JPH0484085A - Ice making device - Google Patents

Ice making device

Info

Publication number
JPH0484085A
JPH0484085A JP2201039A JP20103990A JPH0484085A JP H0484085 A JPH0484085 A JP H0484085A JP 2201039 A JP2201039 A JP 2201039A JP 20103990 A JP20103990 A JP 20103990A JP H0484085 A JPH0484085 A JP H0484085A
Authority
JP
Japan
Prior art keywords
ice
solution
making
tubes
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2201039A
Other languages
Japanese (ja)
Other versions
JP2881485B2 (en
Inventor
Goldstein Vladimir
ブラディミール ゴールドシュタイン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunwell Engineering Co Ltd
Original Assignee
Sunwell Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunwell Engineering Co Ltd filed Critical Sunwell Engineering Co Ltd
Priority to JP2201039A priority Critical patent/JP2881485B2/en
Publication of JPH0484085A publication Critical patent/JPH0484085A/en
Application granted granted Critical
Publication of JP2881485B2 publication Critical patent/JP2881485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To make ice uniformly in respect ice making tubes by arranging holding members on the opposite sides of a shell, providing the holding member internally with a rotary blade, holding a plurality of ice making tubes and coupling solution inlet and outlet with a solution piping such that an ice making solution flows respective ice making tubes in series. CONSTITUTION: A shell 1 is provided, on one side in the longitudinal direction, with a refrigerant inlet 1a to be coupled with a refrigerant piping 3 and, on the other side, with a refrigerant outlet 1b to be coupled with a gas refrigerant piping 4 and fixed with members 5, 6 for holding ice making tubes 2,.... A the time of making ice, a liquid refrigerant is fed from the piping 3 into the shell 1, a solution pump in a solution inlet pipe 18a is driven to conduct a solution through each tube 2 and motors 12, 13 are driven to turn rotary blades 8. Level of liquid refrigerant in the shell 1 is controlled such that the lower half section of upper stage ice making tubes 2 are immersed into the liquid. The liquid refrigerant exchange heat with an ice making solution flowing through the tubes 2 and evaporates to supercool the wall face of the tubes 2 below the freezing point of solution. The solution freezing on the inner wall face of the tubes 2 is scratched as slurry ice by means of the rotary blades 8.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は製氷装置、詳しくは製氷用溶液を用い、例えば
冷房の熱源として用いるスラリー状の氷を生成するよう
にした製氷装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an ice-making device, and more particularly to an ice-making device that uses an ice-making solution to produce ice in the form of slurry, which is used as a heat source for air conditioning, for example.

(従来の技術) 従来、スラリー状の氷を生成するための製氷装置は、特
開昭5E3−2587号公報に示され、また、第4図に
示したように、製氷用溶液を流し、スラリー状の氷を生
成するための内管(A)を、該内管(A)より大径とし
た外管(B)の中心部に内装すると共に、前記内管(A
)内に、外周部に羽根(C)を備えた回転ドラム(D)
を内装して、前記内管(A)と外管(B)との間に、前
記溶液の冷却用冷媒を流通させるようにして製氷用蒸発
器を構成し、前記冷媒の蒸発により前記内管(A)内を
流れる前記溶液を過冷却して、前記内管(B)の内壁で
氷結させ、前記ドラム(D)の回転による羽根(C)の
掻込作用で、前記内管内壁に氷結する氷を掻取って、ス
ラリー状の氷を生成するようにしたものが提供されてい
る。
(Prior Art) Conventionally, an ice making apparatus for producing ice in the form of slurry is disclosed in Japanese Patent Laid-Open No. 5E3-2587, and as shown in FIG. An inner tube (A) for producing ice cubes is installed in the center of an outer tube (B) having a larger diameter than the inner tube (A), and the inner tube (A)
) and a rotating drum (D) with blades (C) on the outer periphery.
An ice-making evaporator is configured in such a way that a refrigerant for cooling the solution flows between the inner tube (A) and the outer tube (B), and the inner tube is heated by the evaporation of the refrigerant. The solution flowing through (A) is supercooled and freezes on the inner wall of the inner tube (B), and the rotation of the drum (D) causes ice to form on the inner wall of the inner tube due to the scraping action of the blades (C). There is a device that scrapes off the ice that forms and produces ice in the form of a slurry.

