JPH048522B2 - - Google Patents

Info

Publication number
JPH048522B2
JPH048522B2 JP5381283A JP5381283A JPH048522B2 JP H048522 B2 JPH048522 B2 JP H048522B2 JP 5381283 A JP5381283 A JP 5381283A JP 5381283 A JP5381283 A JP 5381283A JP H048522 B2 JPH048522 B2 JP H048522B2
Authority
JP
Japan
Prior art keywords
spinning
hollow
hollow fibers
coagulation bath
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5381283A
Other languages
Japanese (ja)
Other versions
JPS59179806A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5381283A priority Critical patent/JPS59179806A/en
Publication of JPS59179806A publication Critical patent/JPS59179806A/en
Publication of JPH048522B2 publication Critical patent/JPH048522B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 技術分野 本発明は、銅アンモニア法再生セルロース繊維
よりなる中空糸の製造方法に関する。 (ロ) 従来技術 銅アンモニア法再生セルロース繊維よりなる中
空糸(以下、「キユプラ中空糸」と略称する)は、
近年、人工腎臓等の血液透析に広く用いられてい
る。 従来キユプラ中空糸を製造するには、銅アンモ
ニアセルロース紡糸原液を環状紡糸口金から吐出
し、同時に環状紡糸口金の中心部に装着した液体
導入管から紡糸原液に対して非凝固性の液体を導
入充填して吐出し、吐出された線状紡糸原液を空
中に自由落下して充分に延伸し、続いて凝固浴に
導き、その後、再生工程、水洗工程、乾燥工程を
経てスプール状あるいは綛状に巻き取る方法がと
られている。 このようにして製造され巻き取られたキユプラ
中空糸は、その中空部に前記環状紡糸口金の中心
部に装着した液体導入管から導入充填した液体が
充填されており、このキユプラ中空糸を透析用モ
ジユールに利用する場合には、モジユールの組立
て以前、組立て工程の途中、または組立て以後の
いずれかの段階でこれらの中空部充填液体を除去
する必要がある。 本発明者等の研究によれば、中空糸を数10cmの
長さにまで切断しなければ、数10〜数百μの内径
を有する中空糸から、内部の充填液体を完全に除
去することは不可能である。したがつて、通常は
中空糸を数10cmの長さに切断して束をつくり、そ
の状態で中空剤の除去を行う方法がとられてい
る。束状の中空糸は重力、遠心力、真空乾燥等の
物理的方法や、有機溶剤による洗浄等の化学的方
法ないしそれらを併せ行う方法によつて処理され
て、充填液体の除去がはかられる。これらの方法
はいずれも非常に複雑であり、かつ除去のための
コストは製造コストのかなりの割合を占める。と
りわけ除去した液体の回収および再利用率を高め
ることができなければ、キユプラ中空糸の製造お
よび透析用モジユールの組立てを通して総コスト
を高める要因となる。 一方、前述の除去操作を繰り返し行つても中空
部充填液体の若干量の残留が避けられないが、キ
ユプラ中空糸の主たる応用分野が慢性的腎不全患
者に対する長期継続的血液透析であることを考慮
すれば、前記残留物が全くないことが望ましい。 このような理由から、紡糸の最初の段階から中
空部を形成するための液体を全く用いないキユプ
ラ中空糸の製造方法の開発が強く望まれていた。
前記残留物の全くないキユプラ中空糸を造る方法
として中空部充填剤に気体を用いることが考えら
れるが、非圧縮性の液体を用いるのに対して圧縮
性の気体を用いる場合には、おそらく、中空糸の
全繊維長にわたつて均一な円形断面を有し、かつ
均一な壁厚さを有する中空糸を製造することは不
可能であろうと思われていた。 本発明者等はこのような従来の固定観念を打破
すべくあえてこの難題に挑戦し、その結果、本発
明を成すに至つた。 (ハ) 発明の目的 本発明の目的は、全繊維長にわたつて均一な円
形断面および均一な壁厚さを有するキユプラ中空
糸を工業的有利に製造する方法を提供するにあ
る。 (ニ) 発明の構成 本発明に係るキユプラ中空糸の製造方法は、銅
アンモニアセルロース紡糸原液を環状紡糸口金か
ら吐出し、同時に環状紡糸口金の中心部に装着し
た気体の導入管より気体を導入して充填し、次い
で、吐出した線状の紡糸原液を自由落下させて下
方に位置する凝固浴に導く際に、紡糸原液が自由
落下時に得た下向きの力のみによつて凝固浴面を
ほぼ垂直に突破しかつ液面下10mmより大きく30mm
以下の深さまで突入するように自由落下長を設定
することを特徴とする。 (ホ) 好ましい態様 本発明方法により得られる中空糸は全繊維長に
わたつて連続貫通した中空部と、内径50μmない
し数百μmの円形断面及び数μmないし60μmの
壁厚さを有する銅アンモニア法再生セルロース繊
維からなる中空糸であり、その中空部には気体が
充填されている長尺の中空糸である。ここで「長
尺」とは、透析器等に組み込む長さの数倍ないし
数十倍以上の長さをいい、通常少なくとも数m、
好ましくは、10数mないし数10m以上の長さを示
す。 本発明方法により得られる中空糸は、数m以上
の長尺あるいは綛状、スプール状に巻き取られた
状態で、その全繊維長にわたつて中空部には気体
が充填されている。 そのため、中空糸を切断して束にする段階で、
内部の気体が自由に外部の空気と拡散しあう。従
来の、液体を中空形成剤として用いた中空糸の場
合には、重力、遠心力、真空乾燥を応用する方法
あるいは薬液による洗浄方法等の非常に煩雑な方
法を用いて中空充填液体を除去することが必要で
あつたが、本発明方法により得られる中空糸はこ
うした煩雑な工程を全く必要としないため、製造
コストが削減できる上、人工腎臓の組立収率が高
く、かつ、透析性能が高いという結果が得られ
る。 これは、キユプラ中空糸の場合には合成高分子
の中空糸にくらべても、又、セルロース誘導体か
らの再生セルロース糸中空糸にくらべても、温度
湿度の変化による中空糸の形態変化および性能変
化が大きいため、従来の液体を中空剤とする中空
糸の場合には、中空剤を除去するための様々な物
理的、化学的処理の際に、不可避的に様々な温湿
度変化を受けて中空糸の形態が変化すると共に、
性能が低下するためと考えられる。 例えば、キユプラ中空糸の束は、温湿度変化を
受けると中空糸の先端部分がカールし、束の姿が
乱れ組立に際してのモジユールへの挿入等の操作
に支障をきたし組立収率を低下させるという現象
がおこるが、従来の中空糸では、これは避けられ
ないことであつた。本発明方法により得られる中
空糸は、中空充填液体の除去作業を全く必要とし
ないために、このような不利益を全くこうむらず
に人工腎臓に組み立てることが可能である。 本発明方法により得られる中空糸は、中に液体
が充填されていないために、長尺の段階から直
接、連続的に中空糸の切断、束の形成が可能であ
るというきわめて大きな特長をも有している。 中空形成剤として気体を用いる方法は、既に溶
融紡糸法あるいは乾式紡糸法による中空糸の製造
では公知であり、又、合成高分子を用いた湿式紡
糸法による中空糸の製造においても公知であるが
(例えば、特開昭53−86834、54−55623を参照)、
セルロースを素材とした湿式紡糸法、特に、銅ア
ンモニアセルロース溶液による湿式紡糸法におい
ては全く知られていない。 本発明者等が、液体を用いる従来のキユプラ中
空糸の製造方法及び、気体を用いる従来の非キユ
プラ中空糸の製造方法を参考にしながら気体を用
いるキユプラ中空糸の製造を試みたところ、従来
の中空糸の製造においては全く問題とならなかつ
たトラブルに遭遇し全く紡糸が出来ないか、又
は、実用に耐えるような中空糸は得られなかつ
た。 すなわち、従来法通りに空中自由落下させた紡
糸原液を変向棒を用いて凝固浴中に引きこみ、変
向させた上で凝固浴中を走行させたところ、自由
落下部の紡糸原液が径方向にはなはだしく脈動を
おこし、ついには紡糸切れに至るという現象が発
生した。一方、変向棒を取り払うと紡糸原液は凝
固浴表面を走つてしまい、この場合には、未凝固
の紡糸原液が下側へ流動するために偏心を起こ
し、均一壁厚の中空糸は得られないことが判明し
た。この「脈動」と「偏心」の問題は、従来技術
をベースにした様々な努力にもかかわらず、つい
に解決しなかつた。 本発明者等の研究によれば、他の素材による気
体中空剤紡糸の場合と、キユプラ中空糸の場合と
の最大の違いは、他の素材の場合には紡出後の自
由落下の時点で紡糸液温度の低下、溶剤の蒸発等
