JPH048557B2 - - Google Patents

Info

Publication number
JPH048557B2
JPH048557B2 JP2153787A JP2153787A JPH048557B2 JP H048557 B2 JPH048557 B2 JP H048557B2 JP 2153787 A JP2153787 A JP 2153787A JP 2153787 A JP2153787 A JP 2153787A JP H048557 B2 JPH048557 B2 JP H048557B2
Authority
JP
Japan
Prior art keywords
paper
weight
sodium sulfite
pulp
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2153787A
Other languages
Japanese (ja)
Other versions
JPS63190095A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2153787A priority Critical patent/JPS63190095A/en
Publication of JPS63190095A publication Critical patent/JPS63190095A/en
Publication of JPH048557B2 publication Critical patent/JPH048557B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(A) 産業上の利用分野 本発明は中性軽量コート原紙に関する発明であ
る。詳しくは、低坪量で高不透明、低密度である
コート紙で得るための中性抄造原紙に関する発明
である。 (B) 従来の技術及び発明が解決しようとする問題
点 一般に軽量コート原紙は低坪量であるため、単
位坪量当り高い不透明度を要求される。また、軽
量コート紙はオフセツト輪転印刷、グラビア印刷
等、巻取りの形の製品が主体となる。この場合、
巻取り幅方向の歪、厚みが均一である必要があ
る。 そのため、密度が低く、圧縮され易く、かつ圧
縮力の解除に際し、厚みが回復し易い性質、即ち
クツシヨン性が要求される。特に、版との密着性
が要求されるグラビア製品では高いクツシヨン性
が要求される。 通常、これらの特性を満たすため、メカパルプ
(GP、RGP、TMP等)が配合される。しかしな
がら、メカパルプを中性抄紙系に配合する事はピ
ツチトラブル等の点から非常に難しい。しかも、
軽量コート紙に限らず、最近のコート紙では塗層
に多量の炭酸カルシウムを含むため、コート紙の
損紙が配合される原紙は中性系で抄造する事が必
要である。一方、パルプは半晒KP等化学パルプ
だけの配合で、不透明性の優れた軽質炭酸カルシ
ウムを填料として配合すれば、相当の不透明度が
得られる。ところが、化学パルプと填料だけでは
低密度の原紙は得られない。 本発明の目的は上述の問題点を克服し、高不透
明度、低密度であり、中性系で抄造可能な軽量コ
ート原紙を提供する事である。 (C) 問題点を解決するための手段 本発明は繊維のルンケル比が0.4以上であるナ
トリウムサルフアイト蒸解高収率パルプを10重量
%以上、軽質炭酸カルシウムを5重量%以上配合
し、PH7以上で抄造する事を特徴とする中性軽量
コート原紙である。 この中性軽量コート原紙で用いられるナトリウ
ムサルフアイト蒸解高収率パルプはPH12以下のナ
トリウムサルフアイト薬液で蒸解し、収率が70重
量%以上であり、濾水度が200ml以上である事を
特徴としている。 以下で、上記の手段について詳細に説明する。 本発明で言うナトリウムサルフアイト蒸解高収
率パルプは水酸化ナトリウム(NaOH)及び/
又は、亜硫酸ナトリウム(Na2SO3)及び/又
は、重亜硫酸ナトリウム(NaHSO3)の混合液
を木材チツプに添加し、105℃から180℃の温度、
1−9Kg/cm2の水蒸気圧下で5〜40分蒸解し、そ
の後加圧及び常圧のリフアイナーで解繊したパル
プの事である。このナトリウムサルフアイト蒸解
高収率パルプは蒸解及び漂白過程に於て、樹脂含
有率をメカパルプの1/3〜1/10まで減少させてい
る為、PH7以上の系でも、ピツチトラブル等の問
題を生じない。このため、GP、TMP、等のメカ
パルプと異なり、軽質炭酸カルシウムを填料とし
て用いる中性抄紙系で用いることができる。 このナトリウムサルフアイト蒸解高収率パルプ
は一般的にパルプ単独の不透明度ではメカパルプ
(GP、RGP、TMP等)に劣る。特に、不透明度
の重要な尺度となる比散乱係数はGPが600〜700
cm2/gあるのに対し、ナトリウムサルフアイト蒸
解高収率パルプは300〜400cm2/gと半晒KP等化
学パルプと大差なくなつてしまう。ところが、コ
ート原紙に不透明性の高い填料である軽質炭酸カ
ルシウムと共に配合し、塗工後スーパーカレンダ
ー処理を行うと、半晒KPを配合したコート紙に
比べ、同じ白色度であつても、高い不透明度を与
える。これはナトリウムサルフアイト蒸解高収率
パルプの密度がメカパルプ並に低く、クツシヨン
性が高いため、スーパーカレンダー処理に於て、
原紙中の光を散乱させる空隙が半晒KP配合原紙
の様に減少しない事に起因する。当然のことなが
ら、ナトリウムサルフアイト蒸解高収率パルプと
軽質炭酸カルシウムを配合した軽量コート紙で
GP等・メカパルプを配合し、酸性抄紙系で抄造
した軽量コート原紙に匹敵する不透明度が得られ
る。 又、半晒KP等化学パルプに軽質炭酸カルシウ
ムを配合した場合、密度が非常に高くなり、クツ
シヨン性が劣るため、軽量コート原紙に適さな
い。 一方、ナトリウムサルフアイト蒸解高収率パル
プを配合した場合、GP等メカパルプを配合し、
酸性抄紙系で抄造した軽量コート原紙に匹敵する
密度、クツシヨン性が得られる。 ナトリウムサルフアイト蒸解高収率パルプの配
合率は10重量%以下では密度を保持する効果が薄
くなる。又、軟質炭酸カルシウムも5重量%未満
では不透明性への効果が薄くなる。 一般的にナトリウムサルフアイト蒸解高収率パ
ルプは蒸解温度を上昇させる、あるいは蒸解時間
を長くする、蒸解薬液のPHを上昇させる等の処理
によつて、収率は低下する。その際、解繊動力は
減少し、強度は上昇するが、密度は上昇し、比散
乱係数は低下し、70重量%以下の収率(絶乾パル
プ/絶乾木材チツプ)になると、KP並になつて
しまう。又、収率が高くなければ、密度は低下
し、比散乱係数も上がるが、解繊動力が上昇し、
強度も低下する。 蒸解薬液のPHが高く、12を越えると、同じ収率
でも密度が低下し易く、KP並となる。 ところが、厚壁の繊維のチツプを用いると、低
い収率でも比較的高い比散乱係数と低い密度が得
られる。この点を詳細に述べれば、繊維のルンケ
ル比(2×壁厚/ルーメン幅)が0.4以上必要で
ある。従来、高収率パルプにはルンケル比が低い
