JPH0484941A - X-ray ct device - Google Patents

X-ray ct device

Info

Publication number
JPH0484941A
JPH0484941A JP2199283A JP19928390A JPH0484941A JP H0484941 A JPH0484941 A JP H0484941A JP 2199283 A JP2199283 A JP 2199283A JP 19928390 A JP19928390 A JP 19928390A JP H0484941 A JPH0484941 A JP H0484941A
Authority
JP
Japan
Prior art keywords
ray
amount
heat storage
ray detector
correction value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2199283A
Other languages
Japanese (ja)
Inventor
Takashi Tsukizu
孝 月津
Hiroshi Takagi
博 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2199283A priority Critical patent/JPH0484941A/en
Publication of JPH0484941A publication Critical patent/JPH0484941A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To execute the non-linearity correction corresponding to the heat accumulation quantity of an X-ray tube by correcting X-ray detection data of an X-ray detector by a non-linearity correction value in which the heat accumulation quantity of the X-ray tube and the channel number of the X-ray detector. CONSTITUTION:The device is provided with an X-ray detector 2 and a correcting means 3 in addition to a memory 1, and the memory 1 is divided by the heat accumulation quantity (j), and in accordance with one heat accumulation quantity (j), X-ray detector numbers 1-(n) are allocated, and a non-linearity correction value E corresponding to a channel. is stored in advance. In such a state, in the memory 1, by setting the channel number (i) and the heat accumulation quantity (j) as parameters and the corresponding non-linearity correction value E1j is read out, and on the other hand, from the X-ray detector 2, detection data D1j corresponding to the channel number is obtained. Subsequently, by correcting the detection data D1j by E1j at the time of actual measurement, by the correcting means 3, detection data which is not influenced by the heat accumulation quantity can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、X線管球の蓄熱量に応じたノンリニアリティ
補正を行うXAIXCT装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an XAIXCT apparatus that performs nonlinearity correction according to the amount of heat stored in an X-ray tube.

〔従来の技術〕[Conventional technology]

従来のX@C,T装置の、X線検出器の検呂データの補
正には、ノンリニアリティ補正がある。ノンリニアリテ
ィ補正とは、XI!検出器の照射されるX線強度に対す
る入力特性が、各チャンネル毎に異なった非直線特性を
有していることに着目し、この非直線特性を考慮してX
線検出器の検出データを補正することを云う。
In the conventional X@C,T device, correction of the inspection data of the X-ray detector includes non-linearity correction. What is nonlinearity correction?XI! We focused on the fact that the input characteristics for the X-ray intensity irradiated by the detector have different non-linear characteristics for each channel, and taking this non-linear characteristic into consideration,
This refers to correcting the detection data of the line detector.

このノンリニアリティ補正法は以下の内容となる。This nonlinearity correction method has the following contents.

先ず、ノンリニアリティ補正値E(CH)を事前に求め
てメモリに格納しておく。
First, the nonlinearity correction value E(CH) is determined in advance and stored in the memory.

ここで、CHはチャンネル番号を示し、E (CH)を
はチャンネル番号対応の補正値、R(CH)はチャンネ
ル対応の、空気(又はファントム)を相手にしての、X
線検出器の実測値。
Here, CH indicates the channel number, E (CH) is the correction value corresponding to the channel number, and R (CH) is the correction value corresponding to the channel.
Actual measurement value of line detector.

I(CH)はチャンネル対応の、理論上の、X線検出器
の検出データ(理論値)である。
I(CH) is theoretical detection data (theoretical value) of the X-ray detector corresponding to the channel.

次に、E(CH)を利用して、被検体を相手にしてのX
線検出器の実測値D(CH)を補正する。補正式は以下
となる。
Next, use E(CH) to perform X against the subject.
Correct the actual measurement value D(CH) of the line detector. The correction formula is as follows.

D、(CH)= D (CH) X (1+ E (C
H))・・・(2)ここで、Dr(CH)は、補正後の
実測値である。
D, (CH) = D (CH) X (1+ E (C
H))...(2) Here, Dr(CH) is an actual measured value after correction.

