JPH0485309A - Production of polyolefin - Google Patents

Production of polyolefin

Info

Publication number
JPH0485309A
JPH0485309A JP2200010A JP20001090A JPH0485309A JP H0485309 A JPH0485309 A JP H0485309A JP 2200010 A JP2200010 A JP 2200010A JP 20001090 A JP20001090 A JP 20001090A JP H0485309 A JPH0485309 A JP H0485309A
Authority
JP
Japan
Prior art keywords
reactor
fluidized bed
particles
reaction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2200010A
Other languages
Japanese (ja)
Other versions
JP3013094B2 (en
Inventor
Yoshihisa Yamaguchi
喜久 山口
Shinjiro Suga
菅 信二郎
Masatoshi Morikawa
正敏 森川
Kunimichi Kubo
久保 国道
Kanichi Watanabe
渡辺 幹一
Hirohiko Sano
佐野 裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2200010A priority Critical patent/JP3013094B2/en
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to CA002066770A priority patent/CA2066770C/en
Priority to US07/844,590 priority patent/US5385991A/en
Priority to PCT/JP1991/001010 priority patent/WO1992002563A1/en
Priority to AU82257/91A priority patent/AU643057B2/en
Priority to KR1019920700612A priority patent/KR0172613B1/en
Priority to DE69119390T priority patent/DE69119390T2/en
Priority to EP91913120A priority patent/EP0494316B1/en
Publication of JPH0485309A publication Critical patent/JPH0485309A/en
Priority to US08/328,083 priority patent/US5525687A/en
Application granted granted Critical
Publication of JP3013094B2 publication Critical patent/JP3013094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To obtain smoothly a particulate polyolefin while preventing the formation of a molten resin by packing the reactor with specified particles before starting the polymerization reaction of an alpha-olefin in a gas-phase fluidized bed. CONSTITUTION:A process for polymerizing an alpha-olefin (e.g. ethylene/1-butene mixture) in a gas-phase fluidized bed, wherein the reactor is packed with particles which obtain water and molecular oxygen and can from a fluidized bed (e.g. ethylene/1-butene copolymer particles containing water in contact with air, before the reaction is started.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ポリオレフィンの製造において安定した運転
を行なうための方法に関し、詳しくは、気相流動床反応
器によるポリオレフィンの製造において、反応開始時に
起こりやすい溶融樹脂の発生を抑制し、反応装置の運転
を円滑に行なうための方法に関するものである、。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for stable operation in the production of polyolefins. This invention relates to a method for suppressing the occurrence of molten resin, which is likely to occur, and for smoothly operating a reactor.

[従来の技術] ポリオレフィンの気相流動床による重合プロセスにおい
ては、流動床反応器にあらかじめ種ポリマーと呼ばれる
樹脂の粉末を充填して流動を開始し、原料混合ガス、触
媒および助触媒としてのアルキルアルミニウム化合物を
連続的に供給すると共に、ガス中の不純物(酸素、水分
等)を除去しながら重合反応を行ない、所定の滞留時間
の間に成長した重合体粒子を抜き出す。上記の種ポリマ
ーを使用しないと、供給した触媒が分散し難いため粒状
の樹脂か生成せず、したがって流動床も形成されないの
で、流動床系の重合反応器においては運転開始時に必ず
種ポリマーが使用されてきた。
[Prior Art] In the gas-phase fluidized bed polymerization process of polyolefins, a fluidized bed reactor is filled in advance with resin powder called a seed polymer to start fluidization, and a raw material gas mixture, a catalyst, and an alkyl cocatalyst are While continuously supplying an aluminum compound, a polymerization reaction is carried out while removing impurities (oxygen, moisture, etc.) in the gas, and polymer particles grown during a predetermined residence time are extracted. If the above-mentioned seed polymer is not used, the supplied catalyst will be difficult to disperse, so granular resin will not be produced, and a fluidized bed will not be formed. Therefore, a seed polymer is always used at the start of operation in a fluidized bed polymerization reactor. It has been.

