JPH048419B2 - - Google Patents

Info

Publication number
JPH048419B2
JPH048419B2 JP948784A JP948784A JPH048419B2 JP H048419 B2 JPH048419 B2 JP H048419B2 JP 948784 A JP948784 A JP 948784A JP 948784 A JP948784 A JP 948784A JP H048419 B2 JPH048419 B2 JP H048419B2
Authority
JP
Japan
Prior art keywords
substituted
reaction
group
general formula
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP948784A
Other languages
Japanese (ja)
Other versions
JPS60155150A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP948784A priority Critical patent/JPS60155150A/en
Publication of JPS60155150A publication Critical patent/JPS60155150A/en
Publication of JPH048419B2 publication Critical patent/JPH048419B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はN−置換アルコキシカルボン酸アミド
化合物及びその製造方法に関する。更に詳しく
は、アリル基またはβ−メタリル基の置換したN
−置換アルコキシカルボン酸アミド化合物及びそ
の製造方法に関する。 本発明の化合物は一般式 (R1は水素またはメチル基であり、R2はフエ
ニレン基またはエチレン基である。) で表わされるN−置換アルコキシカルボン酸アミ
ド化合物であり、文献未記載の新規化合物であ
る。 上記一般式で表わされるN−置換アルコキシカ
ルボン酸アミド化合物には、ベンゼン環を骨格に
するものと、エチレン基を骨格にするものとの2
種があり、各々アルコキシ基とアミド基の置換部
位の異なる異性体が存在する。 上記したN−置換アルコキシカルボン酸アミド
化合物の製造方法は、下記一般式で表わされる水
酸基置換アミド化合物と HO−R2−CONH2 (R2は上記と同じ) 下記一般式で表わされるハロゲン置換化合物と
(R1は上記と同じであり、Xはハロゲン基で
ある。) 非プロトン性極性溶媒中で強塩基性物質の存在
下に反応させて製造する方法であり、より具体的
には上記した水酸基置換アミド化合物と過剰量の
ハロゲン置換化合物とを強塩基性物質の存在下に
非プロトン性極性溶媒中で反応させることよりな
る。 以下に本発明を更に詳細に説明する。 本発明の化合物は下記一般式(1)で表わされ、 一般式(1) (R1及びR2は上記と同じ。) ベンゼン環を骨格にするものと、エチレン基を
骨格にするものの2種があり、それらを一般式で
表わすと、ベンゼン環を骨格にするものでは 一般式 (R1は上記と同じ。) で表わされ、オルソ、メタ、パラの3種の置換体
が存在する。 またエチレン基を骨格にするものでは、 一般式 (R1は上記と同じ。) 及び一般式 (R1は上記と同じ。) で示される化合物が存在する。 以下に本発明の化合物の代表例につき例示す
る。ベンゼン環を骨格にするものでは、例えばo
−アリロキシ−N,N−ジアリルベンズアミド、
m−アリロキシ−N,N−ジアリルベンズアミ
ド、p−アリロキシ−N,N−ジアリルベンズア
ミド、o−メタリロキシ−N,N−ジメタリルベ
ンズアミド、m−メタリロキシ−N,N−ジメタ
リルベンズアミド、p−メタリロキシ−N,N−
ジメタリルベンズアミド等が挙げられ、エチレン
基を骨格にするものでは、α−アリロキシ−N,
N−ジアリルプロピオアミド、β−アリロキシ−
N,N−ジアリルプロピオアミド、α−メタリロ
キシ−N,N−ジメタリルプロピオアミド、β−
メタリロキシ−N,N−ジメタリルプロピオアミ
ド等が挙げられる。 上記したN−置換アルコキシカルボン酸アミド
化合物の製造方法は、下記一般式で表わされる水
酸基置換アミド化合物と HO−R2−CONH2 (R2は上記と同じ。) 下記一般式で表わされるハロゲン置換化合物と
(R1は上記と同じであり、Xはハロゲン基で
ある。) 非プロトン性極性溶媒中で強塩基性物質の存在
下に反応させて製造する方法である。 本発明に適用できる水酸基置換アミド化合物と
しては、水酸基置換芳香族カルボン酸アミドと水
酸基置換飽和脂肪酸アミドに大別され、具体的に
それらの化合物を例示すると、例えばサリチルア
ミド、m−ヒドキシベンズアミド、p−ヒドロキ
シベンズアミド、乳酸アミド、β−ヒドロキシプ
ロピオナミドが挙げられる。一方、ハロゲン置換
化合物としてはアリルハライドとメタリルハライ
ドに大別され、具体的には例えば、アリルクロラ
イド、アリルブロマイド、アリルアイオダイド、
メタリルクロライド、メタリルブロマイド、メタ
リルアイオダイドが挙げられる。 本発明で使用される反応溶媒としては、非プロ
トン性極性溶媒であればよく、特に制限はない
が、反応を行う上で好適なものとして、例えばア
セトニトリル、ジオキサン、ピリジン、ジメトキ
シエタン、テトラハイドロフラン、テトラハイド
ロピラン、ベンゾニトリル、N,N−ジメチルホ
ルムアミド、N,N−ジメチルアセトアミド、ジ
メチルスルホキシド、N−メチルピロリドン、ヘ
キサメチルホスホルアミド、スルホラン、オキセ
パン、トリグライム、テトラグライムの如きグラ
イム類、テトラメチル尿素、テトラエチル尿素、
1,3−ジメチル−2−イミダゾリジノン、1,
3−ジメチル−3,4,5,6−テトラヒドロ−
2(IH)−ピリミジノンの如きアルキル尿素類な
ども挙げられる。上記のうちで更に好適に用いら
れる溶媒としては、アセトニトリル、N,N−ジ
メチルホルムアミド、N,N−ジメチルアセトア
ミド、ジメチルスルホキシド、N−メチルピロリ
ドン、スルホラン、テトラグライム、1,3−ジ
メチル−2−イミダゾリジノンなどをあげること
ができる。 溶媒の使用量は特に制限はないが、溶媒を含め
た反応物総量中5〜95重量%、好ましくは10〜90
重量%の範囲である。一方、本発明で使用される
強塩基性物質は、固体状物質でもまたそれを水の
如き極性溶剤に溶解した溶液状のものでも、更に
は液体状のものも使用できるが、反応が好適に行
わせるには、強塩基性物質の1部が少くともけん
だくしている状態で反応を開始せしめることが好
ましいので、固体状の強塩基性物質を使用するこ
とが好ましい。塩基性の強さは水に溶解あるいは
けんだくした時、水溶液のPHが10以上好ましくは
11以上のものであれば使用できる。ただし、イオ
ン交換樹脂及びその他のイオン交換体は、この条