かくして得られたり、(CH)は、再構成データとして
利用され、X線CTデータを得る。
The thus obtained (CH) is used as reconstruction data to obtain X-ray CT data.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来例では、ノンリニアリティ補正値は、チャンネ
ル対応であるが、スキャン時(被検体撮影時のこと)の
X線管球の蓄熱量について配慮されていない、即ち、X
線管球は、その蓄熱量によって回転陽極のロータ軸など
が熱膨張する。この結果、陽極の焦点位置の移動が生じ
てX線幾何学系に変化が生じ、各チャンネルの入力特性
に変化が生ずる。しかし、従来は、この蓄熱量による各
チャンネルの入力特性の変化を考慮していないため、ノ
ンリニアリティ補正には正確さに欠ける点があった。
In the above conventional example, the nonlinearity correction value corresponds to the channel, but does not take into account the amount of heat stored in the X-ray tube during scanning (when imaging the subject).
In the wire tube, the rotor shaft of the rotating anode and the like expand thermally depending on the amount of heat stored in the tube. This results in a shift in the focal position of the anode and a change in the x-ray geometry, resulting in a change in the input characteristics of each channel. However, conventional nonlinearity correction lacks accuracy because it does not take into account changes in the input characteristics of each channel due to the amount of heat storage.

本発明の目的は、X線管球の蓄熱量に応じたノンリニア
リティ補正を可能にしたX線CT装置を提供するもので
ある。
An object of the present invention is to provide an X-ray CT apparatus that enables nonlinearity correction according to the amount of heat stored in an X-ray tube.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、X線管球の蓄熱量とX線検出器のチャンネル
番号とをパラメータとするノンリニアリティ補正値を与
えておき、実際のX41管球の蓄熱量からチャンネル対
応のノンリニアリティ補正値を選択し、この選択したノ
ンリニアリティ補正値でその時のX線検出器のX線検出
データを補正した。
The present invention provides a non-linearity correction value using the heat storage amount of the X-ray tube and the channel number of the X-ray detector as parameters, and calculates the non-linearity correction value corresponding to the channel from the actual heat storage amount of the X41 tube. The X-ray detection data of the X-ray detector at that time was corrected using the selected nonlinearity correction value.

C作用〕 本発明によれば、蓄熱量とチャンネル番号とをパラメー
タとするノンリニアリティ補正値によって、X線検出器
のX線検出データを補正する。この補正により、X線検
出データは、蓄熱量の大小に影響されない値となる。
C Effect] According to the present invention, the X-ray detection data of the X-ray detector is corrected using the nonlinearity correction value using the heat storage amount and the channel number as parameters. With this correction, the X-ray detection data becomes a value that is not affected by the amount of heat storage.

〔実施例〕〔Example〕

第1図は、本発明のメモリ1の構造側図を示す。 FIG. 1 shows a structural side view of a memory 1 of the invention.

メモリlは、蓄熱量jで区分されており、1つの蓄熱量
jに対応してX線検出器番号1〜nが割当てられ、チャ
ンネル対応のノンリニアリティ補正値Eが次のように格
納されている。
Memory l is divided by heat storage amount j, X-ray detector numbers 1 to n are assigned corresponding to one heat storage amount j, and nonlinearity correction values E corresponding to channels are stored as follows. There is.

蓄熱量j→E 141 E za g ”・t E n
a蓄熱量(j+1)→E 1(a+41 + E z+
J+i+ t ”°+ E n+J+1)JtJ+1以
外も同じである。以下、iをチャンネル番号として、ノ
ンリニアリティ補正値Eは。
Heat storage amount j → E 141 E za g ”・t E n
a Heat storage amount (j+1) → E 1 (a+41 + E z+
J+i+ t ”°+ E n+J+1) The same applies except for JtJ+1. Hereinafter, the nonlinearity correction value E is given by i as the channel number.

EIJと一般化する。jの区分は、数10℃単位とすれ
ばよい。
Generalize with EIJ. The division of j may be in units of several tens of degrees Celsius.