気相流動床によるポリオレフィンの製造において最も重
要な点は、投入された触媒が反応器内でできる限り均一
に分散され、かつ流動化ガスか反応器内に均一に分散さ
れて、これらにより反応熱が充分に除去されることであ
る。すなわち、反応器内において触媒濃度が局部的に著
しく高くなったり、カスが充分に分散せずに、冷却効果
か不完全となった場合には、溶融樹脂か生成し、これか
塊状となって流動化を妨げ、温度分布か一層不均になっ
てさらに溶融樹脂か生成し、この悪循環か繰り返されて
、ついには樹脂を容器内から抜き出すことが不可能とな
り、生産を停止せざるを得なくなる。
The most important point in the production of polyolefins using a gas-phase fluidized bed is that the introduced catalyst is dispersed as uniformly as possible within the reactor, and that the fluidizing gas is uniformly dispersed within the reactor, thereby reducing the heat of reaction. is sufficiently removed. In other words, if the catalyst concentration locally becomes extremely high in the reactor, or if the dregs are not sufficiently dispersed and the cooling effect is incomplete, molten resin will be produced and this will form into lumps. Fluidization is hindered, the temperature distribution becomes even more uneven, and more molten resin is generated, and this vicious cycle repeats until it becomes impossible to extract the resin from the container and production has to be stopped. .

以上の問題点の内、後者の流動化カスの均一な分散につ
いては、樹脂の粒径および粒径分布、かさ密度などと流
動化ガス速度との関係を検討し、かつ容器の構造を配慮
することなどによって比較的容易に解決することができ
る。しかし、前者の触媒の分散に関しては、触媒および
樹脂の粉末の運動により発生する静電気のため、容器壁
へ触媒の微粉末が付着して触媒濃度が増大する結果、均
一な分散状態を実現することがきわめて困難であった。
Of the above problems, for the latter, uniform dispersion of fluidized scum, consider the relationship between resin particle size, particle size distribution, bulk density, etc. and fluidizing gas velocity, and consider the structure of the container. This can be solved relatively easily. However, regarding the former type of catalyst dispersion, due to static electricity generated by the movement of catalyst and resin powder, fine catalyst powder adheres to the container wall and the catalyst concentration increases, making it difficult to achieve a uniformly dispersed state. was extremely difficult.

多くの場合、反応開始後約半日間にこの現象か著しく、
壁面のみ温度が上昇して、そこで樹脂の溶融か発生する
In many cases, this phenomenon becomes noticeable within about half a day after the start of the reaction.
The temperature rises only on the wall surface, and the resin melts there.

樹脂の粉末か流動することにより静電気を帯びえば樹脂
粉をパイプで輸送する際に、その粉末かパイプの内面に
薄く付着することなどが知られている。流動床によるポ
リオレフィンの製造においてもこれらの事実は従来から
経験されており、その対策として、米国特許4,855
,370号においては反応器内に水分を含有したカスを
供給し、特開昭56−4608号においては液状炭化水
素を共存させる方法を開示しており、さらに米国特許4
,532,311号ではクロム含有化合物の添加を、ま
た、特開平1−230607号ではアルコール、ケトン
などをそれそわ反応器内に添加する方法を開示している
。しかし、これらはいずれも重合反応中に特定物質を反
応器内に供給する方法であるため、実施に当たり特別の
装置を設置する必要があり、かつ運転操作も複雑になら
ざるをえない。したかつて、より簡便な方法によって有
効に上記の欠点を排除する手段が強く求められていた。
It is known that if resin powder is charged with static electricity as it flows, a thin layer of the powder will adhere to the inner surface of the pipe when the resin powder is transported through the pipe. These facts have been experienced in the production of polyolefins using a fluidized bed, and as a countermeasure, U.S. Patent No. 4,855
, No. 370 discloses a method of supplying waste containing moisture into a reactor, and JP-A No. 56-4608 discloses a method of coexisting liquid hydrocarbons, and furthermore, U.S. Pat.
, 532,311 discloses the addition of a chromium-containing compound, and JP-A-1-230607 discloses a method of gradually adding alcohol, ketone, etc. into the reactor. However, since all of these methods involve supplying a specific substance into a reactor during the polymerization reaction, it is necessary to install special equipment for implementation, and the operation operation must also be complicated. In the past, there was a strong demand for a means to effectively eliminate the above drawbacks by a simpler method.