件の適用外であり、後で例示する。そのような条
件に合致する強塩基性物質は多種にわたり、それ
らはいづれも適用可能であるが、それらのうちで
本発明の方法の実施により好適なものは、例え
ば、アルカリ金属水酸化物、アルカリ金属酸化
物、アルカリ土類金属水酸化物、及びイオン交換
樹脂である。上記物質を例示すると、例えば、水
酸化ナトリウム、水酸化カリウム、水酸化リチウ
ム、水酸化ルビジウム、水酸化セシウム、酸化リ
チウム、酸化ナトリウム、酸化カリウム、水酸化
ベリリウム、水酸化マグネシウム、水酸化カルシ
ウム、水酸化ストロンチウム、水酸化バリウム、
OH型の強塩基性イオン交換樹脂及び遊離型の弱
塩基性イオン交換樹脂などである。 また、原料である水酸基置換アミド化合物、ハ
ロゲン置換化合物及び強塩基性物質の相対的使用
量は、ハロゲン置換化合物と水酸基置換アミド化
合物との反応性等により変化するので一様には規
定できないが概ねハロゲン置換化合物の使用量は
アミド化合物に対して1.0〜30倍モル好ましくは
2.0〜20倍モルの範囲であり、強塩基性物質の使
用量はアミド化合物に対して1.5〜20倍モル好ま
しくは2.0〜15倍モルの範囲である。 反応温度は、使用する水酸基置換アミド化合物
およびハロゲン置換化合物の反応性に依存する
が、通常−20〜100℃、好ましくは−10〜90℃の
範囲である。この範囲内であれば、必ずしも反応
中温度を一定に保つ必要はなく、反応の進行を把
握し、反応温度を適宜設定して効率よく反応を行
わせればよい。 また、反応時間も反応温度と同様に使用するア
ミド化合物及びハロゲン置換化合物により変動す
るが、長くとも30時間、通常20時間以内である。
反応の推移は反応系の性状の変化及びガスクロマ
トグラフイーあるいは高速液体クロマトグラフイ
ーなどにより反応液中の原料及び目的生成物の濃
度を知ることにより把握できる。 次に本発明の方法の実施の態様について述べ
る。まず、水酸基置換アミド化合物、ハロゲン置
換化合物及び強塩基性物質の三者を添加する順序
及びその方法はどのように行つてもよい。例え
ば、三者を同時に添加してもよいし、3番目の原
料を徐々に添加してもよい。通常は、水酸基置換
アミド化合物とハロゲン置換化合物とを先に添加
し、強塩基性物質を徐々に添加する方法が採用さ
れる。しかしながら、反応性の高いハロゲン置換
化合物を使用する場合には、ハロゲン置換化合物
を最後に添加した方が好ましい。また、反応温度
も反応中一定に保つ必要はなく、反応の進行に対
応して変えてもよい。通常は反応を比較的低温で
開始して、その後昇温してゆく方法が採られる。 次に目的生成物の分離であるが、所定時間反応
後副生する金属ハロゲン化物を別して、その
液より溶媒及び原料を留去すれば、その残分とし
て目的生成物を得ることができる。しかし、一般
にはその残分を減圧蒸留等の操作により精製して
目的生成物を分離する。また副生する金属ハロゲ
ン化物が反応液に溶解する場合、或は不揮発性の
アミド化合物の場合には、溶媒の留去後、ベンゼ
ン−水、クロロホルム−水の如き二層を形成する
溶媒の組合せで残分を洗滌し、金属ハロゲン化物
及び未反応アミド化合物を水溶液層に、目的生成
物を有機層に溶解させ分離すればよい。また、必
要があれば有機層より分離した目的物を蒸留等の
操作で精製を行う。更に、反応溶媒としてジメチ
ルスルホキシドの如き水との親和性の大きい溶媒
を使用した場合には、反応液に水を添加して目的
物を油層として分離する方法、あるいはベンゼ
ン、トルエン、クロロホルムの如き水と二層を形
成する溶剤で目的物を抽出分離する方法なども適
用できる。 本発明のN−置換アルコキシカルボン酸アミド
化合物は、芳香族または飽和脂肪族の骨格にアリ
ル基またはメタリル基がエーテル基及びアミド基
を介して結合しているものであり、従来のジアリ
ルフタレートに代表されるカルボン酸アリルエス
テル型のものとは構造を異にしており、その応用
製品は耐酸性、耐アルカリ性、耐薬品性、耐湿
性、耐熱性等の特性が向上する。具体的用途とし
ては分子内に3個のアリルまたはメタリル基を有
しているので吸水樹脂、ポリエステル樹脂等の各
種樹脂の架橋剤、エポキシ樹脂の変性剤、ビニル
系及び繊維系樹脂の可塑剤及びゴムへの添加剤、
各種成型品の原材料、化粧板の原材料、工業用積
層品の被覆用あるいは浸漬用樹脂原料、更にはそ
の高屈折率に着目したプラスチツクレンズ等の光
学材料原料等の用途がある。 次に本発明を実施例により更に説明する。 実施例 1 α−アリロキシ−N,N−ジアリルプロピオナ
ミドの製造; N,N−ジメチルホルムアミド50mlに乳酸アミ
ド7.13g及びアリルブロマイド43.55gを添加し、
氷浴中で撹拌しながら水酸化カリウム42.75gを
徐々に添加し、反応を開始した。その後2℃で6
時間反応を行つた。反応後不溶部を別し、その
液を蒸留して64−66℃/0.1mmHg留分を採取
し、α′−アリロキシ−N,N−ジアリルプロピオ
ナミド15.0g(収率89.6%)を得た。得られたα
−アリロキシ−N,N−ジアリルプロピオナミド
の元素分析を行つたところ、炭素68.23%、水素
9.21%、窒素6.65%であつた。なお、計算値は、
炭素68.87%、水素9.15%、窒素6.69%である。ま
た25℃での屈折率を測定したところn25 D1.47280の
測定結果を得た。 実施例 2〜7 表−1記載の原料、強塩基性物質、溶媒の組合
せで、表−1記載の条件で、実施例1と同様に反
応を行つた。反応後、実施例1と全く同様の方法
で処理を行い、表−2記載の結果を得た。
The present invention relates to N-substituted alkoxycarboxylic acid amide compounds and methods for producing the same. More specifically, N substituted with an allyl group or a β-methallyl group
- Substituted alkoxycarboxylic acid amide compound and method for producing the same. The compounds of the present invention have the general formula (R 1 is hydrogen or a methyl group, and R 2 is a phenylene group or an ethylene group.) This is an N-substituted alkoxycarboxylic acid amide compound represented by the following formula, and is a new compound that has not been described in any literature. There are two types of N-substituted alkoxycarboxylic acid amide compounds represented by the above general formula: those having a benzene ring skeleton and those having an ethylene group skeleton.