ノンリニアリティ補正値Eraは、従来例で示した(1
)式と同じく iJ で設定できる。ILJは理論値、R1□は実測値である
The nonlinearity correction value Era is as shown in the conventional example (1
) can be set using iJ as well as the formula. ILJ is a theoretical value, and R1□ is an actual value.

第2図には、メモリ1を使用した実際のX線検出器の検
出データの補正処理系統図を示す。この実施例は、メモ
リ1の他にX線検出器2.補正手段3を備える。メモリ
1は第1図に示た通りである。X線検出器2はnチャン
ネルの検出器であり、実際には、本来のX線検出器の他
に対数変換器やAD変換器を含んだものでもよい、補正
手段3は。
FIG. 2 shows a correction processing system diagram for actual detection data of an X-ray detector using the memory 1. In this embodiment, in addition to the memory 1, an X-ray detector 2. A correction means 3 is provided. The memory 1 is as shown in FIG. The X-ray detector 2 is an n-channel detector, and in reality, the correction means 3 may include a logarithmic converter or an AD converter in addition to the original X-ray detector.

ノンリニアリティ補正処理を行う。Perform nonlinearity correction processing.

さて、第2図で、メモリ1は、チャンネル番号iと蓄熱
量jとをパラメータとして対応するノンリニアリティ補
正値E、aを読出す。一方、xg検呂器2からはイチャ
ンネル番号i対応の検出データDi−を得る。
Now, in FIG. 2, the memory 1 reads out the corresponding nonlinearity correction values E and a using the channel number i and the amount of heat storage j as parameters. On the other hand, the xg tester 2 obtains detection data Di- corresponding to the channel number i.

補正手段3は、従来例の(2)式と同じくD r g 
I J = D五JX(1+EIJ)       ・
・・(4)の式に従って、補正した実測値Dr、t□を
求める。
The correction means 3 is similar to the formula (2) of the conventional example, D r g
I J = D5 JX (1 + EIJ) ・
...According to the formula (4), the corrected actual measurement values Dr, t□ are determined.

このデータDr、iJは、再構成データとして利用する
This data Dr and iJ are used as reconstruction data.

本実施例によれば、蓄熱量jに対応した補正値EIJを
事前に用意しておき、実際の計測時に、検出データDi
、をEIJで補正することにより、蓄熱量に影響されな
い検出データを得ることができる。
According to this embodiment, the correction value EIJ corresponding to the heat storage amount j is prepared in advance, and the detected data Di is used during actual measurement.
By correcting , using EIJ, it is possible to obtain detection data that is not affected by the amount of heat storage.

第1図は、II jによって定まるすべての補正値EI
Jを格納した例であったが、メモリ容量を少なくするた
めの例を第3図に示す。この実施例は、最小蓄熱量Hw
inと最大蓄熱量Hmaχとの2点でのEtJ(win
)、 Eia(w+ax)を求めておき、その中間値は
直線補間で求めようとする例である。例えば、Hlに対
してEtaO)が得られる。
FIG. 1 shows all correction values EI determined by II j
In this example, J is stored, but an example for reducing the memory capacity is shown in FIG. In this embodiment, the minimum heat storage amount Hw
EtJ (win
), Eia(w+ax) are determined in advance, and the intermediate value thereof is determined by linear interpolation. For example, EtaO) is obtained for Hl.

以上の実施例で、蓄熱量jは、温度検出器をX線管球の
近傍に設置しておけば、その都度水めることができる。
In the above embodiments, the amount of stored heat j can be adjusted each time the temperature detector is installed near the X-ray tube.

第4図は、X線管のOFF継続時間における蓄熱量の減
少特性を示す図である。この減少特性は、自然冷却によ
る場合もあれば強制冷却による場合もある。いずれにし
ろ、各X線管によって第4図の如き特性は一義的に求め
ることができる。
FIG. 4 is a diagram showing the decreasing characteristic of the amount of heat storage during the OFF duration of the X-ray tube. This decreasing characteristic may be due to natural cooling or forced cooling. In any case, the characteristics shown in FIG. 4 can be uniquely determined for each X-ray tube.

かかる第4図と、ON継続時間での蓄熱量の増加分とを
併せて考えれば、X線管を立上げて繰返し使用(スキャ
ン)中での、ON開始時の蓄熱量を自動的に算出するこ
とができる。以下、かかる実施例を説明する。
If we consider this figure 4 together with the increase in heat storage amount during ON duration time, we can automatically calculate the heat storage amount at the time of ON start when the X-ray tube is started up and is being used repeatedly (scanning). can do. Such an example will be described below.

X線管は、−度立上げると、任意の時間間隔のもとに次
々にONにしてX線を曝射する使い方をする例が多い。
In many cases, an X-ray tube is turned on one after another at arbitrary time intervals to emit X-rays after being turned on.

これを時系列で示すと下記の如くなる。This is shown in chronological order as follows.

0FF(0)→0N(1)→○FF(1)→0N(2)
→0FF(2)→0N(3)→○FF(3)→ON (
4)→・・・・・・ここで、0FF(0)が、未だ立上
げていないX線管OFF状態を示す。このOFF時点の
X線管の蓄熱量Haは環境温度における蓄熱量とみてよ
い。これが初期値である。
0FF (0) → 0N (1) → ○FF (1) → 0N (2)
→0FF(2)→0N(3)→○FF(3)→ON (
4)→...Here, 0FF (0) indicates the OFF state of the X-ray tube which has not yet been started up. The heat storage amount Ha of the X-ray tube at this OFF point can be regarded as the heat storage amount at the environmental temperature. This is the initial value.

次に0N(1)に入る。このONの継続時間は定まって
おり、且つX線管の使い方も定まっている。
Next, enter 0N(1). The duration of this ON period is fixed, and the usage of the X-ray tube is also fixed.

そこで、このON期間中での蓄熱量Huを次式で求める
Therefore, the amount of heat storage Hu during this ON period is calculated using the following equation.

Hu = c X t X M A X K V   
    ・・・(5)Cは、定数、tはON期間、MA
はX線管電流、KVはX線管電圧である。
Hu = c X t X M A X K V
...(5) C is a constant, t is ON period, MA
is the X-ray tube current and KV is the X-ray tube voltage.

従って、○N期間終了時点の蓄熱量をHalとすると、 Hat=Ha+Hu            ・−(6
)次に、0FF(1)では、Ha 1を開始点として、
to待時間間+ OFFを継続したものとすると、その
to時間後の蓄熱量は、第4図を利用して求めると、H
a2となる。
Therefore, if the amount of heat storage at the end of the ○N period is Hal, then Hat=Ha+Hu ・-(6
) Next, in 0FF(1), with Ha 1 as the starting point,
Assuming that the to waiting time + OFF is continued, the amount of heat storage after that to time is calculated using Fig. 4, H
It becomes a2.

次に、0N(2)の期間での蓄熱量も(5)式から求ま
る故に、0N(2)の終了時点の蓄熱量も(6)式と同
様の考え方で求めることができる。
Next, since the amount of heat storage during the period of 0N(2) can also be found from equation (5), the amount of heat storage at the end of 0N(2) can also be found using the same concept as equation (6).

カくシテ、0N(1)、0N(2)、0N(3)、−・
・の各開始時点での蓄熱量が求まることになり、その蓄
熱量jによってメモリ1をアクセスし、 EIJを読出
すことができる。
Power, 0N (1), 0N (2), 0N (3), -・
The amount of heat storage at each start time point of .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、X線管球の熱量変化による画質劣化を
防ぐことができる。従って、X線管球が冷えた状態にお
いても、使用後(何スキャン後、0N(2)、0N(3
)、・・・のこと)の温まった状態においても、同等の
良好な断層像を得る。
According to the present invention, image quality deterioration due to changes in the amount of heat of the X-ray tube can be prevented. Therefore, even when the X-ray tube is cold, after use (after several scans), 0N (2), 0N (3
), ...) can obtain equally good tomographic images even in a warm state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のノンリニアリティ補正値を格納したメ
モリのデータ構造側図、第2図は本発明のノンリニアリ
ティ補正処理の系統図、第3図は本発明のノンリニアリ
ティ補正値の補間側図、第4図はOFF継続期間でのそ
の時間と蓄熱量との関係を示す図である。 1・・・メモリ、2・・・X線検出器、3・・・補正手
段。
Fig. 1 is a side view of the data structure of the memory storing the nonlinearity correction value of the present invention, Fig. 2 is a system diagram of the nonlinearity correction processing of the present invention, and Fig. 3 is the interpolation side of the nonlinearity correction value of the present invention. 4 are diagrams showing the relationship between the time and the amount of heat storage during the OFF duration period. 1... Memory, 2... X-ray detector, 3... Correction means.