[発明が解決しようとする課題] 本発明は、気相流動床による重合反応において上記の欠
点を排除し、反応系に特に新たな設備を設けることなく
、きわめて容易な手段で静電気の発生に基つく溶融樹脂
の生成を防止してポリオレフィン粒子を製造する方法を
提供することを目的とする。
[Problems to be Solved by the Invention] The present invention eliminates the above-mentioned drawbacks in a polymerization reaction using a gas-phase fluidized bed, and eliminates the need for particularly installing new equipment in the reaction system. It is an object of the present invention to provide a method for producing polyolefin particles while preventing the formation of a sticky molten resin.

[課題を解決するための手段コ 本発明者らは、上記の目的に沿って鋭意検討した結果、
あらかじめ反応器に水および酸素を含有する粒子を充填
して流動床反応を開始することにより、溶融樹脂の生成
を防ぐことができることを見出して本発明に到達した。
[Means for Solving the Problems] As a result of intensive studies in line with the above objectives, the present inventors have found that:
The present invention was achieved by discovering that the generation of molten resin can be prevented by filling a reactor with particles containing water and oxygen in advance and starting a fluidized bed reaction.

すなわち本発明は、気相流動床によるα−オレフィンの
重合反応において、水および分子状の酸素を含有し、か
つ流動床を形成し得る粒子をあらかじめ反応器内に送入
して反応を開始することを特徴とするポリオレフィンの
製法を提供するものである。
That is, in the polymerization reaction of α-olefin using a gas-phase fluidized bed, the present invention starts the reaction by feeding particles containing water and molecular oxygen and capable of forming a fluidized bed into a reactor in advance. The present invention provides a method for producing a polyolefin characterized by the following.

以下に本発明の内容を詳述する。The content of the present invention will be explained in detail below.

本発明で使用する気相流動床とは、実質的に気−同系て
運転される流動床系をすべて包含し、攪拌機を有する場
合または有しない場合のいずれてあってもよい。
The gas-phase fluidized bed used in the present invention includes all fluidized bed systems that are operated substantially in a gas-synchronized manner, and may or may not have an agitator.

本発明で用いるα−オレフィンとしては、通常炭素数2
〜8のもの、たとえば、エチレン、プロピレン、1−ブ
テン、1−ヘキセン、4−メチル−1−ペンテン、1−
オクテンなとのα−オレフィンか挙げられる。これらは
単独て、または2種以上の混合物として用いられる。
The α-olefin used in the present invention usually has 2 carbon atoms.
~8, such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-
Examples include octene and α-olefins. These may be used alone or as a mixture of two or more.

使用する重合触媒としては、チタンおよび/またはバナ
ジウム化合物を含有するチーグラー触媒またはクロム化
合物を含有するフィリップス触媒なと公知のものが挙げ
られる。
Examples of the polymerization catalyst used include known catalysts such as Ziegler catalysts containing titanium and/or vanadium compounds or Phillips catalysts containing chromium compounds.