There are several species, each with isomers having different substitution sites for the alkoxy group and amide group. The method for producing the above-mentioned N-substituted alkoxycarboxylic acid amide compound includes a hydroxyl-substituted amide compound represented by the following general formula and a halogen-substituted compound represented by the following general formula: HO-R 2 -CONH 2 (R 2 is the same as above) and (R 1 is the same as above, and X is a halogen group.) This is a method of producing by reacting in an aprotic polar solvent in the presence of a strong basic substance, and more specifically, the above-mentioned hydroxyl group It consists of reacting a substituted amide compound and an excess amount of a halogen-substituted compound in an aprotic polar solvent in the presence of a strongly basic substance. The present invention will be explained in more detail below. The compound of the present invention is represented by the following general formula (1), (R 1 and R 2 are the same as above.) There are two types, one with a benzene ring as the skeleton and the other with an ethylene group as the skeleton.If they are expressed as a general formula, those with a benzene ring as the skeleton are general. formula (R 1 is the same as above.) There are three types of substituents: ortho, meta, and para. In addition, for those with an ethylene group as the skeleton, the general formula is (R 1 is the same as above.) and general formula (R 1 is the same as above.) There is a compound represented by the following. Representative examples of the compounds of the present invention are illustrated below. For those with a benzene ring as the skeleton, for example o
-allyloxy-N,N-diallylbenzamide,
m-allyloxy-N,N-diallylbenzamide, p-allyloxy-N,N-diallylbenzamide, o-methallyloxy-N,N-dimethallylbenzamide, m-methallyloxy-N,N-dimethallylbenzamide, p-methallyloxy- N, N-
Examples include dimethallylbenzamide, and those with an ethylene group as the skeleton include α-allyloxy-N,
N-diallylpropioamide, β-allyloxy-
N,N-diallylpropioamide, α-methallyloxy-N,N-dimethallylpropioamide, β-
Examples include methallyloxy-N,N-dimethallylpropioamide. The method for producing the above-mentioned N-substituted alkoxycarboxylic acid amide compound includes a hydroxyl-substituted amide compound represented by the following general formula and a halogen-substituted amide compound represented by the following general formula HO-R 2 -CONH 2 (R 2 is the same as above). compound and (R 1 is the same as above, and X is a halogen group.) This is a method for producing by reacting in an aprotic polar solvent in the presence of a strong basic substance. Hydroxyl group-substituted amide compounds that can be applied to the present invention are broadly classified into hydroxyl group-substituted aromatic carboxylic acid amides and hydroxyl group-substituted saturated fatty acid amides, and specific examples of these compounds include salicylamide, m-hydroxybenzamide, Examples include p-hydroxybenzamide, lactic acid amide, and β-hydroxypropionamide. On the other hand, halogen-substituted compounds are broadly classified into allyl halide and methallyl halide, and specifically include allyl chloride, allyl bromide, allyl iodide,
