JPH0484744A - Apparatus for high-speed, highly accurate quantitative analysis - Google Patents

Apparatus for high-speed, highly accurate quantitative analysis

Info

Publication number
JPH0484744A
JPH0484744A JP2200277A JP20027790A JPH0484744A JP H0484744 A JPH0484744 A JP H0484744A JP 2200277 A JP2200277 A JP 2200277A JP 20027790 A JP20027790 A JP 20027790A JP H0484744 A JPH0484744 A JP H0484744A
Authority
JP
Japan
Prior art keywords
quantitative
value
channel
values
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2200277A
Other languages
Japanese (ja)
Other versions
JPH07117505B2 (en
Inventor
Naomasa Niwa
丹羽 直昌
Hideto Komi
秀人 古味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2200277A priority Critical patent/JPH07117505B2/en
Publication of JPH0484744A publication Critical patent/JPH0484744A/en
Publication of JPH07117505B2 publication Critical patent/JPH07117505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to perform analysis at a high speed with high accuracy by detecting the characteristic X rays of one element through a plurality of channels, and converting the detected signals obtained in the respective channels into the determined quantity values with the respective calibration curves. CONSTITUTION:The X rays which are excited with an electron beam D and emitted from a sample S are detected with a plurality of channels which are arranged around the sample S. The respective detected signals are processed in an operating device E. In the device E, the signals are converted into the determined quantity values through the respective channels with the calibration curve. The determined quantity values in the respective channels are averaged. The determined quantity value of the measured element is displayed on a display device C. Thus, the analysis is performed at a high speed in high accuracy.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、EPMA等を用いて、高精度で定量分析を高
速で行う装置に関する。
The present invention relates to an apparatus that performs quantitative analysis with high precision and at high speed using EPMA or the like.

【従来の技術】[Conventional technology]

EPMA等を用いて、X線分光法による定量分析を高精
度で行いたい場合には、積分時間即ち測定時間を長く取
らなければならないために、分析に時間がかかる。逆に
、材料の生産ラインでの品質管理等で多数の試料の分析
を高速で行いたい場合には、積分時間が短くなるために
、測定精度が低くなると云う問題があり、従来において
、高速でしかも高精度で定量分析を行う装置は、存在し
なかった。
If it is desired to perform quantitative analysis by X-ray spectroscopy with high precision using EPMA or the like, the analysis takes time because the integration time, that is, the measurement time must be long. On the other hand, when you want to analyze a large number of samples at high speed for quality control on a material production line, etc., there is a problem that measurement accuracy decreases because the integration time becomes shorter. Moreover, there was no equipment that could perform quantitative analysis with high precision.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明は、高速でしかも高精度で定量分析ができるよう
にすることを目的とする。
An object of the present invention is to enable quantitative analysis to be performed at high speed and with high accuracy.

【課題を解決するための手段】[Means to solve the problem]

分光器と検出器を1チャンネルとし、複数のチャンネル
を設置したX線分析装置において、複数のチャンネルが
一つの元素の特性X線を検出するようにし、夫々のチャ
ンネルで得られた検出信号を夫々のチャンネルにおける
検量線で定量値に変換し、変換した定量値から高精度の
定量値を演算する演算装置を設けるようにしな。
In an X-ray analyzer in which the spectrometer and detector are one channel and multiple channels are installed, the multiple channels detect the characteristic X-rays of one element, and the detection signals obtained from each channel are Convert the calibration curve in the channel into a quantitative value, and install a calculation device that calculates a highly accurate quantitative value from the converted quantitative value.

【作 用】[For use]