般に上記の触媒に対して、水、酸素なとは還元作用を抑
制する有害な不純物であり、アルキルアルミニウムなど
の助触媒でこれらを除去した後に反応を開始する必要が
あるとされてきた。しかしながら本発明者らによれば、
一定量の水および分子状の酸素を含有する粒子をあらか
しめ反応器内に充填した後に反応を開始することにより
、重合反応を大きく低下させることなく反応開始後の静
電気の発生による塊状の溶融樹脂の生成を著しく抑制す
ることかできる事実か判明した。この事実は従来実施さ
れている種ポリマーの使用においては経験されていなか
ったところである。
In general, water and oxygen are harmful impurities that inhibit the reduction action of the above-mentioned catalysts, and it has been believed that it is necessary to start the reaction after removing these with a co-catalyst such as alkyl aluminum. However, according to the inventors,
By starting the reaction after filling a certain amount of water and molecular oxygen-containing particles into the reactor, the polymerization reaction does not decrease significantly, and the molten resin becomes lumpy due to the generation of static electricity after the reaction starts. It has been found that it is possible to significantly suppress the production of This fact has not been experienced in the conventional use of seed polymers.

上記のあらかしめ反応器内に充填して使用する水および
分子状の酸素を含有する粒子は、流動床を形成し得るも
のであればいかなる種類のものでも使用することができ
るが、流動化の条件および製品品質への影響などを考慮
すれば、粒状樹脂、特に製品ポリオレフィンに類似の成
分からなる粒状樹脂に水および分子状酸素を含有させた
ものが好ましい。これらポリオレフィン粒子を使用する
場合には、粒子中に含まれる触媒残漬の多いものが好ま
しい。触媒残漬が多い場合には、少ない場合に比べて溶
融樹脂の生成防止効果が大きく、かつ反応停止作用か小
さい。なおこの目的で使用するポリオレフィン粒子の性
状としては、平均粒径500〜2,000μmで微粉が
少なく、かつかさ密度0.25〜0.5 g/cm3の
ものが好ましい。
Any kind of particles containing water and molecular oxygen can be used as long as they can form a fluidized bed. Considering the conditions and the influence on product quality, it is preferable to use a granular resin, especially a granular resin made of components similar to the product polyolefin, containing water and molecular oxygen. When these polyolefin particles are used, it is preferable that the particles contain a large amount of residual catalyst. When there is a large amount of catalyst remaining, the effect of preventing the formation of molten resin is greater and the reaction termination effect is smaller than when there is a small amount of catalyst remaining. The polyolefin particles used for this purpose preferably have an average particle size of 500 to 2,000 .mu.m, a small amount of fine powder, and a bulk density of 0.25 to 0.5 g/cm@3.

上記粒子が含有すべき水の量は粒子重量に対し20〜8
0ppI11、好ましくは30〜5opp■の範囲であ
る。含水量か20 ppm未満では溶融樹脂の生成を抑
制する効果を発揮することかできない。
The amount of water that the above particles should contain is 20 to 8% based on the particle weight.
0 ppI11, preferably in the range of 30 to 5 opp■. If the water content is less than 20 ppm, the effect of suppressing the formation of molten resin cannot be exhibited.

方、水分か80 ppmを越える場合には、重合反応か
停止したり、または水分とアルキルアルミニウムとか急
激に反応を起こし、却って溶融樹脂を生成し易くなった
りするため、いずれも好ましくない。
On the other hand, if the water content exceeds 80 ppm, the polymerization reaction may stop, or the water and the alkylaluminium may react rapidly, making it easier to form a molten resin, which is not preferable.

他方、分子状酸素の量は必ずしも厳密に制限されるもの
ではなく、分子状の酸素と室温て十分に接触させること
により容易に目的を達することができる。該粒子がポリ
オレフィン粒子である場合には、1kgのポリオレフィ
ン粒子に対して0.02〜0.2 kgの酸素を、所要
時間1時間以上て通気接触させることか好ましい。
On the other hand, the amount of molecular oxygen is not necessarily strictly limited, and the purpose can be easily achieved by bringing it into sufficient contact with molecular oxygen at room temperature. When the particles are polyolefin particles, it is preferable that 0.02 to 0.2 kg of oxygen be brought into contact with 1 kg of the polyolefin particles for a required time of 1 hour or more.