尚、第4図において(E)は、以上の如く構成する製氷
装置の下方に配設する蓄熱槽であって、前記製氷装置に
より生成したスラリー状の氷を貯溜し、この蓄熱槽(E
)に貯溜する前記水を、氷配管(G)を介して接続する
室内設置のファンコイルユニット(F、)〜(F、)に
供給して冷房が行えるようにするのである。
In FIG. 4, (E) is a heat storage tank disposed below the ice making device configured as described above, which stores ice in the form of slurry produced by the ice making device.
) is supplied to fan coil units (F,) to (F,) installed indoors that are connected via ice pipes (G) to perform air conditioning.

また(P□)は前記氷配管(G)に介装する氷供給ポン
プであり、また、(H)は前記蓄熱槽(E)から前記内
管(A)に製氷用溶液を供給する溶液管であり、(Pa
)はこの溶液管(H)に介装する溶液ポンプである。
Further, (P□) is an ice supply pump installed in the ice pipe (G), and (H) is a solution pipe that supplies ice-making solution from the heat storage tank (E) to the inner pipe (A). and (Pa
) is a solution pump installed in this solution tube (H).

(発明が解決しようとする課題) 所で、以上説明した従来例では、一対の内管(A)と外
管(B)とから成る1台の製氷用蒸発器を用い、複数台
のファンコイルユニット(F。
(Problem to be Solved by the Invention) In the conventional example described above, one ice-making evaporator consisting of a pair of inner tubes (A) and outer tubes (B) is used, and a plurality of fan coils are used. Unit (F.

)〜(F4)で使用するスラリー状の氷を生成している
のであるが、前記ファンコイルユニット(F1)〜(F
4)の設置台数が多くなるビル空調においては、氷の使
用量が多くなり、1台の製氷用蒸発器だけでは、製氷量
が不足する問題が生ずる。
) to (F4) generate the slurry ice used in the fan coil units (F1) to (F4).
In a building air conditioner where a large number of units are installed in 4), the amount of ice used increases, and a problem arises in that the amount of ice produced is insufficient with only one ice-making evaporator.

しかして、製氷量を使用量に対応して多くする場合、1
台の製氷用蒸発器を大形とするにも限界があることから
、複数台の製氷用蒸発器を用いる必要がある。
Therefore, when increasing the amount of ice made in accordance with the amount used, 1
Since there is a limit to the size of one ice-making evaporator, it is necessary to use a plurality of ice-making evaporators.

即ち、前記した構成の製氷用蒸発器において製氷量を増
大するには、前記内管(A)及び外管(B)の直径を大
きくするか、又は長さを長くすることが考えられるが、
製氷性能の低下や、前記ドラム(D)を駆動するモータ
負荷の増大等を考慮すれば自ずと限界があり、使用量増
加に対応できないのであって、必然的に複数台の製氷用
蒸発器を用いる必要が生ずるのである。
That is, in order to increase the amount of ice made in the ice-making evaporator having the above-described configuration, it is conceivable to increase the diameter or length of the inner tube (A) and outer tube (B).
Considering the decrease in ice-making performance and the increase in the load on the motor that drives the drum (D), there is a natural limit, and it is impossible to cope with an increase in usage, so it is necessary to use multiple ice-making evaporators. A need arises.

所で、複数台の製氷用蒸発器を用い、これら蒸発器を多
段に積層した製氷装置を先に提案した。(特願昭Ei3
−35Ei31号)この多段式製氷装置は、第5図に示
したように、回転羽根(図示せず)を内装した内管(A
)を外管(B)の中心部に配置した製氷用蒸発器(J)
を、2台1対にして水平方向に配置し、これら1対の製
氷用蒸発器(J)(J)を、上下方向に多段に積層し、
これら各蒸発器(J)・・・の外管(B)に、冷媒液管
(K)から分岐し、途中に膨張弁(L)・・・を介装し
た分岐管(M)・・・を接続して、前記各蒸発器(J)
・・・の外管(B)と内管(A)との間に液冷媒を供給
すると共に、前記各蒸発器(J)・・・における各内管
(A)に、最下層部の蒸発器(J)(J)から最上層部
の蒸発器(J)(J)に向って直列状に製氷用溶液を流
通するように溶液配管(N)を接続したものである。尚
、第5図において(S)は冷媒の入口ヘッダーであり、
(R)は出口ヘッダーである。
By the way, we have previously proposed an ice-making device that uses a plurality of ice-making evaporators and stacks these evaporators in multiple stages. (Tokugan Showa Ei3
-35Ei No. 31) This multi-stage ice making device has an inner tube (A
) placed in the center of the outer tube (B) (J)
are arranged horizontally in pairs, and these pairs of ice-making evaporators (J) (J) are stacked vertically in multiple stages,
A branch pipe (M) is branched from the refrigerant liquid pipe (K) into the outer pipe (B) of each of these evaporators (J) and has an expansion valve (L) interposed in the middle. and each evaporator (J)
The liquid refrigerant is supplied between the outer tube (B) and the inner tube (A) of the evaporators (J), and the lowermost evaporator is supplied to each inner tube (A) of the evaporator (J). Solution pipes (N) are connected so that the ice-making solution flows in series from the containers (J) (J) to the evaporators (J) (J) in the uppermost layer. In addition, in FIG. 5, (S) is the refrigerant inlet header,
(R) is the exit header.