の要因によつて紡糸液が速やかにゲル化を起こ
し、中空糸としての形状を維持する力が発生する
のに対し、キユプラの場合には、自由落下の時点
では全くゲル化を起さず凝固浴に浸漬してはじめ
てゲル化が起ること、しかも、他の素材とは違つ
て、キユプラの場合には、そのゲル化もただちに
はおこらず、一定の時間が経過した後にはじめて
外力に抗して形態を維持するにたるゲル化が起こ
ることにあると考えられた。したがつて、脈動
は、自由落下した紡糸液が凝固浴に突入し、また
ゲル化が十分に進行しない時点で、凝固浴から紡
糸原液に対して大きな浮力が働くため、紡糸液に
内包された気体が上部に押しあげられることによ
つて発生するものと考えられた。 従来のキユプラ中空糸の紡糸においては、吐出
された紡糸液は自由落下を経た後(あるいは自由
落下を経ずに)凝固浴に突入し、凝固浴中を下向
きに一定距離進行した後、横向きの力を与えられ
て次の工程に進行する方法がとられていた。中空
形成剤が液体の場合には、浮力がほとんど問題と
ならないため、紡糸原液は大きな抵抗をうけずに
凝固浴に突入し、かつ、自由落下時に得た下向き
の力に加え、変向棒ないし変向ロールを介して与
えられる力によつて任意の長さにわたり凝固浴を
下向きに走行することができる。そのため通常は
数cmから数10cm凝固浴を下向きに走行した後、横
向きに変向されて次の工程に移行するのである。 これとは対照的に、本発明方法の特徴は、自由
落下時に得た下向きの力のみによつて紡糸原液が
凝固浴面を垂直に突破し、かつ、液面下10〜30mm
の深さまで突入するように自由落下長を設定する
ことにある。 本発明者等は、先に紡糸原液の凝固浴面下への
突入深さが2〜10mmである時に良好な紡糸状態が
得られることを見い出して特許出願(特願昭56−
154808号)を行つたが、その後本発明者等がさら
に広い紡糸条件にわたる検討を行なつた所、上記
範囲よりも大きい液面下突入深さにおいても良好
な紡糸状態が得られることを見い出して本発明に
至つたのである。 自由落下長を短かくして、表面張力に阻まれて
液面を突破できない状態で紡糸を行うと、紡糸液
は凝固不十分の状態で横方向に走行するため紡糸
液が下方に流動し、偏心状の横断面を有する中空
糸が出来てしまう。一方、自由落下長が高すぎる
場合には、液面の上方に紡糸原液のたるみが生じ
て、液面を垂直に突破することが出来なくなり、
界面でうずをまき始める。このような状態になる
と紡糸は不安定になり、切糸が発生しやすく、か
つ、得られた中空糸は寸法のバラツキの大きいも
のとなる。 このようにして自由落下長を設定し、安定紡糸
状態を得るという紡糸方法は、キユプラを含め
て、湿式紡糸法の中空糸の紡糸においては全くは
じめての方法であり、かつ、この方法によつて、
脈動のない安定な紡糸がはじめて実現されたので
ある。 一方、自由落下長を設定する前提として、紡糸
原液および気体の吐出が適正に行なわれていなけ
ればならず、条件が不適性であると紡糸時点で脈
動が発生してしまうことになる。 紡糸原液の吐出量は目的とするキユプラ中空糸
の内径、壁厚さ、巻き取り速度によつて決定され
るが、紡糸原液の平均吐出線速度は好ましくは7
m/分以上、より好ましくは11m/分以上に設定
する。7m/分以下では極めて少量の気体を吐出
しても中空線状体の脈動が激しく、自由落下部で
の切断が発生し継続的な紡糸が難しい。 また、デイメンシヨンの異なる紡口を用いた場
合にも上述したように平均吐出線速度を7m/分
以上、好ましくは11m/分以上に設定すれば安定
した紡糸ができることが判つた。因みに、従来の
中空部充填剤として液体を用いるキユプラ中空糸
の紡糸では紡糸原液の平均吐出線速度は1ないし
2m/分程度に設定されている。 中空部充填剤としての気体の吐出量は、目的と
するキユプラ中空糸の内径、壁厚さ、巻き取り速
度および前記気体の巻き取りまでの途中工程での
膜(キユプラ中空糸の壁)を通じての逸散率によ
つて決定される。この際の気体の吐出圧は紡口デ
イメンシヨンによつて変動するが、吐出圧が高す
ぎると吐出された紡糸原液は脈動を起こし安定し
た形状の中空糸は得られない。本発明者等の研究
の結果、吐出圧が外部圧に加えて好ましくは100
mm水柱以下、より好ましくは70mm水柱以下である
ように紡口デイメンシヨンを設定すれば安定な吐
出状態が得られることが判つた。このような圧力
下で気体を導入、充填して、次いで吐出された線
状の紡糸原液を空中に自由落下させて充分に延伸
した後、下方に位置する凝固浴に導く。 中空部充填剤として用いる気体としては、常温
で気体状の全ての物質が対象となるが、紡糸液と
反応せず、かつ紡糸液を凝固させない気体が望ま
しい。さらに、中空糸を血液透析に用いることを
考えれば、毒性の低い物質が望ましく、パラフイ
ン系、オレフイン系の各種の気体、ハロゲン化炭
化水素系の気体(パーフルオロカーボン、フロロ
クロロカーボン等)、各種稀ガス等が使用可能で
ある。中でも空気およびその成分ないしその成分
の混合物は取扱いやすく最適である。 気体は、微量定量供給可能な気体流量調整装置
を用いてフイードされる。 このようにして適正な条件で紡出し自由落下さ
せ、苛性ソーダからなる凝固浴に導き、凝固させ
た中空糸を凝固浴から引きあげた後、1本づつネ
ツトコンベア上に堆積させて、水および硫酸水溶
液によつて精練した後乾燥し、綛状またはスプー
ル状に巻き取る。 綛状またはスプール状に巻き取られたキユプラ
中空糸は、その全繊維長にわたつて連続貫通した
中空部を有し、その中空部には気体が充填されて
いる。また、この中空糸は透析膜として用いる場
合、全繊維長にわたつて内径50μmないし数百μ
mの円形断面及び数μmないし60μmの壁厚さを
有することが好ましい。ここで、数百μmとは最
大800μm、好ましくは600μmを意味し、数μm
とは最小2μm好ましくは5μmを意味する。この
ように巻き取られたキユプラ中空糸を切断すれば
中空部に充填されていた気体は外部の大気と混合
拡散しあう。 キユプラ中空糸を人工腎臓等の血液透析装置に
用いるには、1m以下の任意の長さに切断し、数
千ないし数万本を結束して束状の集合体を形成す
る。切断および結束の操作において従来のキユプ
ラ中空糸同様、中空部がつぶれる、円形断面が変
形する、容易に折れ曲がる等といつたことは実用
上問題とならない程度であつた。 又、本発明の中空糸を用いて人工腎臓を組み立
てたところ、従来の中空糸にくらべて高い組立収
率が得られた上に、透析性能を高かつた。 (ヘ) 実施例 以下、本発明方法を実施例について具体的に説
明する。 実施例 1 公知の方法に従つて調製したセルロース濃度
10.0%、アンモニア濃度7.0%、銅濃度3.6%の組
成と2000ポイズの粘度を有する銅アンモニアセル
ロース紡糸原液を用い、これを環状紡糸口金を通
して環状に紡糸した。紡糸原液の吐出量は、20.0
ml/分とした。一方、環状紡糸口金の中心部に装
着した気体の導入管より窒素ガスを5ml/分の割
合で吐出した。この時のガスの吐出圧は、外部圧
に加えて、50mm水柱の圧力であつた。また、紡糸
原液の平均吐出線速度を17.6m/分に設定した。 次に、吐出された線状紡糸原液を直接空気中に
500mm自由落下させて充分に延伸し、引続き濃度
11%(以下、「%」は重量百分率を表わす)の苛
性ソーダ水溶液を満たした凝固浴に導入した。こ
の時線状の紡糸原液は凝固浴液面下18mmまで一旦
沈んだ状態にあつた。凝固浴にて凝固作用を与
え、糸に形成後、糸を巻き取りに由来する力によ
つて自然に横向きに変向させ、凝固浴より引き上
げて後振り落し用ローラーを用いて糸をネツトコ
ンベア上に振り落し、ネツトコンベアを進行させ
る過程で濃度3%の稀硫酸水溶液により酸洗して
糸の再生を行い、引き続き充分に水洗した後、糸
をネツトコンベア上より引き上げて直線的に走行
させてトンネル型乾燥機内を走行させ、充分に乾
燥し、次いで巻き取り機によりスプール状に巻き
取つた。巻き取り速度は80m/分に設定された。
巻きとられたキユプラ中空糸は中空部に窒素ガス
が充填されておりスプールの内部位置でも中空部
が潰れることはなかつた。次に、スプール状に巻
き取られたキユプラ中空糸を200mmの長さに切断
して、これを1万本結束し、束状のキユプラ中空
糸の集合体を得た。得られたキユプラ中空糸は、
その外径が234μm、内径が192μmに形成されて
おり、壁厚さは21μmであつた。また、全繊維長
にわたつて連続貫通した中空部が形成され、か
つ、繊維軸方向に均一な円形断面を有していた。 次に、本発明の中空糸の性能を従来品(中空剤
として非凝固性有機液体を使用し、特開昭49−
134920号公報記載の製法に準拠して製造した。)
と比較して、第一表に示す。測定項目は、モデル
液透析におけるアルブミンおよび尿素の除去率、
限外過速度である。
(a) Technical Field The present invention relates to a method for producing hollow fibers made of cellulose fibers regenerated using a cuprammonium method. (b) Prior art Hollow fibers made of cellulose fibers regenerated by the copper ammonia method (hereinafter abbreviated as "QYUPRA hollow fibers") are