粒子に含有された水および分子状の酸素は、粒子全体に
わたり均一に分布していることが好ましい。そのために
は、該粒子を水蒸気および分子状酸素を含有する不活性
ガスで処理する方法が好ましい。分子状の酸素を含有す
る不活性カスとじては、空気か実用上最も好ましいのて
、具体的な方法としては、たとえば、面記粒子の貯蔵容
器に水蒸気を含有する空気を流入させたり、粒子を大気
中に長時間暴露するなとの方法を用いることができる。
Preferably, the water and molecular oxygen contained in the particles are uniformly distributed throughout the particles. For this purpose, a method of treating the particles with an inert gas containing water vapor and molecular oxygen is preferred. As for the inert gas containing molecular oxygen, air is the most preferable for practical purposes, but specific methods include, for example, flowing air containing water vapor into a storage container for the particles, or You can use a method that prevents long-term exposure to the atmosphere.

あるいは、攪拌機付き混合機またはスクリューミキサー
内で粒子を水蒸気および空気で処理する方法なとてもよ
い。またこれらの方法を併用してもよい。
Alternatively, the particles may be treated with steam and air in an agitated mixer or screw mixer. Further, these methods may be used in combination.

水および酸素を含有する粒子を反応器へ充填する方法と
しては気体輸送が一般に用いられ、また充填量は重合反
応に必要な流動床高さを保つ量とする。
Gas transport is generally used as a method of charging particles containing water and oxygen into a reactor, and the amount of charging is such that the height of the fluidized bed required for the polymerization reaction is maintained.

[発明の効果] 本発明に従い、水および分子状の酸素を含有する粒子を
反応開始時に用いて気相流動床によるポリオレフィン粒
子の製造を行なったところ、反応器内の温度は局部的に
高温を示すことなく、運転停止後の反応器内には溶融樹
脂の生成が認められず、かつ水および酸素を含有する素
粒子を用いない場合に比べて著しく円滑な運転が可能と
なった。
[Effects of the Invention] According to the present invention, when polyolefin particles were produced by a gas phase fluidized bed using particles containing water and molecular oxygen at the start of the reaction, the temperature inside the reactor locally increased to a high temperature. No production of molten resin was observed in the reactor after the operation was stopped, and operation was significantly smoother than in the case where elementary particles containing water and oxygen were not used.

[実施例および比較例] 実施例1 気相流動床反応により、直鎖低密度エチレン・1−ブテ
ン共重合体を製造するに際し、まず反応系内にエチレン
40モル%、水素8モル%、1−ブテン17モル%およ
び窒素35モル%からなる原料カスを循環させ、加熱し
ながら反応系内の水分量が1 ppm以下になるまて乾
燥した。次に、種ポリマーとしてあらかしめ製造してあ
ったエチレン・1−ブテン共重合体の粒状樹脂(平均粒
径1.000μm)の貯蔵サイロ(窒素シール)の下部
から空気を空塔速度0.75 cm/secで送入し、
古木を定量ポンプによりヒーターを通して水蒸気とし、
上記空気流に注入した。上記処理を24時間継続し、こ
の間に注入した水の量は3x10−3kg=水/kg一
種ボリマーであった。この結果、反応器に充填する前の
種ポリマーの水分は40 ppmであった。また上記処
理の間に送入された酸素の量は0.13kg−酸素/k
g一種ポリマーであった。
[Examples and Comparative Examples] Example 1 When producing a linear low-density ethylene/1-butene copolymer by gas phase fluidized bed reaction, first 40 mol% ethylene, 8 mol% hydrogen, 1 - A raw material residue consisting of 17 mol % of butene and 35 mol % of nitrogen was circulated and dried while heating until the moisture content in the reaction system became 1 ppm or less. Next, air was pumped into the storage silo (nitrogen seal) at a superficial velocity of 0.75 from the bottom of the storage silo (nitrogen seal) for the granular resin of ethylene/1-butene copolymer (average particle size 1.000 μm) that had been prepared in advance as a seed polymer. Feed at cm/sec,
The old wood is passed through a heater using a metering pump and turned into steam.
Injected into the air stream. The above treatment was continued for 24 hours, during which time the amount of water injected was 3 x 10-3 kg = water/kg monopolymer. As a result, the water content of the seed polymer before being charged into the reactor was 40 ppm. Also, the amount of oxygen introduced during the above treatment was 0.13 kg - oxygen/k
It was a type g polymer.