材が適していると言われていた。それはルンケル
材が低い材は繊維が柔軟で解繊が容易であり、強
度も出易いからである。しかしながら、ルンケル
比が低い材は約90重量%以下の収率では比散乱係
数が著しく低下し、KP以下となる。90重量%以
上の収率では解繊動力が急に上昇し、メカパルプ
並になつてしまうが、その割に比散乱係数は向上
しない。ルンケル比の高い繊維は見かけ比重の高
い材から得られ易い。特に代表的な材としては国
内材ではブナ、ナラ等、輸入材ではユーカリ等、
及び、これらの材の混合材があげられる。 ただ、あまりルンケル比が高過ぎる材、例えば
一部のマングロープ材等においては、材が硬過ぎ
て、繊維時に繊維が粉砕されてしまう。 このルンケル比0.4以上の繊維から成る、ナト
リウムサルフアイト蒸解高収率パルプは収率が70
%以上であり、濾水度を200mlCSFまで低くさせ
ても、比散乱係数は向上する。しかしながら、
200mlをきると、急に比散乱係数が低下し、併せ
て、密度も急上昇し、KP並となつてしまう。一
方、低ルンケル比の繊維ではもつとも高収率の段
階から濾水度低下に伴い、比散乱係数及び密度が
減少してしまう。 なお、本発明に用いる軽質炭酸カルシウムは一
般的な製品であり、0.3〜2.0μm程度の平均粒径
をもつものである。又、本発明で用いられている
NBKP、LBKPも一般的な製品である。 更に、一般的に用いられる歩留り向上剤、等を
常識的範囲で用いる事は本発明の効果を損うもの
ではない。 (D) 実施例 以下で実施例を用い、更に詳細に本発明の効果
を説明する。 実施例 1 ルンケル比1.5の広葉樹混合チツプに対し、PH
7の亜硫酸ナトリウム(Na2SO3)及び、重亜硫
酸ナトリウム(NaHSO3)の混合薬液を8.3重量
%(全SO2として)添加して、薬液液比(全蒸解
薬液/乾燥チツプ量)4.5、蒸解保持温度160℃−
保持時間20分の条件で蒸解後、加圧解繊及び常圧
繊維を行い、収率85重量%、濾水度300ml−CSF
のナトリウムサルフアイト蒸解高収率パルプを得
た。このナトリウムサルフアイト蒸解高収率パル
プが30重量%、LBKP(350ml/CSF)25重量%、
NBKP(450ml−CSF)35重量%、軽質炭酸カル
シウムが10重量%、の構成比から成る40g/m2
手抄紙を調製した。軽質炭酸カルシウムを添加す
ると抄紙時の紙料のPHは8.4と成る。手抄後のシ
ートは線圧80Kg/cmのロールプレスでプレス処理
し、シリンダー・ドライヤーで乾燥した。手抄紙
の物性値は第1表にまとめて示した。 *ルンケル比:2×壁厚/ルーメン幅 原料チツプの繊維断面の光学顕微鏡又は電子顕
微鏡写真から測定。 *収率:100×絶乾パルプ重量/絶乾チツプ重量
% *濾水度:JIS P8121 *白色度:JIS P8123 *比散乱係数:S cm2/g S=10000×R∞×1n((1−RO×R
∞)/(1−RO/R∞))/(1−R∞2)/W W:紙の風乾坪量(g/m2)、 RO、R∞の定義はTAPPI T519に依る。RO、
R∞の測定はJIS P8138に準拠した。 *内部結合強度:TAPPI T506−SU68 *裂断長:JIS P8113 *密度:JIS P8118 比較例 1 白色度60の半晒LKP(未晒パルプを塩素、水酸
化ナトリウム、次亜塩素酸ナトリウムで漂白した
パルプ)が30重量%、NBKPが35重量%、
LBKPが25重量%、軽質炭酸カルシウムが10重量
%、の構成比から成る40g/m2の手抄紙を調製し
た。軽質炭酸カルシウムを添加すると抄紙時の紙
料のPH8.4と成る。手抄後のシートは線圧80Kg/
cmのロールプレスでプレス処理し、シリンダー・
ドライヤーで乾燥した。構成原料比及び手抄紙の
物性値は第1表にまとめて示した。この結果から
分かる様にカレンダー処理後の密度が0.9g/cm3
以上となり、カレンダー処理後の比散乱係数も
300cm2/g以下となり軽量コート原紙として好ま
しくない。 実施例 2 実施例1に示した製造条件と同一条件で、調製
したナトリウムサルフアイト蒸解高収率パルプを
75重量%配合し、他の原料は第1表に示す構成比
で配合した40g/m2の手抄紙を実施例1と同一の
手抄紙調製条件で調製した。結果は第1表に示し
た。 実施例 3 実施例1に示した製造条件と同一条件で、調製
したナトリウムサルフアイト蒸解高収率パルプを
15重量%配合し、他の原料は第1表に示す構成比
で配合した40g/m2の手抄紙を実施例1と同一の
手抄紙調製条件で調製した。結果は第1表に示し
た。 比較例 2 実施例1に示した製造条件と同一条件で、調製
したナトリウムサルフアイト蒸解高収率パルプを
7重量%配合し、他の原料は第1表に示す構成比
で配合した40g/m2の手抄紙を実施例1と同一の
手抄紙調製条件で調製した。結果は第1表に示し
た。 この結果から分かる様にカレンダー処理後の密
度が0.9g/cm3以上となり、カレンダー処理後の
比散乱係数も300cm2/g以下となり軽量コート原
紙として好ましくない。 実施例 4 軽質炭酸カルシウムを7重量%配合し、他の原
料は第2表に示す構成比で配合した40g/m2の手
抄紙を実施例1と同一の手抄紙調製条件で調製し
た。結果は第2表に示した。 実施例 5 軽質炭酸カルシウムを25重量%配合し、他の原
料は第2表に示す構成比で配合した40g/m2の手
抄紙を実施例1と同一の手抄紙調製条件で調製し
た。結果は第2表に示した。 比較例 3 軽質炭酸カルシウムを3重量%配合し、他の原
料は第2表に示す構成比で配合した40g/m2の手
抄紙を実施例1と同一の手抄紙調製条件で調製し
た。結果は第2表に示した。この結果から分かる
様にカレンダー処理後の密度が0.9g/cm3以上と
なり、カレンダー処理後の比散乱係数も300cm2
g以下となり軽量コート原紙として好ましくな
い。 実施例 6 ルンケル比0.4の広葉樹チツプを用いて、第3
表に示した製造条件に従い、調製したナトリウム
サルフアイト蒸解高収率パルプが30重量%、
LBKP(350ml−CSF)25重量%、NBKP(450ml
−CSF)35重量%、軽質炭酸カルシウムが10重量
%、の構成比から成る40g/m2の手抄紙を調製し
た。軽質炭酸カルシウムを添加すると抄紙時の紙
料のPHは8.4と成る。手抄後のシートは線圧80
Kg/cmのロールプレスでプレス処理し、シリンダ
ー・ドライヤーで乾燥した。手抄紙の物性値は第
3表にまとめて示した。 実施例 7 ルンケル比2.0の広葉樹チツプを用いて、第3
表に示した製造条件に従い、調製したナトリウム
サルフアイト蒸解高収率パルプを用い、実施例6
に示した原料配合及び手抄紙調製条件に従い、手
抄紙を調製した。手抄紙の物性値は第3表にまと
めて示した。 比較例 4 ルンケル比0.3の広葉樹チツプを用いて、第3
表に示した製造条件に従い、調製したナトリウム
サルフアイト蒸解高収率パルプを用い、実施例6
に示した原料配合及び手抄紙調製条件に従い、手
抄紙を調製した。手抄紙の物性値は第3表にまと