In recent years, it has been widely used in hemodialysis such as artificial kidneys. Conventionally, in order to manufacture QYUPRA hollow fiber, a copper ammonia cellulose spinning dope is discharged from a circular spinneret, and at the same time, a non-coagulable liquid is introduced into the spinning dope through a liquid introduction tube attached to the center of the annular spinneret. The discharged linear spinning stock solution falls freely into the air and is sufficiently stretched, then led to a coagulation bath, and then wound into a spool or skein shape through a regeneration process, water washing process, and drying process. A method is being used to take it. The hollow part of the QYUPRA hollow fiber manufactured and wound in this manner is filled with liquid introduced from the liquid introduction tube attached to the center of the annular spinneret, and this QYUPRA hollow fiber is used for dialysis. When used in modules, it is necessary to remove these hollow-filling liquids before, during, or after assembly of the module. According to research conducted by the present inventors, it is impossible to completely remove the filling liquid from a hollow fiber with an inner diameter of several tens to hundreds of μ unless the hollow fiber is cut to a length of several tens of centimeters. It's impossible. Therefore, the usual method is to cut the hollow fibers into lengths of several tens of centimeters to form bundles, and then remove the hollow agent in this state. The bundled hollow fibers are treated by physical methods such as gravity, centrifugal force, and vacuum drying, chemical methods such as cleaning with organic solvents, or a combination of these methods to remove the filling liquid. . Both of these methods are very complex and the cost of removal represents a significant proportion of the manufacturing cost. In particular, failure to increase the rate of recovery and reuse of the removed liquid will increase the overall cost throughout the manufacturing of the QYUPRA hollow fiber and the assembly of the dialysis module. On the other hand, even if the above-mentioned removal operation is repeated, a small amount of the liquid filling the hollow space cannot be avoided, but considering that the main application field of QYUPRA hollow fiber is long-term continuous hemodialysis for patients with chronic renal failure. If so, it is desirable that there be no such residue at all. For these reasons, there has been a strong desire to develop a method for manufacturing QYUPRA hollow fibers that does not use any liquid to form hollow portions from the initial stage of spinning.
One possible method for producing QYUPRA hollow fibers with no residue is to use a gas as the hollow filler, but if a compressible gas is used instead of an incompressible liquid, then It was believed that it would be impossible to produce hollow fibers with a uniform circular cross-section and a uniform wall thickness over the entire fiber length of the hollow fiber. The inventors of the present invention dared to take on this difficult challenge in order to break through such conventional fixed ideas, and as a result, they have accomplished the present invention. (c) Object of the Invention The object of the present invention is to provide an industrially advantageous method for manufacturing QYUPRA hollow fibers having a uniform circular cross section and uniform wall thickness over the entire fiber length. (d) Structure of the Invention The method for producing QYUPRA hollow fibers according to the present invention includes discharging a copper ammonia cellulose spinning stock solution from an annular spinneret, and at the same time introducing gas from a gas inlet tube attached to the center of the annular spinneret. Then, when the discharged linear spinning stock solution is allowed to fall freely and guided to the coagulation bath located below, the spinning stock solution moves almost vertically to the surface of the coagulation bath only by the downward force obtained during the free fall. and 30mm larger than 10mm below the liquid surface.
It is characterized by setting the free fall length so that it plunges to the following depth. (E) Preferred Embodiment The hollow fiber obtained by the method of the present invention has a hollow portion that penetrates continuously over the entire fiber length, a circular cross section with an inner diameter of 50 μm to several hundred μm, and a wall thickness of several μm to 60 μm. These are hollow fibers made of regenerated cellulose fibers, and are long hollow fibers whose hollow portions are filled with gas. Here, "long" refers to a length several times to several tens of times longer than the length to be incorporated into a dialysis machine, etc., and usually at least several meters long.
Preferably, the length is several tens of meters to several tens of meters or more. The hollow fiber obtained by the method of the present invention is wound in a long length of several meters or more, or in a spool shape, and the hollow portion thereof is filled with gas over the entire fiber length. Therefore, at the stage of cutting the hollow fibers and bundling them,
The gas inside can freely diffuse with the air outside. In the case of conventional hollow fibers that use liquid as a hollow forming agent, the hollow filling liquid is removed using very complicated methods such as gravity, centrifugal force, vacuum drying, or cleaning with chemicals. However, the hollow fiber obtained by the method of the present invention does not require such complicated steps at all, so manufacturing costs can be reduced, the assembly yield of artificial kidneys is high, and dialysis performance is high. The result is obtained. In the case of QYUPRA hollow fibers, compared to synthetic polymer hollow fibers and compared to regenerated cellulose fiber hollow fibers made from cellulose derivatives, the shape and performance of the hollow fibers change due to changes in temperature and humidity. Because of the large As the form of the thread changes,
This is thought to be due to a decrease in performance. For example, when a bundle of QYUPRA hollow fibers is subjected to changes in temperature and humidity, the tips of the hollow fibers curl, which disrupts the shape of the bundle and impedes operations such as insertion into modules during assembly, reducing assembly yield. This phenomenon occurs, but with conventional hollow fibers, this was unavoidable. Since the hollow fiber obtained by the method of the present invention does not require any operation to remove the hollow filling liquid, it can be assembled into an artificial kidney without suffering any such disadvantages. Since the hollow fibers obtained by the method of the present invention are not filled with liquid, they have the very great feature that they can be cut directly and continuously from the long stage to form bundles. are doing. The method of using gas as a hollow forming agent is already known in the production of hollow fibers by melt spinning or dry spinning, and is also known in the production of hollow fibers by wet spinning using synthetic polymers. (For example, see JP-A-53-86834, 54-55623)
There is no known wet spinning method using cellulose as a raw material, especially a wet spinning method using a cuprammonium cellulose solution. The present inventors attempted to manufacture QYUPRA hollow fibers using gas while referring to the conventional manufacturing method for QYUPRA hollow fibers using liquid and the conventional manufacturing method for non-QYUPRA hollow fibers using gas. In the production of hollow fibers, troubles that were not considered problems at all were encountered, and either spinning was not possible at all, or hollow fibers that could withstand practical use could not be obtained. That is, when the spinning stock solution that was free-falling in the air according to the conventional method was drawn into the coagulation bath using a deflection rod, the direction was changed, and the spinning stock solution was run through the coagulation bath. A phenomenon occurred in which pulsation occurred in the direction of the yarn, which eventually led to yarn breakage. On the other hand, if the deflection rod is removed, the spinning solution will run on the surface of the coagulation bath, and in this case, the uncoagulated spinning solution will flow downward, causing eccentricity and making it impossible to obtain hollow fibers with a uniform wall thickness. It turns out there isn't. The problems of "pulsation" and "eccentricity" could not be solved despite various efforts based on conventional techniques. According to the research conducted by the present inventors, the biggest difference between gas hollow agent spinning using other materials and Kyupra hollow fiber is that in the case of other materials, the point of free fall after spinning is The spinning solution quickly gels due to factors such as a decrease in the spinning solution temperature and evaporation of the solvent, generating a force that maintains the shape of the hollow fiber. However, unlike other materials, in the case of Kyupra, gelation does not occur immediately, but only after immersion in a coagulation bath. It was thought that gelation, which maintains its shape against external forces, occurs only after a period of time has passed. Therefore, the pulsation is caused by the free-falling spinning solution entering the coagulation bath, and at the point when gelation has not sufficiently progressed, a large buoyant force acts on the spinning dope from the coagulation bath, causing the spinning solution to become encapsulated in the spinning solution. It was thought that this was caused by gas being pushed upwards. In conventional Kyupra hollow fiber spinning, the discharged spinning solution enters the coagulation bath after undergoing free fall (or without free fall), travels a certain distance downward in the coagulation bath, and then enters the coagulation bath in a horizontal direction. The method used was to be given power and proceed to the next step. When the hollow forming agent is a liquid, buoyancy is hardly a problem, so the spinning dope enters the coagulation bath without much resistance, and in addition to the downward force obtained during free fall, it is The force applied via the deflection rolls allows the coagulation bath to be run downwards over any length. For this reason, the coagulation bath usually travels several centimeters to several tens of centimeters downward through the coagulation bath, then is turned sideways and moves on to the next step. In contrast, the feature of the method of the present invention is that the spinning dope perpendicularly breaks through the surface of the coagulation bath only by the downward force obtained during free fall, and
The goal is to set the free fall length so that the object plunges to a depth of . The present inventors previously discovered that a good spinning condition could be obtained when the depth of penetration of the spinning dope into the coagulation bath surface was 2 to 10 mm, and filed a patent application (Patent Application No.
154808), but the present inventors subsequently conducted a study covering a wider range of spinning conditions and found that a good spinning condition could be obtained even at a plunge depth below the liquid surface that was greater than the above range. This led to the present invention. If the free fall length is shortened and spinning is performed in a state where the surface tension prevents the liquid from breaking through, the spinning solution will run in the lateral direction with insufficient coagulation, causing the spinning solution to flow downward and create an eccentric shape. A hollow fiber with a cross section of . On the other hand, if the free fall length is too high, the spinning dope will sag above the liquid level, making it impossible to break through the liquid level vertically.
It begins to swirl at the interface. In such a state, spinning becomes unstable, fibers are likely to be cut, and the obtained hollow fibers have large dimensional variations. The spinning method of setting the free fall length in this way and obtaining a stable spinning state is a completely new method for spinning hollow fibers using wet spinning, including Kyupra. ,
This was the first time that stable spinning without pulsation was realized. On the other hand, as a prerequisite for setting the free fall length, the spinning dope and gas must be discharged properly, and if the conditions are inappropriate, pulsation will occur during spinning. The discharge amount of the spinning dope is determined by the inner diameter, wall thickness, and winding speed of the target QYUPRA hollow fiber, but the average linear velocity of the spinning dope is preferably 7.
m/min or more, preferably 11 m/min or more. At 7 m/min or less, even if an extremely small amount of gas is discharged, the hollow linear body pulsates violently, causing breakage at the free-falling part, making continuous spinning difficult. It has also been found that even when spinnerets of different dimensions are used, stable spinning can be achieved by setting the average discharge linear velocity to 7 m/min or more, preferably 11 m/min or more, as described above. Incidentally, in conventional spinning of QYUPRA hollow fibers using a liquid as a hollow filler, the average linear discharge speed of the spinning dope is set to about 1 to 2 m/min. The amount of gas to be discharged as a hollow filler is determined by the inner diameter of the target QYUPRA hollow fiber, wall thickness, winding speed, and the amount of gas that passes through the membrane (wall of QYUPRA hollow fiber) during the process up to winding. Determined by the dissipation rate. The gas discharge pressure at this time varies depending on the spindle dimension, but if the discharge pressure is too high, the discharged spinning dope will pulsate, making it impossible to obtain hollow fibers with a stable shape. As a result of research by the present inventors, the discharge pressure is preferably 100% in addition to the external pressure.
It has been found that a stable discharge condition can be obtained by setting the spinneret dimension so that the water column is less than mm, more preferably less than 70 mm. Gas is introduced and filled under such pressure, and then the discharged linear spinning dope is allowed to freely fall into the air, sufficiently stretched, and then led to a coagulation bath located below. The gas used as the hollow space filler can be any substance that is gaseous at room temperature, but it is desirable to use a gas that does not react with the spinning solution and does not coagulate the spinning solution. Furthermore, considering the use of hollow fibers in hemodialysis, it is desirable to use substances with low toxicity, such as various paraffin-based and olefin-based gases, halogenated hydrocarbon-based gases (perfluorocarbons, fluorochlorocarbons, etc.), and various rare gases. Gas etc. can be used. Among them, air and its components or mixtures of its components are easy to handle and are most suitable. Gas is fed using a gas flow rate adjustment device that can supply a small amount of gas. In this way, the hollow fibers are spun under appropriate conditions, allowed to fall freely, guided into a coagulation bath made of caustic soda, and the coagulated hollow fibers are pulled up from the coagulation bath and deposited one by one on a net conveyor. After scouring, it is dried and wound into a skein or spool. The QYUPRA hollow fiber wound into a comb or spool shape has a hollow portion continuously extending through its entire fiber length, and the hollow portion is filled with gas. In addition, when this hollow fiber is used as a dialysis membrane, it has an inner diameter of 50 μm to several hundred μm over the entire fiber length.
Preferably, it has a circular cross section of m and a wall thickness of a few μm to 60 μm. Here, several hundred μm means a maximum of 800 μm, preferably 600 μm, and several μm
means a minimum of 2 μm, preferably 5 μm. When the QYUPRA hollow fiber wound in this manner is cut, the gas filled in the hollow portion mixes and diffuses with the outside atmosphere. In order to use QYUPRA hollow fibers in hemodialysis devices such as artificial kidneys, they are cut into arbitrary lengths of 1 m or less, and thousands to tens of thousands of fibers are tied together to form bundle-like aggregates. In the cutting and binding operations, as with conventional QYUPRA hollow fibers, the hollow portion was crushed, the circular cross section was deformed, and the fibers were easily bent, which were not a practical problem. Furthermore, when an artificial kidney was assembled using the hollow fiber of the present invention, a higher assembly yield was obtained than with conventional hollow fibers, and the dialysis performance was also improved. (F) Examples Hereinafter, the method of the present invention will be specifically explained with reference to Examples. Example 1 Cellulose concentration prepared according to known methods
A cuprammonium cellulose spinning dope having a composition of 10.0%, an ammonia concentration of 7.0%, and a copper concentration of 3.6% and a viscosity of 2000 poise was used, and this was spun into a ring through a circular spinneret. The discharge amount of spinning stock solution is 20.0
ml/min. On the other hand, nitrogen gas was discharged at a rate of 5 ml/min from a gas inlet tube attached to the center of the annular spinneret. The gas discharge pressure at this time was 50 mm of water column pressure in addition to the external pressure. Further, the average linear discharge speed of the spinning dope was set to 17.6 m/min. Next, the discharged linear spinning dope is directly blown into the air.
500mm free fall and sufficient stretching, then continue to increase the density.
It was introduced into a coagulation bath filled with an 11% (hereinafter "%" represents weight percentage) aqueous caustic soda solution. At this time, the linear spinning stock solution was once submerged to a depth of 18 mm below the surface of the coagulation bath. After giving a coagulation effect in a coagulation bath and forming a thread, the thread is naturally turned sideways by the force derived from winding, and is lifted out of the coagulation bath and transferred to a net conveyor using a shake-off roller. The yarn is shaken off, and as it moves along the net conveyor, the yarn is pickled with a dilute 3% sulfuric acid aqueous solution to regenerate the yarn. After washing thoroughly with water, the yarn is pulled up from the top of the net conveyor and run in a straight line. The film was run through a tunnel dryer to be thoroughly dried, and then wound into a spool using a winder. The winding speed was set at 80 m/min.
The hollow part of the wound QYUPRA hollow fiber was filled with nitrogen gas, and the hollow part did not collapse even when located inside the spool. Next, the QYUPRA hollow fibers wound into a spool shape were cut into a length of 200 mm, and 10,000 pieces were bundled to obtain a bundle of QYUPRA hollow fibers. The obtained Kyupra hollow fiber is
The outer diameter was 234 μm, the inner diameter was 192 μm, and the wall thickness was 21 μm. Further, a hollow portion was formed that continuously penetrated the entire fiber length, and the fiber had a uniform circular cross section in the fiber axis direction. Next, the performance of the hollow fiber of the present invention was compared with that of a conventional product (using a non-coagulable organic liquid as a hollowing agent,
It was manufactured according to the manufacturing method described in Publication No. 134920. )
The comparison is shown in Table 1. The measurement items are albumin and urea removal rate in model liquid dialysis,
This is an extreme overspeed.