このようにして水分および酸素を含有させた種ポリマー
を窒素気流により反応器に充填し、上記カスにより流動
化させて反応を開始した。触媒はシリカ−塩化マクネシ
ウムー四塩化チタン系の固体触媒成分をジエチルアルミ
ニウムクロリドにより活性化したものである。助触媒と
してトリエチルアルミニウムを用いた。
The seed polymer containing water and oxygen in this manner was filled into a reactor with a nitrogen stream and fluidized by the dregs to initiate the reaction. The catalyst is a silica-magnesium chloride titanium tetrachloride solid catalyst component activated with diethylaluminum chloride. Triethylaluminum was used as a promoter.

触媒の供給を開始した後、重合反応は順調に開始し、密
度0.918 g/cm3、メルトフローレート1、0
 g710 minのエチレン・1−ブテン共重合体が
得られた。反応器内の温度に場所による偏りは見られず
、また、20日間運転を継続した後停止して反応器内部
の点検を行なったところ、溶融樹脂によるシートの生成
は観察されなかった。
After starting the supply of catalyst, the polymerization reaction started smoothly, with a density of 0.918 g/cm3 and a melt flow rate of 1.0.
An ethylene/1-butene copolymer with a yield of 710 g was obtained. There was no local variation in the temperature inside the reactor, and when the reactor was stopped after 20 days of continuous operation and the interior of the reactor was inspected, no sheets were observed due to the molten resin.

比較例1 実施例1で使用した流動床反応器を用い、同例と同様に
して直鎖低密度エチレン・1−ブテン共重合体を製造す
るに当り、種ポリマーにあらかじめ水分および分子状の
酸素を含有させないで使用した。すなわち反応系内を実
施例1と同し原料カスを用いて乾燥した後、実施例1と
同じエチレン脂に空気および水蒸気の送入を行なわない
で貯蔵サイロから窒素気流により反応器内に充填し、原
料ガスにより流動化させて反応を開始した。触媒および
助触媒は実施例1で使用したものと同様である。
Comparative Example 1 In producing a linear low-density ethylene/1-butene copolymer using the fluidized bed reactor used in Example 1 in the same manner as in the same example, moisture and molecular oxygen were added to the seed polymer in advance. It was used without containing. That is, after drying the inside of the reaction system using the same raw material waste as in Example 1, the same ethylene fat as in Example 1 was filled into the reactor with a nitrogen stream from the storage silo without introducing air or steam. The reaction was started by fluidizing with raw material gas. The catalyst and cocatalyst are the same as those used in Example 1.

触媒の供給を開始して5時間経過した頃から、カス分散
板上30cmの高さの反応器壁温度計か流動床平均温度
より1〜2℃高い値を示し始めた。
About 5 hours after the start of catalyst supply, the reactor wall thermometer placed 30 cm above the waste dispersion plate began to show a value 1 to 2° C. higher than the average temperature of the fluidized bed.