Claims (1)

【特許請求の範囲】[Claims] 1、X線管球の蓄熱量とX線検出器のチャンネル番号と
をパラメータとするノンリニアリティ補正値を与えてお
き、実際のX線管球の蓄熱量からチャンネル対応のノン
リニアリティ補正値を選択し、この選択したノンリニア
リティ補正値でその時のX線検出器のX線検出データを
補正したX線CT装置。
1. Provide a nonlinearity correction value that uses the amount of heat storage in the X-ray tube and the channel number of the X-ray detector as parameters, and select the nonlinearity correction value corresponding to the channel from the amount of heat storage in the actual X-ray tube. Then, the X-ray CT apparatus corrected the X-ray detection data of the X-ray detector at that time using the selected nonlinearity correction value.
JP2199283A 1990-07-30 1990-07-30 X-ray ct device Pending JPH0484941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2199283A JPH0484941A (en) 1990-07-30 1990-07-30 X-ray ct device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2199283A JPH0484941A (en) 1990-07-30 1990-07-30 X-ray ct device

Publications (1)

Publication Number Publication Date
JPH0484941A true JPH0484941A (en) 1992-03-18

Family

ID=16405221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2199283A Pending JPH0484941A (en) 1990-07-30 1990-07-30 X-ray ct device

Country Status (1)

Country Link
JP (1) JPH0484941A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146951A (en) * 2005-11-25 2007-06-14 Showa Corp Front fork

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146951A (en) * 2005-11-25 2007-06-14 Showa Corp Front fork

Similar Documents

Publication Publication Date Title
EP1349378A1 (en) Gain correction of image signal and calibration for gain correction
JP6579954B2 (en) Information processing apparatus, X-ray imaging apparatus, X-ray imaging system, control method, and program for causing computer to execute control method
JP4995193B2 (en) X-ray diagnostic imaging equipment
US8948342B2 (en) X-ray imaging apparatus and measurement method
US20120230469A1 (en) Radiation imaging apparatus and method for controlling the same
CN102413766A (en) Imaging apparatus and imaging system, and control method and program for the same
JP2010131223A (en) Image processor and image processing method
JP2002369084A (en) Imaging device and method, radiographic device and method, storage medium, and program
JP7152209B2 (en) X-ray CT device
JPH07204196A (en) X-ray ct system
JP5641892B2 (en) X-ray CT apparatus and control method of X-ray CT apparatus
CN108013887B (en) Automatic exposure control method and device and automatic exposure system
CN110664420A (en) Focus correction method, apparatus, computer device, and computer-readable storage medium
US11160527B2 (en) Radiation imaging system
JP4346687B2 (en) X-ray inspection apparatus having an X-ray image sensor matrix and a correction unit
JP2004053584A (en) Image correction apparatus and method
JPH0484941A (en) X-ray ct device
JP2012024344A (en) X-ray imaging apparatus, x-ray imaging method, program, and computer storage medium
JPH0663034A (en) X-ray tomography device
JP2004221082A (en) Method of controlling emissivity of radiation from radiation source
US20130322596A1 (en) Image capturing apparatus, image capturing system, method of controlling image capturing apparatus, and storage medium
JP6305080B2 (en) Information processing apparatus, radiation imaging system, information processing method, and program
CN110840469B (en) Mammary X-ray machine exposure control method and device and mammary X-ray machine
JP2003000576A (en) Device and method for processing image
JP7000582B2 (en) Charge sharing calibration method and system