電子で励起した試料から放出される特性X線は、あらゆ
る方向に放出されており、特定の方向に放出されるX線
だけを分光しなければならないと云う必要性はないから
、試料から放出されるX線を、色々な方向から多くの分
光器を使って同一波長の特性X線を検出しても、なんら
問題はない。 そこで、分光器を多数設置した多チャンネルの分光装置
が提案されているが、従来の多チャンネル分光装置では
、各分光器が夫々異なる元素に対応する波長に設定され
ていて、同一元素を多数の分光器を用いて測定すること
はなかった。本発明は、同一元素に対応する波長の特性
X線を多数の分光器を用いて検出し、夫々の検出器から
得られる検出信号から定量値を求め、夫々の定量値から
最も確からしい定量値を算出することで、短時間で所要
の積算時間に匹敵する高精度の定量値が得られると云う
ものである。
Characteristic X-rays emitted from a sample excited by electrons are emitted in all directions, and there is no need to spectrally analyze only the X-rays emitted in a specific direction. There is no problem in detecting characteristic X-rays of the same wavelength using many spectrometers from various directions. Therefore, a multi-channel spectrometer equipped with a large number of spectrometers has been proposed, but in conventional multi-channel spectrometers, each spectrometer is set to a wavelength corresponding to a different element, and the same element can be detected in many ways. It was not measured using a spectrometer. The present invention detects characteristic X-rays with wavelengths corresponding to the same element using multiple spectrometers, obtains quantitative values from the detection signals obtained from each detector, and selects the most probable quantitative value from each quantitative value. By calculating this, it is possible to obtain highly accurate quantitative values comparable to the required integration time in a short time.

【実施例】【Example】

図に本発明の一実施例を示す0図において、Sは試料で
、電子線りで励起されてX線を放出する、試料Sから放
出されたX線を、試料の周囲に配置された複数のチャン
ネル(1台の分光器と1台の検出器とで構成された組)
で検出し、夫々の検出信号を演算装置Eで演算処理する
のであるが、本実施例は、同一元素に対応するX線を、
全チャンネルで検出し、得られた検出信号を、演算装置
Eにおいて、夫々のチャンネルでの検量線で定量値(濃
度)に変換し、夫々のチャンネルの定量値を平゛均して
、測定元素の定量値を求め、求めた定量値を表示装置C
で表示する。 夫々のチャンネルに設置される分光器及び検出器は、分
光結晶と検出素子の組合わせが同じではなく、分光結晶
と検出素子の組合わせは異なる方が良い0例えば、第1
チャンネルの分光結晶をLiF、検出素子をADP、第
2チャンネルの分光結晶をLiF、検出素子をPET、
第3チャンネルの分光結晶をRAP、検出素子をPb5
Tと云うようにチャンネル毎に組合わせ、同一元素につ
いても同じ特性X線だけでなく、Kα線、Lα線等異な
る波長の特性X線を用いるようにする。1組の分光結晶
、X線検出素子、検出X線波長では、標準試料から作っ
た検量線に対し、それとは共存元素の組成が異なる実試
料の定量値は若干の偏りを示し、また、バックグランド
とかノイズの影響も、分光結晶、検出器、検出波長が異
なれば異なるので、分光結晶、検出器、検出波長の組合
わせを色々にすると、それらの影響が平均化され、単一
の組合わせの場合より精度が向上する。 上記実施例では、夫々のチャンネルの定量値を単に平均
して測定元素の濃度値を求めたが、チャンネルによって
は、設定ミスやトラブルにより他の定量値とは離れた値
(異常値)を示す場合がある。このような場合には、異
常値を除外し、残りの正常値を平均して求める方が良い
。 定量値から精度の高い定量値を求める方法の一例を示す
、この方法は、測定値の出現頻度は眞の測定値に近い程
密集する度合いが強いと云う発想に基づくものであり、
即ち、他の測定値が指定誤差範囲内に一番多く存在する
測定値が一番眞の測定値に近いと云うことであり、その
ような測定値を検索しようとするのが本実施例である。 具体的には、所望の精度に対応する許容誤差値±εを設
定し、各チャンネルの定量値をWi(i=1〜n)とし
た時、各チャンネル毎に、夫々の定量値を基準値として
、他チャンネルの定量値と基準値との差を、上記許容誤
差値εと比較し、差が許容誤差値εより小さい定量値を
示すチャンネルを計数し、その計数値が最大となるチャ
ンネルの基準値(定、量値)を、求める試料の元素濃度
として決定する。計数値が最大となるチャンネルが複数
の場合には、それらのチャンネルの定量値の平均値をも
って、求める試料の元素濃度として法定する。 直値より大きく外れた測定値は、出現頻度が低いので、
小数の測定値の場合、そのような測定値は、+側か一側
かに1度程度しか現れない。単純平均では、そのような
測定値も平均演算に入るので、平均値が直値から大きく
外れた測定値の側に片寄ることになる。この実施例では
、このようなことが避けられ、単純平均よりも直値に近
い測定値が得られることになる。
In Figure 0, which shows an embodiment of the present invention, S is a sample, which is excited by an electron beam and emits X-rays. channels (a set consisting of one spectrometer and one detector)
The X-rays corresponding to the same element are
Detection is performed on all channels, and the obtained detection signal is converted into a quantitative value (concentration) using a calibration curve for each channel in the calculation device E, and the quantitative values of each channel are averaged to determine the measured element. The quantitative value is determined, and the determined quantitative value is displayed on the display device C.