さらに触媒供給開始後7時間目頃からは前記温度が10
℃高くなり、かつガス分散板上70cmの高さの反応器
壁温度も2〜3℃高い値を示すに至りだ。その後、重合
生成物中にシート状の溶融ポリエチレンか現われはじめ
、15時間後には重合物抜き出し口が閉塞したため反応
を停止した。
Furthermore, from about 7 hours after the start of catalyst supply, the temperature increased to 10
The temperature of the reactor wall at a height of 70 cm above the gas distribution plate also increased by 2 to 3°C. Thereafter, a sheet of molten polyethylene began to appear in the polymerization product, and after 15 hours, the polymer outlet was clogged, so the reaction was stopped.

実施例2 実施例1で使用した流動床反応器を用い、同例と同様に
して直鎖低密度エチレン・1−ブテン共重合体を製造す
るに当り、種ポリマーをあらかしめ大気中に暴露して使
用した。すなわち、実施例1と同しエチレン・1−ブテ
ン共重合体からなる種ポリマー粒状樹脂を紙袋に入れ、
開口したまま大気中に24時間放置した。大気の温度は
20℃、相対湿度は56%であり、大気暴露後の種ポリ
マーの水分は25ppmであった。
Example 2 In producing a linear low density ethylene/1-butene copolymer in the same manner as in Example 1 using the fluidized bed reactor used in Example 1, the seed polymer was preheated and exposed to the atmosphere. I used it. That is, the same seed polymer granular resin made of ethylene/1-butene copolymer as in Example 1 was placed in a paper bag,
It was left open in the atmosphere for 24 hours. The atmospheric temperature was 20° C., the relative humidity was 56%, and the moisture content of the seed polymer after exposure to the atmosphere was 25 ppm.

反応系内を実施例1と同し原料カスを用いて乾燥した。The inside of the reaction system was the same as in Example 1, and the raw material residue was used to dry it.

一方、上記の大気暴露した種ポリマーを貯蔵サイロに投
入し、そこから種ポリマーを窒素気流により反応器内に
送入し、原料ガスにより流動化させて反応を開始した。
On the other hand, the seed polymer exposed to the atmosphere was placed in a storage silo, from which the seed polymer was introduced into the reactor using a nitrogen stream, and was fluidized by the raw material gas to start the reaction.

触媒および助触媒は実施例!で使用したものと同様であ
る。
Examples of catalysts and promoters! It is similar to the one used in .

触媒の供給開始後1重合反応は順調に開始して、密度0
.920 g/cm3、メルトフローレート2.0 g
710 minのエチレン・l−ブテン共重合体が得ら
れた。反応器内の温度に偏りはなく、また30日間運転
を継続した後に停止して反応器内部の点検を行なったが
、溶融樹脂によるシートの生成は見られなかった。
1 After the start of catalyst supply, the polymerization reaction started smoothly and the density was 0.
.. 920 g/cm3, melt flow rate 2.0 g
An ethylene/l-butene copolymer of 710 min was obtained. There was no deviation in the temperature inside the reactor, and after 30 days of continuous operation, the reactor was stopped and the inside of the reactor was inspected, but no sheets were observed due to the molten resin.