【表】【table】

【表】 実施例 2 実施例1に記載した製造方法に従つて内径
150μmのキユプラ中空糸を製造した。銅アンモ
ニアセルロース紡糸原液を用い、環状紡糸口金を
通して吐出した。吐出量は21.0ml/分とした。一
方、紡糸口金の中心部より空気を2.7ml/分の割
合で吐出した。この時の気体の吐出圧は外部圧に
加えて26mm水柱の圧力に設定した。また紡糸原液
の平均吐出線速度を35.7m/分に設定した。 次に吐出された線状紡糸原液を直接空中に自由
落下させて充分に延伸し、引き続き濃度11%の苛
性ソーダ水溶液浴に導入した。この時、線状紡糸
原液は一旦23mmの深さに沈んだ状態で安定した。
その後、実施例1同様の工程を通して巻き取り機
にスプール状に巻き取つた。巻き取り速度は80
m/分に設定した。 次に、スプール状に巻き取られたキユプラ中空
糸を300mmの長さに切断してこれを1万本結束し、
束状のキユプラ中空糸の集合体を得た。得られた
キユプラ中空糸はその外径が203μm、内径が
150μmに形成されており、壁厚さは27μmであつ
た。また、全繊維長にわたつて連続貫通した中空
部が形成され、かつ繊維軸方向に均一な円形断面
を有していた。
[Table] Example 2 Inner diameter according to the manufacturing method described in Example 1
A 150 μm Kyupra hollow fiber was manufactured. A cuprammonium cellulose spinning stock solution was used and discharged through a circular spinneret. The discharge amount was 21.0 ml/min. Meanwhile, air was discharged from the center of the spinneret at a rate of 2.7 ml/min. The gas discharge pressure at this time was set to 26 mm of water column pressure in addition to the external pressure. Further, the average linear discharge speed of the spinning dope was set at 35.7 m/min. Next, the discharged linear spinning dope was allowed to freely fall directly into the air, sufficiently stretched, and then introduced into a caustic soda aqueous solution bath having a concentration of 11%. At this time, the linear spinning dope was stabilized once submerged to a depth of 23 mm.
Thereafter, the material was wound into a spool on a winder through the same steps as in Example 1. Winding speed is 80
m/min. Next, the Kyupura hollow fibers wound into a spool were cut into lengths of 300mm and 10,000 pieces were tied together.
An aggregate of bundled Kyupra hollow fibers was obtained. The obtained QYUPRA hollow fiber has an outer diameter of 203 μm and an inner diameter of
The wall thickness was 27 μm. Further, a hollow portion was formed that continuously penetrated the entire fiber length, and had a uniform circular cross section in the fiber axis direction.

Claims (1)

【特許請求の範囲】[Claims] 1 銅アンモニアセルロース紡糸原液を環状紡糸
口金から吐出し、同時に環状紡糸口金の中心部に
装着した気体の導入管より気体を導入して充填
し、次いで、吐出した線状の紡糸原液を自由落下
させて下方に位置する凝固浴に導く際に、紡糸原
液が自由落下時に得た下向きの力のみによつて凝
固浴面をほぼ垂直に突破しかつ液面下10mmより大
きく30mm以下の深さまで突入するように自由落下
長を設定することを特徴とする銅アンモニア法再
生セルロース製中空糸の製法。
1. Discharge the copper ammonia cellulose spinning stock solution from the annular spinneret, and at the same time introduce and fill gas from the gas introduction tube attached to the center of the annular spinneret. Then, let the discharged linear spinning solution fall freely. When the spinning dope is led to the coagulation bath located below, the spinning stock solution breaks through the coagulation bath surface almost perpendicularly and plunges to a depth of more than 10 mm and less than 30 mm below the liquid surface only by the downward force obtained during free fall. A method for producing hollow fibers made of regenerated cellulose using the copper ammonia method, which is characterized by setting the free fall length as follows.
JP5381283A 1983-03-31 1983-03-31 Production of hollow fiber Granted JPS59179806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5381283A JPS59179806A (en) 1983-03-31 1983-03-31 Production of hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5381283A JPS59179806A (en) 1983-03-31 1983-03-31 Production of hollow fiber

Publications (2)

Publication Number Publication Date
JPS59179806A JPS59179806A (en) 1984-10-12
JPH048522B2 true JPH048522B2 (en) 1992-02-17

Family

ID=12953202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5381283A Granted JPS59179806A (en) 1983-03-31 1983-03-31 Production of hollow fiber

Country Status (1)

Country Link
JP (1) JPS59179806A (en)

Also Published As

Publication number Publication date
JPS59179806A (en) 1984-10-12

Similar Documents

Publication Publication Date Title
JPH0144803B2 (en)
KR20130069604A (en) Process for spinning graphene ribbon fibers
JPH07170962A (en) Tobacco filter
CA2216644A1 (en) Method of producing cellulose fibres
JPS6133601B2 (en)
KR101472098B1 (en) Manufacturing method of cellulose fiber using ionic liquid
JPS5850761B2 (en) Cellulose dialysis membrane and its manufacturing method
JPS6122042B2 (en)
JPH048522B2 (en)
KR100676572B1 (en) Meltblown process with mechanical attenuation
JP3494466B2 (en) Method for producing hollow fiber for dialysis
JPS6132041B2 (en)
JPS6132042B2 (en)
JPS6132043B2 (en)
JPS6256764B2 (en)
KR101472094B1 (en) Manufacturing method of cellulose fiber controlled degree of crystllity according to solidification rate and cellulose fiber produced by using the same
JP2020122231A (en) Cellulose type fiber, cellulose type non-woven fabric and manufacturing method thereof
JPS626005B2 (en)
JP5299358B2 (en) Method for producing fiber by wet spinning
JPS6329005B2 (en)
JP2009242984A (en) Method for producing carbon fiber precursor
JP3173617B2 (en) Hollow fiber for cellulose acetate dialysis membrane and production method
KR101535212B1 (en) Cellulose fiber for reinforcement rubber
JPS60166007A (en) Preparation of hollow yarn for dialysis
JP2714849B2 (en) Manufacturing method of hollow fiber