所で、この多段式製氷装置において前記溶液を直列に流
通するようにしたものは、並列状にした場合の水流合流
点で、水流阻害が生じ、流れの悪い氷配管において詰り
か生ずる恐れがあるためである。
By the way, in this multistage ice making device in which the solution is made to flow in series, there is a risk that water flow will be obstructed at the water flow confluence point when they are arranged in parallel, resulting in clogging in ice pipes with poor flow. It's for a reason.

一方、前記蒸発器(J)・・・を多段に積層して前記溶
液を直列状に流通させる場合、この溶液流れの上流側と
下流側とでは前記溶液に温度差が生じ、この結果前記各
蒸発器(J)・・・に流れる冷媒流れが偏流して、前記
各蒸発器(J)・・・での氷生成に斑が生じ、前記内管
(A)内に内装する回転羽根に無理な力が作用し、モー
タ負荷を増大させたりする問題が生ずるのである。
On the other hand, when the evaporators (J) are stacked in multiple stages to allow the solution to flow in series, a temperature difference occurs in the solution between the upstream and downstream sides of the solution flow, and as a result, each of the The refrigerant flow flowing into the evaporator (J) is uneven, causing uneven ice formation in each of the evaporators (J), causing strain on the rotating blades installed in the inner pipe (A). This causes a problem in that a large amount of force acts on the motor, increasing the motor load.

このため、前記各蒸発器(J)・・・に供給する液冷媒
の供給量を制御し、前記各蒸発器(J)・・・における
液冷媒の液面が均一になるように個別制御する必要があ
り、この結果制御系が複雑となり、コスト高となる問題
があった。
For this reason, the amount of liquid refrigerant supplied to each evaporator (J) is controlled individually so that the liquid level of the liquid refrigerant in each evaporator (J) is uniform. As a result, the control system becomes complicated and the cost becomes high.

また、一方、前記各蒸発器(J)・・・における各外管
(B)には、液冷媒の入口及び出口を設けて、個別に前
記分岐管(M)・・・と接続したり、各分岐管(M)・
・・にそれぞれ膨張弁(L)・・・を介装したり、前記
分岐管(M)を分岐させる入口ヘッダ(S)や合流させ
る出口ヘッダー(R)を設けたりすることが必要となる
のであって、構造上からみても複雑となる問題もあった
On the other hand, each outer pipe (B) in each of the evaporators (J)... is provided with an inlet and an outlet for liquid refrigerant, and is individually connected to the branch pipe (M)... Each branch pipe (M)・
It is necessary to install an expansion valve (L) in each of the pipes, or to provide an inlet header (S) for branching the branch pipe (M) and an outlet header (R) for merging the branch pipe (M). However, there were also complications from a structural point of view.

本発明の目的は、複数の製氷管を用いながら、液冷媒の
液面高さを個別に制御するような複雑な制御を用いなく
とも複数の製氷管内壁における温度を均一にでき、各製
氷管での氷生成を均一にし、各製氷管での製氷性能を充
分発揮できるようにし、しかも構造上からも簡単にし、
全体としてコスト安にできる製氷装置を提供する点にあ
る。
An object of the present invention is to make it possible to uniformize the temperature on the inner wall of a plurality of ice-making tubes without using complicated control such as individually controlling the liquid level height of a liquid refrigerant. We made ice production uniform in the pipes, and made sure that the ice making performance of each ice making tube was fully demonstrated, while also simplifying the structure.
The purpose of the present invention is to provide an ice making device that can be manufactured at a low cost as a whole.