Examples include methallyl chloride, methallyl bromide, and methallyl iodide. The reaction solvent used in the present invention is not particularly limited as long as it is an aprotic polar solvent, but suitable ones for carrying out the reaction include, for example, acetonitrile, dioxane, pyridine, dimethoxyethane, and tetrahydrofuran. , tetrahydropyran, benzonitrile, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, hexamethylphosphoramide, sulfolane, oxepane, triglyme, glymes such as tetraglyme, tetra methylurea, tetraethylurea,
1,3-dimethyl-2-imidazolidinone, 1,
3-dimethyl-3,4,5,6-tetrahydro-
Also included are alkyl ureas such as 2(IH)-pyrimidinone. Among the above, more preferably used solvents include acetonitrile, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, N-methylpyrrolidone, sulfolane, tetraglyme, 1,3-dimethyl-2- Examples include imidazolidinone. The amount of solvent used is not particularly limited, but it is 5 to 95% by weight, preferably 10 to 90% by weight based on the total amount of reactants including the solvent.
% by weight. On the other hand, the strong basic substance used in the present invention can be a solid substance, a solution prepared by dissolving it in a polar solvent such as water, or even a liquid substance, but it is possible to use a solid substance or a liquid substance. In order to carry out the reaction, it is preferable to start the reaction in a state where at least a part of the strong basic substance is suspended, so it is preferable to use a solid strong basic substance. The strength of basicity is such that when dissolved or suspended in water, the pH of the aqueous solution is preferably 10 or more.
It can be used if it is 11 or above. However, ion exchange resins and other ion exchangers are not subject to this condition and will be exemplified later. There are many types of strong basic substances that meet such conditions, and any of them can be applied, but among them, those that are more suitable for carrying out the method of the present invention are, for example, alkali metal hydroxides and alkali metal hydroxides. metal oxides, alkaline earth metal hydroxides, and ion exchange resins. Examples of the above substances include sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, lithium oxide, sodium oxide, potassium oxide, beryllium hydroxide, magnesium hydroxide, calcium hydroxide, water Strontium oxide, barium hydroxide,
These include OH type strongly basic ion exchange resins and free type weakly basic ion exchange resins. In addition, the relative usage amounts of the hydroxyl-substituted amide compound, halogen-substituted compound, and strong basic substance, which are raw materials, cannot be uniformly prescribed because they vary depending on the reactivity of the halogen-substituted compound and the hydroxyl-substituted amide compound, but in general The amount of the halogen-substituted compound to be used is preferably 1.0 to 30 times the mole of the amide compound.
The amount of the strong basic substance used is 1.5 to 20 times, preferably 2.0 to 15 times, the amount of the amide compound. The reaction temperature depends on the reactivity of the hydroxyl-substituted amide compound and halogen-substituted compound used, but is usually in the range of -20 to 100°C, preferably -10 to 90°C. As long as it is within this range, it is not necessarily necessary to keep the temperature constant during the reaction, but it is sufficient to monitor the progress of the reaction and set the reaction temperature appropriately to carry out the reaction efficiently. Further, the reaction time also varies depending on the amide compound and halogen-substituted compound used as well as the reaction temperature, but it is 30 hours at the longest, and usually within 20 hours.
The progress of the reaction can be understood by observing changes in the properties of the reaction system and the concentrations of raw materials and target products in the reaction solution by gas chromatography or high performance liquid chromatography. Next, embodiments of the method of the present invention will be described. First, the order and method of adding the hydroxyl-substituted amide compound, halogen-substituted compound, and strong basic substance may be any method. For example, the three raw materials may be added at the same time, or the third raw material may be added gradually. Usually, a method is adopted in which a hydroxyl-substituted amide compound and a halogen-substituted compound are added first, and then a strong basic substance is gradually added. However, when using a highly reactive halogen-substituted compound, it is preferable to add the halogen-substituted compound last. Furthermore, the reaction temperature does not need to be kept constant during the reaction, and may be changed depending on the progress of the reaction. Usually, a method is adopted in which the reaction is started at a relatively low temperature and then the temperature is raised. Next, the desired product is separated, and by separating the metal halide produced as a by-product after the reaction for a predetermined period of time, and distilling off the solvent and raw materials from the liquid, the desired product can be obtained as a residue. However, the residue is generally purified by operations such as vacuum distillation to separate the desired product. In addition, when by-product metal halides are dissolved in the reaction solution, or in the case of non-volatile amide compounds, a combination of solvents that forms two layers, such as benzene-water or chloroform-water, is used after the solvent is distilled off. The residue may be washed with water, and the metal halide and unreacted amide compound may be dissolved in the aqueous solution layer, and the target product may be dissolved in the organic layer and separated. Furthermore, if necessary, the target product separated from the organic layer is purified by operations such as distillation. Furthermore, when using a solvent with high affinity for water such as dimethyl sulfoxide as a reaction solvent, there is a method of adding water to the reaction solution and separating the target product as an oil layer, or a method of adding water to the reaction solution and separating the target product as an oil layer, or a method of adding water to the reaction solution and separating the target product as an oil layer. A method in which the target substance is extracted and separated using a solvent that forms two layers can also be applied. The N-substituted alkoxycarboxylic acid amide compound of the present invention has an allyl group or methallyl group bonded to an aromatic or saturated aliphatic skeleton via an ether group and an amide group, and is typically represented by conventional diallylphthalate. Its structure is different from that of the carboxylic acid allyl ester type, and its applied products have improved properties such as acid resistance, alkali resistance, chemical resistance, moisture resistance, and heat resistance. Specific uses include water-absorbing resins, crosslinking agents for various resins such as polyester resins, modifiers for epoxy resins, plasticizers for vinyl and fiber resins, and the like, since the molecule has three allyl or methallyl groups. additives to rubber,
It can be used as a raw material for various molded products, as a raw material for decorative laminates, as a resin raw material for coating or dipping industrial laminates, and as a raw material for optical materials such as plastic lenses due to its high refractive index. Next, the present invention will be further explained by examples. Example 1 Production of α-allyloxy-N,N-diallylpropionamide; 7.13 g of lactic acid amide and 43.55 g of allyl bromide were added to 50 ml of N,N-dimethylformamide,
While stirring in an ice bath, 42.75 g of potassium hydroxide was gradually added to start the reaction. Then 6 at 2℃
A time reaction was performed. After the reaction, the insoluble part was separated and the liquid was distilled to collect a 64-66°C/0.1 mmHg fraction to obtain 15.0 g (yield 89.6%) of α'-allyloxy-N,N-diallylpropionamide. Ta. The obtained α
Elemental analysis of -aryloxy-N,N-diallylpropionamide revealed that 68.23% carbon, hydrogen
9.21% and nitrogen 6.65%. In addition, the calculated value is
It is 68.87% carbon, 9.15% hydrogen, and 6.69% nitrogen. Furthermore, when the refractive index at 25° C. was measured, a measurement result of n 25 D of 1.47280 was obtained. Examples 2 to 7 Reactions were carried out in the same manner as in Example 1 using the combinations of raw materials, strong basic substances, and solvents listed in Table 1 under the conditions listed in Table 1. After the reaction, treatment was carried out in exactly the same manner as in Example 1, and the results shown in Table 2 were obtained.