めて示した。この結果から分かる様にカレンダー
処理後の密度0.9g/cm3以上となり、カレンダー
処理後の比散乱係数も300cm2/g以下となり軽量
コート原紙として好ましくない。 実施例 8 収率が70重量%と成る様に、第4表に示した製
造条件に従い、調製したナトリウムサルフアイト
蒸解高収率パルプを用い、実施例6に示した原料
配合及び手抄紙調製条件に従い、手抄紙を調製し
た。手抄紙の物性値は第4表にまとめて示した。 実施例 9 収率が92重量%と成る様に、第4表に示した製
造条件に従い、調製したナトリウムサルフアイト
蒸解高収率パルプを用い、実施例6に示した原料
配合及び手抄紙調製条件に従い、手抄紙を調製し
た。手抄紙の物性値は第4表にまとめて示した。 比較例 5 収率が65重量%と成る様に、第4表に示した製
造条件に従い、調製したナトリウムサルフアイト
蒸解高収率パルプを用い、実施例6に示した原料
配合及び手抄紙調製条件に従い、手抄紙を調製し
た。手抄紙の物性値は第4表にまとめて示した。
この結果から分かる様にカレンダー処理後の密度
が0.9g/cm3以上となり、カレンダー処理後の比
散乱係数も300cm2/g以下となり軽量コート原紙
として好ましくない。 実施例 10 薬液PHを4として、他の製造条件は第5表に示
した製造条件に従い、調製したナトリウムサルフ
アイト蒸解高収率パルプを用い、実施例6に示し
た原料配合及び手抄紙調製条件に従い、手抄紙を
調製した。手抄紙の物性値は第5表にまとめて示
した。 実施例 11 薬液PHを12として、他の製造条件は第5表に示
した製造条件に従い、調製したナトリウムサルフ
アイト蒸解高収率パルプを用い、実施例6に示し
た原料配合及び手抄紙調製条件に従い、手抄紙を
調製した。手抄紙の物性値は第5表にまとめて示
した。 比較例 6 薬液PHを13として、他の製造条件は第5表に示
した製造条件に従い、調製したナトリウムサルフ
アイト蒸解高収率パルプを用い、実施例6に示し
た原料配合及び手抄紙調製条件に従い、手抄紙を
調製した。手抄紙の物性値は第5表にまとめて示
した。この結果から分かる様にカレンダー処理後
の密度が0.9g/cm3以上となり、カレンダー処理
後の比散乱係数も300cm2/g以下となり軽量コー
ト原紙として好ましくない。 実施例 12 濾水度が200mlCSFと成る様に、第6表に示し
た製造条件に従い、調製したナトリウムサルフア
イト蒸解高収率パルプを用い、実施例6に示した
原料配合及び手抄紙調製条件に従い、手抄紙を調
製した。手抄紙の物性値は第6表にまとめて示し
た。 実施例 13 濾水度が400mlCSFと成る様に、第6表に示し
た製造条件に従い、調製したナトリウムサルフア
イト蒸解高収率パルプを用い、実施例6に示した
原料配合及び手抄紙調製条件に従い、手抄紙を調
製した。手抄紙の物性値は第6表にまとめて示し
た。 比較例 7 濾水度が180mlCSFと成る様に、第6表に示し
た製造条件に従い、調製したナトリウムサルフア
イト蒸解高収率パルプを用い、実施例6に示した
原料配合及び手抄紙調製条件に従い、手抄紙を調
製した。手抄紙の物性値は第6表にまとめて示し
た。この結果から分かる様にカレンダー処理後の
密度が0.9g/cm3以上となり、カレンダー処理後
の比散乱係数も300cm2/g以下となり軽量コート
原紙として好ましくない。 (E) 発明の効果 本発明を実施する事に依り、メカパルプの使用
が難しい中性抄紙系に於て、ピツチトラブル等の
問題を生ずる異なく、高い不透明性と低い密度、
即ち優れたクツシヨン性(具体的にはカレンダー
処理後の比散乱係数が300cm2/gを越え、カレン
ダー処理後の密度が0.9g/cm3以下と成る)を備
えた中性軽量コート原紙を得る事ができる。 特に本発明の効果は塗抹、スーパーカレンダー
処理後の軽量コート紙に於て持続される点が顕著
である。このため、本発明の中性軽量コート原紙
に塗抹した、軽量コート紙はオフセツト輪転印
刷、グラビア印刷、等に於て優れた印刷適性を示
す。 又、本発明の重要な構成要素であるナトリウム
サルフアイト蒸解高収率パルプは他のメカパルプ
に比べ、低い解繊エネルギーで製造可能であり、
消費エネルギーを減らす事ができる。
(A) Industrial Application Field The present invention relates to neutral lightweight coated base paper. Specifically, the invention relates to a neutral papermaking base paper for obtaining coated paper that has low basis weight, high opacity, and low density. (B) Problems to be Solved by the Prior Art and the Invention In general, lightweight coated base paper has a low basis weight, so it is required to have high opacity per unit basis weight. Furthermore, lightweight coated paper is mainly used in roll-type products such as offset rotary printing and gravure printing. in this case,
The distortion and thickness in the winding width direction must be uniform. Therefore, it is required to have low density, be easily compressed, and have properties that allow the thickness to be easily recovered upon release of the compressive force, that is, cushioning properties. In particular, gravure products that require good adhesion to the plate require high cushioning properties. Usually, mechanical pulp (GP, RGP, TMP, etc.) is blended to meet these characteristics. However, it is very difficult to incorporate mechanical pulp into a neutral papermaking system due to pitch troubles and the like. Moreover,