(課題を解決するための手段) 本発明は、冷媒配管に接続する冷媒入口(1a)と冷媒
出口(1b)とを備えた胴体(1)の長さ方向両側に、
保持部材(5)(Ei)を設けて、これら保持部材(5
)(6)に回転羽根(8)を回転自由に内装し、前記胴
体(1)の長さ方向に沿って貫通する複数本の製氷管(
2)・・・を、間隔を置いて保持すると共に、前記各製
氷管(2)・・・の前記保持部材(5)(6)に対する
突出部分に、溶液入口(2a)と溶液出口(2b)とを
設け、これら溶液入口(2a)と溶液出口(2b)とに
、溶液配管(18)を、製氷用溶液が、前記各製氷管(
2)・・・を直列に流通する如く接続したことを特徴と
するものである。
(Means for Solving the Problems) The present invention provides a body (1) with a refrigerant inlet (1a) connected to a refrigerant pipe and a refrigerant outlet (1b) on both sides in the length direction.
Holding members (5) (Ei) are provided, and these holding members (5) (Ei) are provided.
) (6) is equipped with rotating blades (8) for free rotation, and a plurality of ice-making tubes (
2) ... are held at intervals, and a solution inlet (2a) and a solution outlet (2b ), and solution piping (18) is provided at the solution inlet (2a) and solution outlet (2b), and the ice-making solution is supplied to each of the ice-making tubes (2b).
2)... are connected so as to flow in series.

また、胴体(1)の長さ方向に沿って貫通する複数本の
製氷管(2)を上下方向に重合状に配設し、これら製氷
管(2)・・・に最下段製氷管(2)から最上段製氷管
(2)に向って直列状に製氷用溶液が流れるように溶液
配管(18)を接続し、下段の製氷管(2)における製
氷用溶液との熱交換で沸騰して発生した冷媒の気泡によ
り上段の製氷管(2)の外面を攪乱し、その撹乱効果に
より伝熱性能を向上できるようにしたものである。
In addition, a plurality of ice-making tubes (2) penetrating the body (1) along the length direction are arranged in an overlapping manner in the vertical direction, and these ice-making tubes (2)... are connected to the bottom ice-making tubes (2). ) to the top ice-making tube (2) so that the ice-making solution flows in series, and the solution is boiled by heat exchange with the ice-making solution in the lower ice-making tube (2). The generated refrigerant bubbles disturb the outer surface of the upper ice-making tube (2), and the disturbance effect improves heat transfer performance.

(作用) 一つの胴体(1)内に、複数本の製氷管(2)を内装し
ているから、これら製氷管(2)に製氷用溶液を直列状
に流しても、先に提案した多段式製氷装置のように液冷
媒の液面高さを個別に制御する必要なく、前記各製氷管
(2)の内壁温度を均一にでき、各製氷管(2)での氷
生成を均一にできるのである。
(Function) Since a plurality of ice-making tubes (2) are housed inside one body (1), even if the ice-making solution is poured in series through these ice-making tubes (2), it will not be possible to achieve the multi-stage structure as proposed earlier. The inner wall temperature of each ice-making tube (2) can be made uniform, and the ice production in each ice-making tube (2) can be made uniform, without the need to individually control the liquid level height of the liquid refrigerant as in a type ice making device. It is.

この結果、制御系を単純にできなから、各製氷管(2)
での製氷性能を充分発揮させられ、各製氷管(2)に内
装する回転羽根(8)に無理な力が作用するのも回避で
きるのである。
As a result, since the control system cannot be simplified, each ice making tube (2)
This allows the ice making performance to be fully demonstrated, and it is also possible to avoid applying excessive force to the rotating blades (8) installed in each ice making tube (2).

(実施例) 第1図に示した第1実施例は、胴体(1)に4本の製氷
管(2)を組込んだものである。
(Example) In the first example shown in FIG. 1, four ice-making tubes (2) are incorporated into a body (1).

前記胴体(1)はその長さ方向−側に、該冷媒配管(3
)に接続する冷媒入口(la)を設け、他側にガス冷媒
配管(4)に接続する冷媒出口(1b)を設けると共に
、長さ方向両側に前記胴体(1)の内部空間を閉鎖し、
前記製氷管(2)・・・を保持する保持孔(7)をもっ
た保持部材(5)(6)を取付けている。
The body (1) has the refrigerant pipe (3) on the - side in the longitudinal direction.
), and a refrigerant outlet (1b) connected to the gas refrigerant pipe (4) is provided on the other side, and the internal space of the body (1) is closed on both sides in the length direction,
Holding members (5) and (6) having holding holes (7) for holding the ice making tubes (2) are attached.

また、前記各製氷管(2)は、前記胴体(1)の長さよ
り長くして、該胴体(1)の長さ方向に沿って貫通させ
、その長さ方向両側を前記保持部材(5)(6)の各保
持孔(7)に保持すると共に、前記保持部材(5)(8
)の長さ方向両側から外方に突出する突出部分には、そ
れぞれ溶液入口(2a)と溶液出口(2b)とを設けて
いる。
Furthermore, each of the ice making tubes (2) is made longer than the length of the body (1) and passes through the body (1) in the length direction, and both sides of the body (2) in the length direction are connected to the holding member (5). (6) in each of the holding holes (7), and the holding members (5) (8).
) are provided with a solution inlet (2a) and a solution outlet (2b), respectively, on the protruding portions that protrude outward from both sides in the length direction.

又前記各型氷管(2)は、第2図の如く2本を1対にし
て上下に配設し、下段の製氷管(2)と上段の製氷管(
2)とが相互に重なるように配設しており、各製氷管(
2)の内部にはそれぞれ回転羽根(8)を内装している
The ice tubes (2) of each type are arranged one above the other in pairs as shown in Figure 2, with the lower ice tube (2) and the upper ice tube (2)
2) are arranged so that they overlap each other, and each ice making tube (
2) are each equipped with a rotating blade (8).

この回転羽根(8)は、前記各製氷管(2)の長さ方向
両側に取付ける端板(2c)(2d)に軸受(図示せず
)を介して回転自由に支持する回転軸(9)に、半径方
向外方に突設するステー(10)を介して枢着し、スプ
リング(図示せず)により、先端が前記製氷管(2)の
内壁に弾接するようにしている。
This rotary blade (8) is connected to a rotary shaft (9) that is freely rotatably supported via a bearing (not shown) on the end plates (2c) (2d) attached to both longitudinal sides of each ice-making tube (2). It is pivotally attached to the ice-making tube (2) via a stay (10) that projects outward in the radial direction, and the tip of the ice-making tube (2) is brought into elastic contact with the inner wall of the ice-making tube (2) by means of a spring (not shown).

また、前記回転軸(9)は一方の端板(2C)を貫通し
て、その外部に突出させ、この突出軸端にブーU−(1
1)を設け、前記胴体(1)の横方向両側に設けるモー
タ(12)(13)に連動するプーリー(14)(15
)にベルト(18)(17)を介して連動させている。
Further, the rotating shaft (9) passes through one end plate (2C) and projects to the outside, and the protruding shaft end is attached to the boot U-(1).
1), and pulleys (14) (15) interlocked with motors (12) (13) provided on both sides of the body (1) in the lateral direction.
) through belts (18) and (17).

また、第1実施例では、上下に重合状に配設する前記製
氷管(2)を1組とし、これら各組における下段製氷管
(2)から上段製氷管(2)に向って直列状に製氷用溶
液が流れるように溶液配管(18)を接続している。
In the first embodiment, the ice-making tubes (2) are arranged vertically in a stacked manner as one set, and the ice-making tubes (2) in each set are arranged in series from the lower ice-making tube (2) to the upper ice-making tube (2). A solution pipe (18) is connected so that the ice-making solution flows.