Display in . The spectrometers and detectors installed in each channel do not have the same combinations of spectroscopic crystals and detection elements, and it is better to have different combinations of spectroscopic crystals and detection elements.
The channel spectroscopic crystal is LiF, the detection element is ADP, the second channel spectroscopic crystal is LiF, the detection element is PET,
The third channel spectroscopic crystal is RAP, and the detection element is Pb5.
T, the X-rays are combined for each channel, and for the same element, not only the same characteristic X-rays but also characteristic X-rays of different wavelengths such as Kα rays and Lα rays are used. With a set of spectroscopic crystals, X-ray detection elements, and detected X-ray wavelengths, the quantitative values of actual samples with different compositions of coexisting elements show slight deviations from the calibration curves made from standard samples, and there is also a backlash. The influence of ground and noise differs depending on the spectroscopic crystal, detector, and detection wavelength, so if you use various combinations of spectroscopic crystals, detectors, and detection wavelengths, these effects will be averaged, and a single combination The accuracy is better than in the case of . In the above example, the concentration value of the measured element was obtained by simply averaging the quantitative values of each channel. However, depending on the channel, due to a setting error or trouble, the quantitative value may show a value that is different from other quantitative values (abnormal value). There are cases. In such a case, it is better to exclude the abnormal values and average the remaining normal values. This method, which is an example of a method for obtaining highly accurate quantitative values from quantitative values, is based on the idea that the frequency of appearance of measured values is closer to the true measured value, the higher the density is.
In other words, the measured value for which the largest number of other measured values are within the specified error range is the closest to the true measured value, and this embodiment attempts to search for such a measured value. be. Specifically, when the tolerance value ±ε corresponding to the desired accuracy is set and the quantitative value of each channel is set as Wi (i = 1 to n), each quantitative value is set as the reference value for each channel. , compare the difference between the quantitative value of other channels and the reference value with the above tolerance value ε, count the channels whose quantitative value is smaller than the tolerance value ε, and calculate the channel whose counted value is the maximum. A reference value (constant, quantitative value) is determined as the element concentration of the sample to be sought. If there are multiple channels with the maximum count value, the average value of the quantitative values of those channels is determined as the element concentration of the sample to be determined. Measured values that deviate greatly from the direct value appear less frequently, so
In the case of decimal measurements, such measurements occur only about once on either side. In simple averaging, such measured values are also included in the average calculation, so the average value will be biased towards measured values that deviate significantly from the direct value. In this embodiment, such a problem is avoided, and a measured value closer to a direct value than a simple average is obtained.

【効 果】【effect】

本発明によれば、多数の分光器で、一つの元素の特性X
線を分光するようにしたことで、所望の精度を得るため
の積分時間の定量値を、多チャンネルに分割して測定す
ることによって得ることが可能になり、高速でしかも高
精度で定量分析することが可能になった。
According to the present invention, a characteristic X of one element can be obtained using multiple spectrometers.
By spectroscopy of the lines, it is now possible to obtain the quantitative value of the integration time to obtain the desired accuracy by dividing the measurement into multiple channels, allowing for fast and highly accurate quantitative analysis. It became possible.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例の構成図である。 The figure is a configuration diagram of an embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)分光器と検出器を1チャンネルとし、複数のチャ
ンネルを設置したX線分析装置において、複数のチャン
ネルが一つの元素の特性X線を検出するようにし、夫々
のチャンネルで得られた検出信号を夫々のチャンネルに
おける検量線で定量値に変換し、変換した定量値を平均
する演算装置を設けたことを特徴とする高速高精度定量
分析装置。
(1) In an X-ray analyzer with a single channel spectrometer and a detector, and multiple channels installed, multiple channels detect characteristic X-rays of one element, and the detection obtained with each channel A high-speed, high-precision quantitative analyzer characterized by being equipped with an arithmetic device that converts signals into quantitative values using a calibration curve in each channel and averages the converted quantitative values.
(2)分光器と検出器を1チャンネルとし、複数のチャ
ンネルを設置したX線分析装置において、複数のチャン
ネルが一つの元素の特性X線を検出するようにし、夫々
のチャンネルで得られた検出信号を夫々のチャンネルに
おける検量線で定量値に変換し、変換した全定量値にお
いて、順次その一つを基準定量値に指定し、指定した定
量値の差が許容誤差値内に存在する他の定量値のチャン
ネル数を計数し、その計数値が一番大きいチャンネルの
定量値を測定値とするようにした演算装置を設けたこと
を特徴とする高速高精度定量分析装置。
(2) In an X-ray analyzer with a single channel spectrometer and a detector, and multiple channels installed, multiple channels detect characteristic X-rays of one element, and the detection obtained with each channel Convert the signal into a quantitative value using the calibration curve in each channel, and sequentially designate one of all the converted quantitative values as the reference quantitative value, and select the other values for which the difference between the specified quantitative values is within the tolerance value. A high-speed, high-precision quantitative analyzer, characterized in that it is equipped with a calculation device that counts the number of quantitative value channels and sets the quantitative value of the channel with the largest counted value as the measured value.
JP2200277A 1990-07-26 1990-07-26 High-speed and high-precision quantitative analyzer Expired - Lifetime JPH07117505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2200277A JPH07117505B2 (en) 1990-07-26 1990-07-26 High-speed and high-precision quantitative analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2200277A JPH07117505B2 (en) 1990-07-26 1990-07-26 High-speed and high-precision quantitative analyzer

Publications (2)

Publication Number Publication Date
JPH0484744A true JPH0484744A (en) 1992-03-18
JPH07117505B2 JPH07117505B2 (en) 1995-12-18

Family

ID=16421646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2200277A Expired - Lifetime JPH07117505B2 (en) 1990-07-26 1990-07-26 High-speed and high-precision quantitative analyzer

Country Status (1)

Country Link
JP (1) JPH07117505B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165742A (en) * 1986-12-26 1988-07-09 Shimadzu Corp Formation of calibration curve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165742A (en) * 1986-12-26 1988-07-09 Shimadzu Corp Formation of calibration curve

Also Published As

Publication number Publication date
JPH07117505B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
CA1111150A (en) X-ray analytical system
Rousseau Raman difference spectroscopy as a probe of biological molecules
US6426993B1 (en) Energy dispersion-type X-ray detection system
Dolby Some methods for analysing unresolved proportional counter curves of X-ray line spectra
US10082475B2 (en) X-ray fluorescence spectrometer
Gilles et al. Silver behenate powder as a possible low-angle calibration standard for small-angle neutron scattering
GB1460859A (en) Apparatus for measuring surface stress by x-ray diffraction
JPS5949524B2 (en) measurement system
US6064068A (en) System and method for monitoring the stability of a scintillation detector
EP0088092B1 (en) Methods and apparatus for x-ray analysis of rapidly moving multicomponent materials
US4510394A (en) Material for scintillators
US4796284A (en) Polycrystalline X-ray spectrometer
US2999937A (en) X-ray apparatus
US3452192A (en) Multiple energy detection for mixture analysis
US4037099A (en) Fluorescent X-ray sulfur analyzer
JPH0484744A (en) Apparatus for high-speed, highly accurate quantitative analysis
EP0204855B1 (en) Method and apparatus for state analysis
US4292520A (en) Liquid scintillation spectrometry process and apparatus
WO2018100873A1 (en) X-ray fluorescence analyzer
SU1589228A1 (en) Method of stabilizing energy scale of multiple-detector spectrometric system
JPH04284344A (en) Multiple detection method by electron energy spectroscope of concentric hemisphere type
Redus et al. Spectrometer configuration and measurement uncertainty in X‐ray spectroscopy
JPH06308058A (en) Rutherford backscattering spectroscopic analyzer
Newbury et al. Comprehensive Quantitative Elemental Microanalysis with Electron-Excited Energy Dispersive X-ray Spectrometry (EDS): 50 Years Young and Getting Better Every Day!
JPH075128A (en) X-ray fluorescence analytic equipment