Not only lightweight coated paper but also recent coated paper contains a large amount of calcium carbonate in the coating layer, so it is necessary to make the base paper in which the coated paper waste is mixed with a neutral system. On the other hand, if the pulp is only a chemical pulp such as semi-bleached KP, and light calcium carbonate, which has excellent opacity, is added as a filler, a considerable degree of opacity can be obtained. However, low-density base paper cannot be obtained using chemical pulp and fillers alone. An object of the present invention is to overcome the above-mentioned problems and provide a lightweight coated base paper that has high opacity, low density, and can be made in a neutral system. (C) Means for solving the problem The present invention contains 10% by weight or more of sodium sulfite-cooked high-yield pulp whose fiber Runkel ratio is 0.4 or more, 5% by weight or more of light calcium carbonate, and has a pH of 7 or more. This is a neutral, lightweight coated base paper that is manufactured using The sodium sulfite-cooked high-yield pulp used in this neutral lightweight coated base paper is digested with a sodium sulfite chemical solution with a pH of 12 or less, and has a yield of 70% by weight or more and a freeness of 200ml or more. It is said that The above means will be explained in detail below. The sodium sulfite-cooked high-yield pulp referred to in the present invention contains sodium hydroxide (NaOH) and/or
Alternatively, a mixture of sodium sulfite (Na 2 SO 3 ) and/or sodium bisulfite (NaHSO 3 ) is added to the wood chips at a temperature of 105°C to 180°C;
It is a pulp that is digested for 5 to 40 minutes under a steam pressure of 1 to 9 kg/cm 2 and then defibrated in a pressurized and normal pressure refiner. This sodium sulfite-cooked high-yield pulp reduces the resin content to 1/3 to 1/10 of mechanical pulp during the cooking and bleaching processes, so it does not cause problems such as pitch trouble even in systems with a pH of 7 or higher. Does not occur. Therefore, unlike mechanical pulps such as GP and TMP, it can be used in neutral papermaking systems that use light calcium carbonate as a filler. This sodium sulfite-cooked high-yield pulp is generally inferior to mechanical pulp (GP, RGP, TMP, etc.) in terms of opacity of the pulp alone. In particular, the specific scattering coefficient, which is an important measure of opacity, is 600 to 700 for GP.
cm 2 /g, whereas high-yield pulp cooked with sodium sulfite is 300 to 400 cm 2 /g, which is not much different from chemical pulp such as semi-bleached KP. However, when coated base paper is blended with light calcium carbonate, which is a highly opaque filler, and subjected to supercalender treatment after coating, even if the whiteness is the same, there is a high degree of impurity compared to coated paper containing semi-bleached KP. Gives transparency. This is because the density of sodium sulfite-cooked high-yield pulp is as low as that of mechanical pulp, and its cushioning properties are high.
This is due to the fact that the voids in the base paper that scatter light do not decrease as they do with semi-bleached KP blended base paper. Naturally, it is a lightweight coated paper containing sodium sulfite-cooked high-yield pulp and light calcium carbonate.
Contains GP, etc. and mechanical pulp to achieve opacity comparable to lightweight coated base paper made using acidic papermaking systems. Furthermore, when light calcium carbonate is blended with chemical pulp such as semi-bleached KP, the density becomes extremely high and the cushioning properties are poor, making it unsuitable for lightweight coated base paper. On the other hand, when sodium sulfite digested high-yield pulp is blended, mechanical pulp such as GP is blended,
Density and cushioning properties comparable to lightweight coated paper made using acidic papermaking systems can be obtained. If the blending ratio of sodium sulfite-cooked high-yield pulp is less than 10% by weight, the effect of maintaining density will be reduced. Furthermore, if the amount of soft calcium carbonate is less than 5% by weight, the effect on opacity will be reduced. Generally, the yield of sodium sulfite-cooked high-yield pulp is reduced by treatments such as increasing the cooking temperature, lengthening the cooking time, or increasing the pH of the cooking chemical. At that time, the fibrillation force decreases and the strength increases, but the density increases and the specific scattering coefficient decreases, and when the yield is less than 70% by weight (bone-dried pulp/bone-dried wood chips), it becomes comparable to KP. I'm getting used to it. In addition, if the yield is not high, the density will decrease and the specific scattering coefficient will increase, but the fibrillation power will increase.
Strength also decreases. If the pH of the cooking chemical is high and exceeds 12, the density tends to decrease even with the same yield, and becomes comparable to KP. However, thick-walled fiber chips provide relatively high specific scattering coefficients and low densities at low yields. To explain this point in detail, the Runkel ratio (2 x wall thickness/lumen width) of the fiber is required to be 0.4 or more. Conventionally, it has been said that materials with a low Runkel ratio are suitable for producing high-yield pulp. This is because materials with a low Runkel material have flexible fibers that are easy to defibrate and are easy to develop strength. However, when the yield of materials with a low Runkel ratio is less than about 90% by weight, the specific scattering coefficient decreases significantly and becomes less than KP. At a yield of 90% by weight or more, the fibrillation power suddenly increases and becomes comparable to mechanical pulp, but the specific scattering coefficient does not improve. Fibers with a high Runkel ratio are easily obtained from materials with a high apparent specific gravity. Particularly representative materials include domestic materials such as beech and oak, and imported materials such as eucalyptus.