【表】【table】

【表】【table】

【表】 参考例 吸水樹脂の製造: β−アリロキシ−N,N−ジアリルプロピオナ
ミドを0.2%含むN−n−プロピルアクリルアミ
ドにtert−ブチルパーオキシ−2−エチルヘキサ
ノエートを1%添加して40℃で50時間放置して無
溶媒重合を行い、その後更に90℃で5時間熱処理
し、ブロツク状のポリマーを得た。該ポリマーを
粉砕し、粉末を得た。このサンプル粉末1.0gを
50mlの蒸留水の入つたメスシリンダーに投入し
て、25℃にて樹脂の吸水容積を測定したところ、
19mlであつた。
[Table] Reference example Production of water-absorbing resin: 1% tert-butylperoxy-2-ethylhexanoate was added to N-n-propylacrylamide containing 0.2% β-allyloxy-N,N-diallylpropionamide. The mixture was left at 40°C for 50 hours to carry out solvent-free polymerization, and then heat-treated at 90°C for 5 hours to obtain a block-like polymer. The polymer was ground to obtain a powder. 1.0g of this sample powder
The water absorption capacity of the resin was measured at 25℃ by pouring it into a measuring cylinder containing 50ml of distilled water.
It was 19ml.

Claims (1)

【特許請求の範囲】 1 一般式(1) (但し、R1は水素またはメチル基であり、R2
はフエニレン基またはエチレン基を表わす。) で表わされるN−置換アルコキシカルボン酸アミ
ド化合物。 2 下記一般式で表わされる水酸基置換アミド化
合物と HO−R2−CONH2 (但し、R2はフエニレン基またはエチレン基
を表わす。) 下記一般式で表わされるハロゲン置換化合物と
(但し、R1は水素またはメチル基であり、X
はハロゲン基を表わす。) 非プロトン性極性溶媒中で強塩基性物質の存在
下に反応させることを特徴とする 一般式(1) (R1及びR2は上記と同じ。) で示されるN−置換アルコキシカルボン酸アミド
化合物の製造方法。
[Claims] 1 General formula (1) (However, R 1 is hydrogen or a methyl group, and R 2
represents a phenylene group or an ethylene group. ) An N-substituted alkoxycarboxylic acid amide compound represented by: 2 A hydroxyl - substituted amide compound represented by the following general formula and a halogen-substituted compound represented by the following general formula (However, R 1 is hydrogen or a methyl group, and
represents a halogen group. ) The general formula (1) is characterized by being reacted in the presence of a strong basic substance in an aprotic polar solvent. (R 1 and R 2 are the same as above.) A method for producing an N-substituted alkoxycarboxylic acid amide compound.
JP948784A 1984-01-24 1984-01-24 N-substituted alkoxycarboxylic acid amide compound and preparation thereof Granted JPS60155150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP948784A JPS60155150A (en) 1984-01-24 1984-01-24 N-substituted alkoxycarboxylic acid amide compound and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP948784A JPS60155150A (en) 1984-01-24 1984-01-24 N-substituted alkoxycarboxylic acid amide compound and preparation thereof

Publications (2)

Publication Number Publication Date
JPS60155150A JPS60155150A (en) 1985-08-15
JPH048419B2 true JPH048419B2 (en) 1992-02-17

Family

ID=11721584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP948784A Granted JPS60155150A (en) 1984-01-24 1984-01-24 N-substituted alkoxycarboxylic acid amide compound and preparation thereof

Country Status (1)

Country Link
JP (1) JPS60155150A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642964B (en) * 2018-06-27 2020-10-27 北京化工大学 Epoxy functional rubber crosslinked elastomer capable of being repeatedly processed and preparation method thereof

Also Published As

Publication number Publication date
JPS60155150A (en) 1985-08-15

Similar Documents

Publication Publication Date Title
US4772756A (en) Process for the preparation of fluoroalkyl perfluorovinyl ethers
JP2609480B2 (en) Method for producing α-fluoroacryloyl derivative
JPH048419B2 (en)
CA1224809A (en) Perfluorinated vinyl ethers containing a secondary hydrogen atom, polymers formed therefrom and a process for the preparation of the monomers
US5073651A (en) Process for the preparation of extensively fluorinated alkyl bromides
WO1981003331A1 (en) Process for preparing a dibenzylidenesorbitol or a dibenzylidenexylitol
US20230002342A1 (en) Method of producing perfluoro(2,4-dimethyl-2-fluoroformyl-1,3-dioxolane)
JPS5920258A (en) Preparation of n-substituted alkoxycarboxylic acid amide compound
JPS6030667B2 (en) Production method of dicyclohexyl disulfide
SU626554A1 (en) 5,5,6,6,7,7,7-heptafluoro-4,4-bis(trifluoromethyl)hept ane-2 as semiproduct for synthesis of fluorinaceous oil-, gasoline-and frost-resistant silox ane polymers
US4343742A (en) Process for the manufacture of 2,3-perfluoro-1,4-dioxanes as well as some special representatives of compounds of this class
EP0380129B1 (en) Process for preparing alpha-bromo-acyl-fluorides
JPH056546B2 (en)
JPS6319507B2 (en)
EP0504285B1 (en) Fluorocarbon compounds and processes for preparation thereof
US4074052A (en) Process for preparation of isocyanuric acid triesters
JP3412246B2 (en) Method for producing 2-halogeno-1-alkene derivative
JPH07165750A (en) Trifluoropropylene carbonate and its production
JPH0748294A (en) Production of perfluoroalkane
JPH0471912B2 (en)
SU71614A1 (en) The method of producing organosilicon compounds
JPS60158137A (en) Preparation of fluorine-containing acrylic acid derivative
JP2008094798A (en) Method for producing alkylimidazole
JPS60156681A (en) Halogen-substituted glycidyl ether compound and its preparation
JPH0517913B2 (en)