) JPH0485924A (en)

Similar Documents

Publication Publication Date Title
US9996005B2 (en) Reflective optical element and optical system for EUV lithography
US9880476B2 (en) Method for producing a capping layer composed of silicon oxide on an EUV mirror, EUV mirror, and EUV lithography apparatus
US7755070B2 (en) Arrangement for the suppression of unwanted spectral components in a plasma-based EUV radiation source
US7959310B2 (en) Optical arrangement and EUV lithography device with at least one heated optical element, operating methods, and methods for cleaning as well as for providing an optical element
JP4353640B2 (en) Wafer container with gas screen for extreme ultraviolet lithography
US11402559B2 (en) Optical filter with layers having refractive index greater than 3
JP2007534007A (en) Films for optical applications and methods for making such films
US20070040999A1 (en) Method for the removal of deposition on an optical element, method for the protection of an optical element, device manufacturing method, apparatus including an optical element, and lithographic apparatus
US20120147350A1 (en) Spectral purity filter, lithographic apparatus, and method for manufacturing a spectral purity filter
TW201007385A (en) Optical element for a lithographic apparatus, lithographic apparatus comprising such optical element and method for making the optical element
JP5448402B2 (en) Extreme ultraviolet light source device with gas flow SPF
US8980533B2 (en) Supply apparatus which supplies radicals, lithography apparatus, and method of manufacturing article
JP2010537230A (en) Dichroic filter formed using silicon carbide-based layers
US9229331B2 (en) EUV mirror comprising an oxynitride capping layer having a stable composition, EUV lithography apparatus, and operating method
US20190049634A1 (en) Materials, components, and methods for use with extreme ultraviolet radiation in lithography and other applications
JPH0485924A (en) Photo-reaction device
JP2018536890A (en) Radiation system and optical device
JPH07105350B2 (en) Light reaction device
JP2544645B2 (en) Light reaction device
JP2544644B2 (en) Light reaction device
Comita et al. Pulsed ultraviolet laser deposition of SiO2 films at 248 nm
KR20230076737A (en) Optical assembly with coating and methods of use
JPH1031096A (en) Half mirror type filter for x-ray and wave length selecting method using it
JP2020101666A (en) Optical article
JPH0775224B2 (en) Thin film forming equipment