and mixtures of these materials. However, in materials with too high a Runkel ratio, such as some mangrove materials, the material is too hard and the fibers are crushed when they are made into fibers. This sodium sulfite-cooked high-yield pulp made of fibers with a Runkel ratio of 0.4 or more has a yield of 70
% or more, and even if the freeness is lowered to 200 ml CSF, the specific scattering coefficient improves. however,
When the volume drops below 200ml, the specific scattering coefficient suddenly decreases, and at the same time, the density increases rapidly, reaching the same level as KP. On the other hand, in fibers with a low Runkel ratio, the specific scattering coefficient and density decrease as the freeness decreases even from a high yield stage. The light calcium carbonate used in the present invention is a common product and has an average particle size of about 0.3 to 2.0 μm. Also, used in the present invention
NBKP and LBKP are also common products. Furthermore, the effects of the present invention are not impaired by using commonly used retention improvers and the like within a common sense range. (D) Examples The effects of the present invention will be explained in more detail below using examples. Example 1 For hardwood mixed chips with a Runkel ratio of 1.5, PH
A mixed chemical solution of sodium sulfite (Na 2 SO 3 ) and sodium bisulfite (NaHSO 3 ) from No. 7 was added in an amount of 8.3% by weight (as total SO 2 ), and the chemical liquid ratio (total cooking chemical solution/dry chip amount) was 4.5. Cooking holding temperature 160℃−
After cooking with a holding time of 20 minutes, pressure defibration and normal pressure fibers were performed, yield 85% by weight, freeness 300ml - CSF
A high-yield pulp was obtained by cooking with sodium sulfite. This sodium sulfite digested high yield pulp is 30% by weight, LBKP (350ml/CSF) is 25% by weight,
A 40 g/m 2 handmade paper was prepared with a composition ratio of 35% by weight of NBKP (450ml-CSF) and 10% by weight of light calcium carbonate. When light calcium carbonate is added, the pH of the paper stock at the time of paper making becomes 8.4. The hand-made sheet was pressed using a roll press with a linear pressure of 80 kg/cm and dried using a cylinder dryer. The physical properties of the handmade paper are summarized in Table 1. *Runkel ratio: 2 x wall thickness/lumen width Measured from an optical or electron micrograph of the fiber cross section of raw material chips. *Yield: 100 x weight of bone dry pulp/weight% of bone dry chips *Freeness: JIS P8121 *Whiteness: JIS P8123 *Specific scattering coefficient: S cm 2 /g S = 10000 x R∞ x 1n ((1 -RO×R
∞)/(1-RO/R∞))/(1- R∞2 )/WW: Air-dry basis weight of paper (g/ m2 ). The definitions of RO and R∞ are based on TAPPI T519. R.O.
The measurement of R∞ was based on JIS P8138. *Internal bond strength: TAPPI T506-SU68 *Tearing length: JIS P8113 *Density: JIS P8118 Comparative example 1 Semi-bleached LKP with brightness of 60 (unbleached pulp bleached with chlorine, sodium hydroxide, and sodium hypochlorite) pulp) is 30% by weight, NBKP is 35% by weight,
A 40 g/m 2 handmade paper was prepared with a composition ratio of 25% by weight of LBKP and 10% by weight of light calcium carbonate. When light calcium carbonate is added, the pH of the paper stock at the time of paper making becomes 8.4. The sheet after hand-sheeting has a linear pressure of 80 kg/
Pressed with cm roll press, cylinder and
Dry with a hair dryer. The constituent raw material ratios and physical property values of the handmade paper are summarized in Table 1. As you can see from this result, the density after calendering is 0.9g/cm 3
As above, the specific scattering coefficient after calendering is also
It is less than 300 cm 2 /g, which is not preferable as a lightweight coated base paper. Example 2 Sodium sulfite-cooked high-yield pulp prepared under the same production conditions as in Example 1 was produced.
A 40 g/m 2 handmade paper containing 75% by weight and other raw materials in the composition ratios shown in Table 1 was prepared under the same handmade paper preparation conditions as in Example 1. The results are shown in Table 1. Example 3 Sodium sulfite-cooked high-yield pulp prepared under the same production conditions as in Example 1 was produced.
A 40 g/m 2 handmade paper was prepared under the same conditions as in Example 1, containing 15% by weight and other raw materials in the composition ratios shown in Table 1. The results are shown in Table 1. Comparative Example 2 7% by weight of sodium sulfite digested high yield pulp prepared under the same production conditions as in Example 1 was blended, and other raw materials were blended in the composition ratios shown in Table 1 at 40 g/m Handmade paper No. 2 was prepared under the same handmade paper preparation conditions as in Example 1. The results are shown in Table 1. As can be seen from these results, the density after calendering is 0.9 g/cm 3 or more, and the specific scattering coefficient after calendering is also 300 cm 2 /g or less, which is not preferable as a lightweight coated base paper. Example 4 A 40 g/m 2 handmade paper containing 7% by weight of light calcium carbonate and other raw materials in the composition ratios shown in Table 2 was prepared under the same conditions as in Example 1. The results are shown in Table 2. Example 5 A 40 g/m 2 handmade paper containing 25% by weight of light calcium carbonate and other raw materials in the composition ratios shown in Table 2 was prepared under the same conditions as in Example 1. The results are shown in Table 2. Comparative Example 3 A 40 g/m 2 handmade paper containing 3% by weight of light calcium carbonate and other raw materials in the composition ratios shown in Table 2 was prepared under the same conditions as in Example 1. The results are shown in Table 2. As can be seen from these results, the density after calendering is 0.9 g/cm 3 or more, and the specific scattering coefficient after calendering is 300 cm 2 /
g or less, which is not preferable as a lightweight coated base paper. Example 6 Using hardwood chips with a Runkel ratio of 0.4, the third
According to the production conditions shown in the table, the sodium sulfite-cooked high-yield pulp was 30% by weight.
LBKP (350ml−CSF) 25% by weight, NBKP (450ml
- 40 g/m 2 handmade paper was prepared with a composition ratio of 35% by weight of calcium carbonate and 10% by weight of light calcium carbonate. When light calcium carbonate is added, the pH of the paper stock at the time of paper making becomes 8.4. The sheet after hand-sheeting has a linear pressure of 80
It was pressed using a roll press of kg/cm and dried using a cylinder dryer. The physical properties of the handmade paper are summarized in Table 3. Example 7 Using hardwood chips with a Runkel ratio of 2.0, the third
Example 6 Using the sodium sulfite-cooked high-yield pulp prepared according to the production conditions shown in the table,
Handmade paper was prepared according to the raw material formulation and handmade paper preparation conditions shown in . The physical properties of the handmade paper are summarized in Table 3. Comparative Example 4 Using hardwood chips with a Runkel ratio of 0.3, the third
Example 6 Using the sodium sulfite-cooked high-yield pulp prepared according to the production conditions shown in the table,
Handmade paper was prepared according to the raw material formulation and handmade paper preparation conditions shown in . The physical properties of the handmade paper are summarized in Table 3. As can be seen from these results, the density after calendering was 0.9 g/cm 3 or more, and the specific scattering coefficient after calendering was also 300 cm 2 /g or less, which is not preferable as a lightweight coated base paper. Example 8 Sodium sulfite digested high-yield pulp was prepared according to the production conditions shown in Table 4 so that the yield was 70% by weight, and the raw material composition and hand paper preparation conditions shown in Example 6 were used. Handmade paper was prepared according to the following. The physical properties of the handmade paper are summarized in Table 4. Example 9 Sodium sulfite digested high-yield pulp was prepared according to the production conditions shown in Table 4 so that the yield was 92% by weight, and the raw material composition and hand paper preparation conditions shown in Example 6 were used. Handmade paper was prepared according to the following. The physical properties of the handmade paper are summarized in Table 4. Comparative Example 5 Sodium sulfite-cooked high-yield pulp was prepared according to the production conditions shown in Table 4 so that the yield was 65% by weight, and the raw material composition and handmade paper preparation conditions shown in Example 6 were used. Handmade paper was prepared according to the following. The physical properties of the handmade paper are summarized in Table 4.
As can be seen from these results, the density after calendering is 0.9 g/cm 3 or more, and the specific scattering coefficient after calendering is also 300 cm 2 /g or less, which is not preferable as a lightweight coated base paper. Example 10 Using sodium sulfite-cooked high-yield pulp prepared with a chemical solution pH of 4 and other production conditions shown in Table 5, the raw material composition and hand-made paper preparation conditions shown in Example 6 were used. Handmade paper was prepared according to the following. The physical properties of the handmade paper are summarized in Table 5. Example 11 Using sodium sulfite-cooked high-yield pulp prepared with a chemical solution pH of 12 and other manufacturing conditions shown in Table 5, the raw material composition and hand paper preparation conditions shown in Example 6 were used. Handmade paper was prepared according to the following. The physical properties of the handmade paper are summarized in Table 5. Comparative Example 6 Using sodium sulfite-cooked high-yield pulp prepared with a chemical solution pH of 13 and other production conditions shown in Table 5, the raw material composition and hand-made paper preparation conditions shown in Example 6 were used. Handmade paper was prepared according to the following. The physical properties of the handmade paper are summarized in Table 5. As can be seen from these results, the density after calendering is 0.9 g/cm 3 or more, and the specific scattering coefficient after calendering is also 300 cm 2 /g or less, which is not preferable as a lightweight coated base paper. Example 12 Sodium sulfite-cooked high-yield pulp was prepared according to the production conditions shown in Table 6 so that the freeness was 200 ml CSF, and the raw material composition and hand paper preparation conditions shown in Example 6 were used. , handmade paper was prepared. The physical properties of the handmade paper are summarized in Table 6. Example 13 Sodium sulfite-cooked high-yield pulp was prepared according to the production conditions shown in Table 6 so that the freeness was 400 ml CSF, and the raw material composition and hand paper preparation conditions shown in Example 6 were used. , handmade paper was prepared. The physical properties of the handmade paper are summarized in Table 6. Comparative Example 7 Sodium sulfite-cooked high-yield pulp was prepared according to the production conditions shown in Table 6 so that the freeness was 180 ml CSF, and the raw material composition and hand paper preparation conditions shown in Example 6 were used. , handmade paper was prepared. The physical properties of the handmade paper are summarized in Table 6. As can be seen from these results, the density after calendering is 0.9 g/cm 3 or more, and the specific scattering coefficient after calendering is also 300 cm 2 /g or less, which is not preferable as a lightweight coated base paper. (E) Effects of the Invention By carrying out the present invention, high opacity, low density,
That is, a neutral, lightweight coated base paper with excellent cushioning properties (specifically, a specific scattering coefficient after calendering of over 300 cm 2 /g and a density after calendering of 0.9 g/cm 3 or less) is obtained. I can do things. Particularly, the effect of the present invention is remarkable in that it is sustained on lightweight coated paper after being smeared and supercalendered. Therefore, the lightweight coated paper coated with the neutral lightweight coated base paper of the present invention exhibits excellent printability in offset rotary printing, gravure printing, and the like. In addition, the sodium sulfite digested high-yield pulp, which is an important component of the present invention, can be produced with lower fibrillation energy than other mechanical pulps.
Energy consumption can be reduced.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 *:ナトリウムサルフアイト蒸解高収率パ
ルプ
**:SOとしての重量%
※ カレンダー処理:線圧 200Kg/cm 2
回通し
[Table] *: Sodium sulfite cooking high yield pulp **: Weight % as SO2
* Calendaring: Linear pressure 200Kg/cm 2
circulation

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 繊維のルンケル比0.4以上であるナトリウム
サルフアイト蒸解高収率パルプを10重量%以上、
軽質炭酸カルシウムを5重量%以上配合し、PH7
以上で抄造する事を特徴とする中性軽量コート原
紙。 2 PH12以下のナトリウムサルフアイト薬液で蒸
解し収率が70重量%以上であり、濾水度が200ml
以上であるナトリウムサルフアイト蒸解高収率パ
ルプを配合する事を特徴とする特許請求の範囲第
1項記載の中性軽量コート原紙。
[Claims] 1. 10% by weight or more of sodium sulfite-cooked high-yield pulp having a fiber Runkel ratio of 0.4 or more;
Contains 5% by weight or more of light calcium carbonate and has a pH of 7.
Neutral lightweight coated base paper characterized by being made by the above process. 2 Digested with a sodium sulfite chemical solution with a pH of 12 or less, the yield is 70% by weight or more, and the freeness is 200ml.
The neutral lightweight coated base paper according to claim 1, characterized in that it contains the sodium sulfite digested high-yield pulp as described above.
JP2153787A 1987-01-30 1987-01-30 Neutral lightweight coated base paper Granted JPS63190095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2153787A JPS63190095A (en) 1987-01-30 1987-01-30 Neutral lightweight coated base paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2153787A JPS63190095A (en) 1987-01-30 1987-01-30 Neutral lightweight coated base paper

Publications (2)

Publication Number Publication Date
JPS63190095A JPS63190095A (en) 1988-08-05
JPH048557B2 true JPH048557B2 (en) 1992-02-17

Family

ID=12057714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2153787A Granted JPS63190095A (en) 1987-01-30 1987-01-30 Neutral lightweight coated base paper

Country Status (1)

Country Link
JP (1) JPS63190095A (en)

Also Published As

Publication number Publication date
JPS63190095A (en) 1988-08-05

Similar Documents

Publication Publication Date Title
de Assis et al. Comparison of wood and non-wood market pulps for tissue paper application
FI107274B (en) Procedure for making base paper for fine paper
RU2716879C1 (en) Method of producing wood pulp fibres with increased volume, obtained wood pulp fibres and articles containing said wood pulp
WO2020003129A1 (en) A ply of a linerboard and a light weight linerboard for corrugated board
EP3814042B1 (en) A light weight linerboard for corrugated board
US5244541A (en) Pulp treatment methods
SE543552C2 (en) Refined cellulose fiber composition
Stankovská et al. Blending impact of hardwood pulps with softwood pulp on tissue paper properties
Petroudy et al. Sugarcane bagasse paper reinforced by cellulose nanofiber (CNF) and bleached softwood kraft (BSWK) pulp
EP3059344B1 (en) A method for manufacturing paper comprising bleached chemithermo-mechanical pulp suitable for a release liner and products and uses thereof
GB2031972A (en) Filled paper
JP4814448B2 (en) Coated paper for printing
US6068734A (en) Soft, bulky absorbent paper containing chemithermomechanical pulp
KR20120094393A (en) Method for manufacturing lignocellulosic fillers for papermaking and the lignocellulosic fillers prepared thereby
JP4738662B2 (en) Newspaper
JPH048557B2 (en)
JP4799774B2 (en) Printing paper
CN114541170A (en) Coating composition for papermaking, gravure light coated paper and manufacturing method thereof
JP2964785B2 (en) Base paper for coated paper for printing
CA1186856A (en) Blending of hardwood asplund pulp (htmp) with softwood thermomechanical pulp (tmp) in making a low energy tmp furnish of improved strength by ozonation and press drying
EP4310249A1 (en) Translucent paper products
CN115748298B (en) Cultural paper and preparation method thereof
JPH0849187A (en) Coated paper for offset printing
JPH1046495A (en) Coated paper for printing and its production
JP2008248417A (en) Hardwood mechanical pulp