特許出願人 日本石油化学株式会社Patent applicant: Japan Petrochemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)気相流動床によるα−オレフィンの重合反応にお
いて、水および分子状の酸素を含有し、かつ流動床を形
成し得る粒子を、あらかじめ反応器内に充填して反応を
開始することを特徴とするポリオレフィンの製法。
(1) In the α-olefin polymerization reaction using a gas-phase fluidized bed, it is recommended to start the reaction by filling a reactor with particles that contain water and molecular oxygen and can form a fluidized bed in advance. Characteristic polyolefin manufacturing method.
(2)前記水および分子状の酸素を含有し、かつ流動床
を形成し得る粒子は、水分を含有する空気と接触させた
ポリオレフィン粒子である請求項1記載のポリオレフィ
ンの製法。
(2) The method for producing a polyolefin according to claim 1, wherein the particles containing water and molecular oxygen and capable of forming a fluidized bed are polyolefin particles brought into contact with air containing moisture.
JP2200010A 1990-07-27 1990-07-27 Polyolefin production Expired - Fee Related JP3013094B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2200010A JP3013094B2 (en) 1990-07-27 1990-07-27 Polyolefin production
US07/844,590 US5385991A (en) 1990-07-27 1991-07-26 Method for producing polyolefin
PCT/JP1991/001010 WO1992002563A1 (en) 1990-07-27 1991-07-26 Process for producing polyolefin
AU82257/91A AU643057B2 (en) 1990-07-27 1991-07-26 Process for producing polyolefin
CA002066770A CA2066770C (en) 1990-07-27 1991-07-26 Process for producing polyolefin
KR1019920700612A KR0172613B1 (en) 1990-07-27 1991-07-26 Process for producing polyolefin
DE69119390T DE69119390T2 (en) 1990-07-27 1991-07-26 METHOD FOR PRODUCING POLYOLEFINES
EP91913120A EP0494316B1 (en) 1990-07-27 1991-07-26 Process for producing polyolefin
US08/328,083 US5525687A (en) 1990-07-27 1994-10-24 Method for producing polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2200010A JP3013094B2 (en) 1990-07-27 1990-07-27 Polyolefin production

Publications (2)

Publication Number Publication Date
JPH0485309A true JPH0485309A (en) 1992-03-18
JP3013094B2 JP3013094B2 (en) 2000-02-28

Family

ID=16417295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2200010A Expired - Fee Related JP3013094B2 (en) 1990-07-27 1990-07-27 Polyolefin production

Country Status (1)

Country Link
JP (1) JP3013094B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10011667B2 (en) 2016-04-12 2018-07-03 Sumitomo Chemical Company, Limited Method for producing polyolefin
US11396259B2 (en) * 2016-02-04 2022-07-26 Ts Tech Co., Ltd. Lighting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11396259B2 (en) * 2016-02-04 2022-07-26 Ts Tech Co., Ltd. Lighting device
US10011667B2 (en) 2016-04-12 2018-07-03 Sumitomo Chemical Company, Limited Method for producing polyolefin

Also Published As

Publication number Publication date
JP3013094B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
US4560671A (en) Olefin polymerization catalysts adapted for gas phase processes
JPH01230607A (en) Reduction of sheeting during polymerization of alpha-olefin
EP0012147B1 (en) Process for the preparation of high density ethylene polymers in fluid bed reactor
JP3014276B2 (en) Ethylene / propylene copolymer rubber
JPS63500176A (en) Method for reducing sheeting during polymerization of alpha-olefin
HU217181B (en) Process for the gas phase polymerization of olefins
JPH03217402A (en) Preparation of viscous polymer
JPS6052166B2 (en) Improved ethylene copolymerization method
PL184584B1 (en) Method of polymerising monomers in fluidised bed
JPH09501733A (en) Vapor phase polymerization of α-olefins
KR101863039B1 (en) Method for feeding an antistatic compound to a polymerization reactor
US4921919A (en) Method and apparatus for minimizing polymer agglomerate or lump formation in a gas-phase polypropylene polymerization reactor
JP3001762B2 (en) Improved process for producing adhesive polymers
CA2066770C (en) Process for producing polyolefin
KR102119334B1 (en) Hydraulic transfer method of polyolefin pellets
US4665143A (en) Co-catalyst dispersion method
JPH0480206A (en) Method for feeding catalyst in vapor phase polymerization in fluidized bed reactor
JPH0485309A (en) Production of polyolefin
US5571879A (en) Method of vapor phase polymerization of olefins
JP3013093B2 (en) Polyolefin production method
JPH0485307A (en) Production of polyolefin
EP2185597A1 (en) Continuous feed of auxiliaries for the polymerization of olefins
EP0131832B1 (en) Olefin polymerization catalysts adapted for gas phase processes
JPH04114008A (en) Production of olefin polymer
US4585840A (en) Olefin polymerization catalysts adapted for gas phase processes

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees