JPH0485307A - Production of polyolefin - Google Patents

Production of polyolefin

Info

Publication number
JPH0485307A
JPH0485307A JP2200008A JP20000890A JPH0485307A JP H0485307 A JPH0485307 A JP H0485307A JP 2200008 A JP2200008 A JP 2200008A JP 20000890 A JP20000890 A JP 20000890A JP H0485307 A JPH0485307 A JP H0485307A
Authority
JP
Japan
Prior art keywords
reactor
fluidized bed
water
reaction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2200008A
Other languages
Japanese (ja)
Inventor
Yoshihisa Yamaguchi
喜久 山口
Shinjiro Suga
菅 信二郎
Masatoshi Morikawa
正敏 森川
Kunimichi Kubo
久保 国道
Kanichi Watanabe
渡辺 幹一
Hirohiko Sano
佐野 裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP2200008A priority Critical patent/JPH0485307A/en
Priority to EP91913120A priority patent/EP0494316B1/en
Priority to PCT/JP1991/001010 priority patent/WO1992002563A1/en
Priority to DE69119390T priority patent/DE69119390T2/en
Priority to AU82257/91A priority patent/AU643057B2/en
Priority to KR1019920700612A priority patent/KR0172613B1/en
Priority to CA002066770A priority patent/CA2066770C/en
Priority to US07/844,590 priority patent/US5385991A/en
Publication of JPH0485307A publication Critical patent/JPH0485307A/en
Priority to US08/328,083 priority patent/US5525687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To obtain smoothly a particulate polyolefin while preventing the formation of a molten resin by packing the reactor with specified particles before starting the polymerization reaction of an alpha-olefin in a gas-phase fluidized bed. CONSTITUTION:A process for polymerizing an alpha-olefin (e.g. ethylene/1-butene mixture) in a gas-phase fluidized bed, wherein the reactor is packed with water- containing particles which can form a fluidized bed (e.g. ethylene/1-butene copolymer particle having adherent water) before the reaction is started.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はポリオレフィンの製造において、安定した運転
を行なうための方法に関し、詳しくは、気相流動床反応
器によるポリオレフィンの製造において、反応開始時に
起こりやすい溶融樹脂の発生を抑制し、反応装置の運転
を円滑に行なうための方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for stable operation in the production of polyolefins. This invention relates to a method for suppressing the occurrence of molten resin, which is likely to occur, and for smoothly operating a reactor.

[従来の技術] ポリオレフィンの気相流動床による重合プロセスにおい
ては、流動床反応器にあらかじめ神ポリマーと呼ばれる
樹脂の粉末を充填して流動を開始し、原料混合カス、触
媒および助触媒としてのアルキルアルミニウム化合物を
連続的に供給すると共に、ガス中の不純物(酸素、水分
等)を除去しながら重合反応を行ない、所定の滞留時間
の間に成長した重合体粒子を抜き出す。上記の種ポリマ
ーを使用しないと、供給した触媒か分散し難いため粒状
の樹脂か生成せず、したがって流動床も形成されないの
で、流動床系の重合反応器においては、運転開始時に必
ず種ポリマーか使用されてきた。
[Prior art] In the gas-phase fluidized bed polymerization process of polyolefins, a fluidized bed reactor is filled in advance with resin powder called Kamipolymer to start fluidization, and raw material mixture residue, a catalyst, and an alkyl cocatalyst are While continuously supplying an aluminum compound, a polymerization reaction is carried out while removing impurities (oxygen, moisture, etc.) in the gas, and polymer particles grown during a predetermined residence time are extracted. If the above-mentioned seed polymer is not used, the supplied catalyst will be difficult to disperse, so granular resin will not be produced, and a fluidized bed will not be formed. has been used.

気相流動床によるポリオレフィンの製造において最も重
要な点は、投入された触媒が反応器内ててきる限り均一
に分散され、かつ流動化カスが反応器内に均一に分散さ
れて、これらにより反応熱か充分に除去されることであ
る。すなわち、反応器内において触媒濃度が局部的に著
しく高くなフたり、カスか充分に分散せず冷却効果か不
完全になフた場合には、溶融樹脂が生成し、これが塊状
となワて流動化を妨げ、温度分布か一層不均一になフて
さらに溶融樹脂か生成し、この悪循環か繰り返されて、
ついには樹脂を容器内から抜き出すことか不可能となり
、反応を停止せざるを得なくなる。
The most important point in the production of polyolefins using a gas-phase fluidized bed is that the introduced catalyst is dispersed as uniformly as possible within the reactor, and that the fluidized residue is uniformly dispersed within the reactor, thereby facilitating the reaction. Heat must be sufficiently removed. In other words, if the catalyst concentration locally becomes extremely high in the reactor, or if the scum is not sufficiently dispersed and the cooling effect is incomplete, molten resin is produced, which becomes lumpy. Fluidization is hindered, the temperature distribution becomes even more uneven, and more molten resin is generated, and this vicious cycle is repeated.
Eventually, it becomes impossible to extract the resin from inside the container, and the reaction has to be stopped.

以上の問題点の内、後者の流動化ガスの均一な分散につ
いては、樹脂の粒径および粒径分布、かさ密度などと流
動化ガス速度との関係を検討し、かつ容器の構造を配慮
することなどによって比較的容易に解決することがてき
る。しかし、前者の触媒の分散に関しては、触媒および
樹脂の粉末の運動により発生する静電気のため、容器壁
へ触媒の微粉末が付着して触媒濃度が増大する結果、均
一な分散状態を実現することがきわめて困難であった。
Of the above problems, regarding the latter, uniform dispersion of the fluidizing gas, consider the relationship between the particle size, particle size distribution, bulk density, etc. of the resin and the fluidizing gas velocity, and also consider the structure of the container. This problem can be solved relatively easily. However, regarding the former type of catalyst dispersion, due to static electricity generated by the movement of catalyst and resin powder, fine catalyst powder adheres to the container wall and the catalyst concentration increases, making it difficult to achieve a uniformly dispersed state. was extremely difficult.

多くの場合、反応開始後約半日間にこの現象か著しく現
われ、壁面のみ温度が上昇してそこで樹脂の溶融が発生
する。
In many cases, this phenomenon becomes noticeable approximately half a day after the start of the reaction, and the temperature rises only at the wall surface, causing melting of the resin there.

樹脂の粉末が流動することにより静電気を帯びる事実は
日常よく経験されるところてあり、たとえば、樹脂粉を
パイプで輸送する際に、その粉末かパイプの内面に薄く
付着することなどが知られている。流動床によるポリオ
レフィンの製造においてもこれらの事実は従来から経験
されており、その対策として米国特許4,855,37
0号においては反応器内に水分を含有したカスを供給し
、特開昭56−4608号においては液状炭化水素を共
存させる方法を開示しており、さらに米国特許4,53
2,311号ではクロム含有化合物の添加を、また、特
開平1−230607号ではアルコール、ケトンなとを
それぞれ反応器内に添加する方法を開示している。
The fact that resin powder is charged with static electricity as it flows is a common experience in everyday life.For example, when resin powder is transported through a pipe, it is known that the powder adheres to the inner surface of the pipe in a thin layer. There is. These facts have been experienced in the production of polyolefins using a fluidized bed, and as a countermeasure, U.S. Patent No. 4,855,37
No. 0 discloses a method in which scum containing water is supplied into a reactor, and JP-A-56-4608 discloses a method in which liquid hydrocarbons are allowed to coexist, and US Pat. No. 4,53
No. 2,311 discloses a method of adding a chromium-containing compound, and JP-A No. 1-230607 discloses a method of adding an alcohol, a ketone, etc. into a reactor.

しかし、これらはいずれも重合反応中に特定物質を反応
器内に供給する方法であるため、実施に当たり特別の装
置を設置する必要かあり、かつ運転操作も複雑にならざ
るを得ない。したかつて、より簡便な方法で有効に上記
の欠点を排除する手段か強く求められていた。
However, since all of these methods involve supplying a specific substance into a reactor during the polymerization reaction, it is necessary to install special equipment to carry out the method, and the operation is also complicated. In the past, there was a strong demand for a means to effectively eliminate the above drawbacks using a simpler method.

[発明か解決しようとする課題] 本発明は、気相流動床による重合反応において上記の欠
点を排除し、反応系に特に新たな設備を設けることなく
、きわめて容易な手段で静電気の発生に基つく溶融樹脂
の生成を防止してポリオレフィン粒子を製造する方法を
提供することを目的とする。
[Problems to be Solved by the Invention] The present invention eliminates the above-mentioned drawbacks in polymerization reactions using a gas-phase fluidized bed, and eliminates the need for particularly installing new equipment in the reaction system, and by extremely easy means based on the generation of static electricity. It is an object of the present invention to provide a method for producing polyolefin particles while preventing the formation of a sticky molten resin.

[課題を解決するための手段] 本発明者らは、上記の目的に沿って鋭意検討した結果、
あらかじめ反応器に含水粒子を充填して流動床反応を開
始することにより、溶融樹脂の生成を防ぐことができる
ことを見出して本発明に到達した。
[Means for Solving the Problems] As a result of intensive studies in line with the above objectives, the present inventors have found that
The present invention was achieved by discovering that generation of molten resin can be prevented by filling a reactor with water-containing particles in advance and starting a fluidized bed reaction.

すなわち本発明は、気相流動床によるα−オレフィンの
重合反応において、流動床を形成し得る含水粒子をあら
かじめ反応器内に充填して反応を開始することを特徴と
するポリオレフィンの製造方法を提供するものである。
That is, the present invention provides a method for producing a polyolefin, which is characterized in that, in the polymerization reaction of α-olefin using a gas-phase fluidized bed, the reaction is started by filling a reactor with water-containing particles capable of forming a fluidized bed in advance. It is something to do.

以下に本発明の内容を詳述する。The content of the present invention will be explained in detail below.

本発明で使用する気相流動床とは、実質的に気−同系で
運転される流動床系をすべて包含し、攪拌機を有する場
合または有しない場合のいずれてあっでもよい。
The gas-phase fluidized bed used in the present invention includes all fluidized bed systems that are substantially operated in a gas-synchronized manner, and may or may not have a stirrer.

本発明で用いるα−オレフィンとしては、通常炭素数2
〜8のもの、たとえば、エチレン、プロピレン、1−ブ
テン、1−ヘキセン、4−メチル1−ペンテン、1−オ
クテンなとのα−オレフィンか挙げられる。これらは単
独てまたは2種以上の混合物として用いられる。
The α-olefin used in the present invention usually has 2 carbon atoms.
-8, such as α-olefins such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, and 1-octene. These may be used alone or as a mixture of two or more.

使用する重合触媒としては、チタンおよび/またはバナ
ジウム化合物を含有するチークラ−触媒またはクロム化
合物を含有するフィリップス触媒など公知のものが挙げ
られる。
Examples of the polymerization catalyst used include known catalysts such as a Ziekler catalyst containing a titanium and/or vanadium compound or a Phillips catalyst containing a chromium compound.

般に上記の触媒に対して、水、酸素などは還元作用を抑
制する有害な不純物てあり、アルキルアルミニウムなと
の助触媒でこれらを除去した後に反応を開始する必要か
あるとされてきた。しかしながら、本発明者らによれば
、一定量の水分を含有する粒子をあらかじめ反応器内に
充填した後に反応を開始することにより、重合反応を大
きく低下させることなく、反応開始後の静電気の発生に
よる塊状の溶融樹脂の生成を著しく抑制することかでき
る事実か判明した。この事実は、従来実施されている種
ポリマーの使用においては軽装さねていなかったところ
である。
In general, water, oxygen, and the like are harmful impurities that inhibit the reduction action of the above catalysts, and it has been considered necessary to remove these with a cocatalyst such as alkyl aluminum before starting the reaction. However, according to the present inventors, by starting the reaction after filling particles containing a certain amount of water into the reactor in advance, the generation of static electricity after the start of the reaction can be achieved without significantly reducing the polymerization reaction. It has been found that the formation of lumpy molten resin can be significantly suppressed. This fact has not been overlooked in the conventional use of seed polymers.

上記のあらかしめ反応器内に充填して使用する含水粒子
は、流動床を形成し得るものであればいかなる種類のも
のでも使用することができるか、流動化の条件および製
品の品質への影響などを考慮すれば、粒状樹脂、特に製
品ポリオレフィンに類似の成分からなる粒状樹脂に水分
を含有させたものか好ましい。これらポリオレフィン粒
子を使用する場合には、粒子中に含まれる触媒残漬の多
いものか好ましい。触媒残漬の多い場合には、少ない場
合に比へて溶融樹脂の生成防止効果か大きく、かつ反応
停止作用か小さい。なおこの目的て使用するポリオレフ
ィン粒子の性状としては、平均粒径が500〜2,00
0μmて微粉か少なく、かつかさ密度が0.25〜0.
5 g/ctn3のものが好ましい。
Can any type of water-containing particles used in the above-mentioned caulking reactor be used as long as it can form a fluidized bed? What are the fluidization conditions and the impact on product quality? Considering the above, it is preferable to use a granular resin, especially a granular resin made of components similar to the product polyolefin and containing water. When these polyolefin particles are used, it is preferable that the particles contain a large amount of residual catalyst. When there is a large amount of catalyst remaining, the effect of preventing the formation of molten resin is greater and the reaction termination effect is smaller than when there is a small amount of catalyst remaining. The properties of the polyolefin particles used for this purpose include an average particle size of 500 to 2,000
0 μm, very fine powder, and bulk density of 0.25 to 0.
5 g/ctn3 is preferred.

上記含水粒子の含水量は、粒子重量に対し20〜80p
pm、好ましくは30〜50ppmの範囲である。含水
量が20 ppm未満では溶融樹脂の生成を抑制する効
果を発揮することかできない。一方水分か80 ppm
を超える場合には、重合反応か停止したり、または水分
とアルキルアルミニウムとが急激に反応を起こし、却フ
て溶融樹脂を生成しゃ易くなったりするため、何わも好
ましくない。
The water content of the above-mentioned water-containing particles is 20 to 80p based on the particle weight.
pm, preferably in the range of 30 to 50 ppm. If the water content is less than 20 ppm, the effect of suppressing the formation of molten resin cannot be exhibited. On the other hand, water is 80 ppm
If it exceeds this value, the polymerization reaction may stop, or the water and the alkylaluminium may rapidly react with each other, making it easy to evaporate and produce molten resin, which is not preferable.

粒子に含有された水分は、粒子全体にわたり均に分布し
ていることか好ましい。このため、水分を含有させるに
は、該粒子の貯蔵容器に水蒸気を含む不活性カスを流入
させたり、あるいは攪拌機付き混合機またはスクリュー
ミキサー内で粒子を水蒸気処理する方法などが用いられ
る。また、こわらの方法を併用してもよい。
It is preferable that the water contained in the particles is evenly distributed throughout the particles. Therefore, in order to contain moisture, methods such as introducing inert scum containing steam into a storage container for the particles, or treating the particles with steam in a mixer equipped with an agitator or a screw mixer are used. In addition, Kowara's method may be used in combination.

含水粒子を反応器へ充填する方法としては気体輸送か一
般に用いられ、また、充填量は重合反応に必要な流動床
高さを保つ量とする。
Gas transport is generally used as a method of filling the reactor with water-containing particles, and the amount of filling is such that the height of the fluidized bed required for the polymerization reaction is maintained.

[発明の効果コ 本発明に従い、含水粒子を反応開始時に用いて気相流動
床によるポリオレフィン粒子の製造を行なったところ、
反応器内の温度は局部的に高温を示すことなく、運転停
止後の反応器内には溶融樹脂の生成が認められず、含水
粒子を用いない場合に比へて著しく円滑な運転が可能と
なった。
[Effects of the Invention] According to the present invention, polyolefin particles were produced using a gas-phase fluidized bed using water-containing particles at the start of the reaction.
The temperature inside the reactor did not locally become high, and no molten resin was observed inside the reactor after the operation was stopped, and operation was significantly smoother than when no water-containing particles were used. became.

[実施例および比較例] 実施例1 気相流動床反応により、直鎖低密度エチレン・1−ブテ
ン共重合体を製造するに際し、まず反応系内にエチレン
40モル%、水素8モル%、1ブテン17モル%および
窒素35モル%からなる原料カスを循環させ、加熱しな
がら反応系内の水分量が1 ppm以下になるまで乾燥
した。次に種ポリマーとしてあらかじめ製造してあった
エチレン・1−ブテン共重合体の粒状樹脂(平均粒径i
、oooμl11)の貯蔵サイロの下部から窒素を空塔
速度0.75 cm7secで送入し、一方、水を定量
ポンプによりヒーターを通して水蒸気とし、上記窒素流
に注入した。上記処理を24時間継続し、この間に注入
した水の量は3xlO−3kg−水/kg−種ポリマー
でありた。この結果反応器に充填する前の種ポリマーの
水分は35ppmであった。
[Examples and Comparative Examples] Example 1 When producing a linear low-density ethylene/1-butene copolymer by gas phase fluidized bed reaction, first 40 mol% ethylene, 8 mol% hydrogen, 1 A raw material residue consisting of 17 mol% butene and 35 mol% nitrogen was circulated and dried while heating until the moisture content in the reaction system became 1 ppm or less. Next, a granular resin of ethylene/1-butene copolymer (average particle size i
, oooμl11) from the bottom of the storage silo at a superficial velocity of 0.75 cm 7 sec, while water was converted to steam through a heater by a metering pump and injected into the nitrogen stream. The above treatment was continued for 24 hours, during which time the amount of water injected was 3xlO-3kg-water/kg-species polymer. As a result, the water content of the seed polymer before being charged into the reactor was 35 ppm.

このようにして水分を付着させた種ポリマーを窒素気流
により反応器に充填し、上記カスにより流動化させて反
応を開始した。触媒はシリカ−塩化マクネシウムー四塩
化チタン系の固体触媒成分をジエチルアルミニウムクロ
リドにより活性化したものである。助触媒としてトリエ
チルアルミニウムを用いた。
The seed polymer to which water had been attached in this way was filled into a reactor with a nitrogen stream, and the reaction was started by fluidizing the seed polymer with the above-mentioned residue. The catalyst is a silica-magnesium chloride titanium tetrachloride solid catalyst component activated with diethylaluminum chloride. Triethylaluminum was used as a promoter.

触媒の供給を開始した後、重合反応は順調に始動し、密
度0.919 g/cm3.メルトフローレート0、9
 g710 minのエチレン・l−ブテン共重合体が
得られた。反応器内の温度に場所による偏りは見られず
、また20日間運転を継続した後停止して反応器内部の
点検を行なったところ、溶融樹脂によるシートの生成は
観察されなかった。
After starting the supply of catalyst, the polymerization reaction started smoothly and the density was 0.919 g/cm3. Melt flow rate 0, 9
An ethylene/l-butene copolymer having a yield of 710 g was obtained. There was no local variation in the temperature inside the reactor, and when the reactor was stopped after 20 days of continuous operation and the inside of the reactor was inspected, no sheets were observed due to the molten resin.

比較例1 実施例1で使用した流動床反応器を用い、同側と同様に
して直鎖低密度エチレン・1−ブテン共重合体を製造す
るに当たり、種ポリマーにあらかしめ水分を付着させな
いで使用した。すなわち、反応系内を実施例1と同じ原
料ガスを用いて乾燥した後、実施例1と同じエチレン・
l−ブテン共重合体からなる種ポリマーの粒状樹脂に水
蒸気送入を行なわすに、貯蔵サイロから窒素気流により
反応器内に充填し、原料カスにより流動化させて反応を
開始した。触媒および助触媒は実施例1て使用したもの
と同様である。
Comparative Example 1 In producing a linear low density ethylene/1-butene copolymer in the same manner as on the same side using the fluidized bed reactor used in Example 1, the seed polymer was allowed to warm and was used without adhering moisture. did. That is, after drying the inside of the reaction system using the same raw material gas as in Example 1, the same ethylene gas as in Example 1 was used.
To introduce steam into the seed polymer granular resin consisting of l-butene copolymer, the reaction vessel was filled with a nitrogen stream from a storage silo and fluidized by raw material residue to initiate the reaction. The catalyst and cocatalyst were the same as those used in Example 1.

触媒の供給を開始して4時間経過した頃から、カス分散
板上30cmの高さの反応器壁温度計か流動床の平均温
度よりも1〜2℃高い値を示し始めた。さらに触媒供給
開始後6時間目頃からは上記の温度が10℃高い温度と
なり、かつガス分散板上70cmの高さの反応器壁の温
度も2〜3℃高い温度を示すに至った。その後、重合生
成物中にシート状の溶融ポリエチレンが現われはじめ、
12時間後には重合物抜き出し口か閉塞したため反応を
停止した。
After 4 hours had passed since the start of catalyst supply, the reactor wall thermometer placed 30 cm above the waste dispersion plate began to show a value 1 to 2° C. higher than the average temperature of the fluidized bed. Further, from about 6 hours after the start of catalyst supply, the above temperature became 10°C higher, and the temperature of the reactor wall at a height of 70cm above the gas distribution plate also became 2 to 3°C higher. After that, sheet-like molten polyethylene began to appear in the polymerization product,
After 12 hours, the reaction was stopped because the polymer outlet port was blocked.

特許出願人 日本石油化学株式会社Patent applicant: Japan Petrochemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)気相流動床によるα−オレフィンの重合反応にお
いて、流動床を形成し得る含水粒子をあらかじめ反応器
内に充填して反応を開始することを特徴とするポリオレ
フィンの製造方法。
(1) In the polymerization reaction of α-olefin using a gas-phase fluidized bed, a method for producing a polyolefin is characterized in that the reaction is started by filling a reactor with water-containing particles capable of forming a fluidized bed in advance.
(2)前記含水粒子は、水を含有するポリオレフィン粒
子である請求項1記載のポリオレフィンの製造方法。
(2) The method for producing a polyolefin according to claim 1, wherein the water-containing particles are polyolefin particles containing water.
JP2200008A 1990-07-27 1990-07-27 Production of polyolefin Pending JPH0485307A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2200008A JPH0485307A (en) 1990-07-27 1990-07-27 Production of polyolefin
EP91913120A EP0494316B1 (en) 1990-07-27 1991-07-26 Process for producing polyolefin
PCT/JP1991/001010 WO1992002563A1 (en) 1990-07-27 1991-07-26 Process for producing polyolefin
DE69119390T DE69119390T2 (en) 1990-07-27 1991-07-26 METHOD FOR PRODUCING POLYOLEFINES
AU82257/91A AU643057B2 (en) 1990-07-27 1991-07-26 Process for producing polyolefin
KR1019920700612A KR0172613B1 (en) 1990-07-27 1991-07-26 Process for producing polyolefin
CA002066770A CA2066770C (en) 1990-07-27 1991-07-26 Process for producing polyolefin
US07/844,590 US5385991A (en) 1990-07-27 1991-07-26 Method for producing polyolefin
US08/328,083 US5525687A (en) 1990-07-27 1994-10-24 Method for producing polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2200008A JPH0485307A (en) 1990-07-27 1990-07-27 Production of polyolefin

Publications (1)

Publication Number Publication Date
JPH0485307A true JPH0485307A (en) 1992-03-18

Family

ID=16417261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2200008A Pending JPH0485307A (en) 1990-07-27 1990-07-27 Production of polyolefin

Country Status (1)

Country Link
JP (1) JPH0485307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10011667B2 (en) 2016-04-12 2018-07-03 Sumitomo Chemical Company, Limited Method for producing polyolefin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10011667B2 (en) 2016-04-12 2018-07-03 Sumitomo Chemical Company, Limited Method for producing polyolefin

Similar Documents

Publication Publication Date Title
JPH01230607A (en) Reduction of sheeting during polymerization of alpha-olefin
JPS63500176A (en) Method for reducing sheeting during polymerization of alpha-olefin
KR101863039B1 (en) Method for feeding an antistatic compound to a polymerization reactor
HU217181B (en) Process for the gas phase polymerization of olefins
JPH09501733A (en) Vapor phase polymerization of α-olefins
JPH03217402A (en) Preparation of viscous polymer
KR102119334B1 (en) Hydraulic transfer method of polyolefin pellets
CZ722689A3 (en) Process of one or more alpha-olefins continuous polymerization
JP2005504866A (en) Propylene copolymer production method
US4665143A (en) Co-catalyst dispersion method
KR101789989B1 (en) Method for feeding an antistatic compound to a polymerization reactor
CA2066770C (en) Process for producing polyolefin
US10100158B2 (en) Process for producing pellets of soft copolymers
EP2185597B1 (en) Continuous feed of auxiliaries for the polymerization of olefins
JPH0480206A (en) Method for feeding catalyst in vapor phase polymerization in fluidized bed reactor
EP0605002B1 (en) Method of vapor phase polymerization of olefins
JPS5924703A (en) Co-catalyst dispersion
JPH0485307A (en) Production of polyolefin
JPH0485309A (en) Production of polyolefin
JP3013093B2 (en) Polyolefin production method
EP0131832B1 (en) Olefin polymerization catalysts adapted for gas phase processes
JPH04114008A (en) Production of olefin polymer
JPH061804A (en) Production of polyolefin
JPS62156107A (en) Method and apparatus for minimizing formation of polymer aggregate or lump in polypropylene gaseous phase polymerization reactor
JPS63225611A (en) Manufacture of propylene-alpha-olefin block copolymer