即ち、前記下段製氷管(2)の溶液人口(2a)に、蓄
熱槽(図示せず)から延びる溶液入口管(18a)を接
続し、前記下段製氷管(2)の溶液出口(2b)と上下
製氷管(2)の溶液入口(2a)とを連絡管(18b)
を接続し、前記上段製氷管(2)の溶液出口(2b)に
、蓄熱槽へ延びる溶液出口管(18c)を接続し、前記
溶液入口管(18a)から供給される製氷用溶液が、下
段製氷器(2)を通り、連絡管(18b)から上段製氷
管(2)を経て前記溶液出口管(18C)に流出するよ
うにしている。
That is, a solution inlet pipe (18a) extending from a heat storage tank (not shown) is connected to the solution outlet (2a) of the lower ice making tube (2), and the solution outlet (2b) of the lower ice making tube (2) is connected to the solution inlet pipe (18a) extending from the heat storage tank (not shown). Connect the solution inlet (2a) of the upper and lower ice making tubes (2) to the connecting tube (18b)
A solution outlet pipe (18c) extending to the heat storage tank is connected to the solution outlet (2b) of the upper ice making tube (2), and the ice making solution supplied from the solution inlet pipe (18a) is It passes through the ice maker (2) and flows out from the communication pipe (18b) through the upper ice maker pipe (2) and into the solution outlet pipe (18C).

しかして、以上の如く構成する製氷装置により製氷する
には、前記液冷媒配管(3)から液冷媒を前記胴体(1
)内に供給すると共に、前記溶液入口管(18a)に介
装する溶液ポンプ(図示せず)を駆動し、前記溶液を前
記各製氷管(2)に、前記した経路で流通させ、前記モ
ータ(12)(13)を駆動し、前記回転羽根(8)を
回転させることにより行うのであって、前記胴体(1)
内における液冷媒の液面高さは、第2図に示した如く、
上段製氷管(2)の下半部が液中に浸るように制御する
のである。
However, in order to make ice with the ice making apparatus configured as described above, liquid refrigerant is supplied from the liquid refrigerant pipe (3) to the body (1).
), and also drives a solution pump (not shown) installed in the solution inlet pipe (18a) to cause the solution to flow through each of the ice making tubes (2) through the aforementioned route, and (12) and (13) to rotate the rotary blade (8), the body (1)
The liquid level height of the liquid refrigerant inside the chamber is as shown in Fig. 2.
Control is performed so that the lower half of the upper ice making tube (2) is immersed in the liquid.

前記胴体(1)内に供給された液冷媒は、前記製氷管(
2)内を流れる製氷用溶液と熱交換して蒸発し、その蒸
発潜熱により前記製氷管(2)の壁面を前記溶液の氷点
以下に過冷却し、前記溶液を、前記製氷管(2)の内壁
面で氷結させるのであり、氷結した氷を前記回転羽根(
8)で掻取りスラリー状の氷を生成するのである。
The liquid refrigerant supplied into the body (1) flows through the ice making tube (
2) It evaporates by exchanging heat with the ice-making solution flowing inside, and the wall surface of the ice-making tube (2) is supercooled to below the freezing point of the solution by the latent heat of vaporization, and the solution is transferred to the ice-making tube (2). The ice is frozen on the inner wall surface, and the frozen ice is transferred to the rotating blade (
Step 8) generates ice in the form of scraped slurry.

また、製氷管(2)のうち、下段製氷管(2)の溶液と
熱交換し、沸騰により発生した冷媒の気泡は、下段製氷
管(2)から離れた上段製氷管(2)に至り、この上段
製氷管(2)の外面を撹乱するのであって、上段製氷管
(2)での熱交換は、前記気泡による撹乱効果で伝熱性
能が向上するのである。
In addition, the ice making tubes (2) exchange heat with the solution in the lower ice making tube (2), and bubbles of the refrigerant generated by boiling reach the upper ice making tube (2), which is separated from the lower ice making tube (2). The outer surface of the upper ice making tube (2) is disturbed, and the heat transfer performance in the upper ice making tube (2) is improved due to the disturbance effect of the air bubbles.

従って、前記溶液を各製氷管(2)に直列状に流しなか
ら、各製氷管(2)における内壁温度をは糧均−にでき
、これら各製氷管(2)での氷生成を均一にできるので
あり、氷生成の斑によるモータ負荷の増大を回避できる
のである。
Therefore, since the solution is poured into each ice-making tube (2) in series, the inner wall temperature of each ice-making tube (2) can be made uniform, and ice production in each of these ice-making tubes (2) can be made uniform. This makes it possible to avoid an increase in motor load due to uneven ice formation.

しかも、前記液冷媒の液面高さは、前記胴体(1)内で
の液面高さを管理すればよく、個別制御が必要でないの
で、その制御系を簡単にできるし、また、前記胴体(1
)の上部をガスチャンバーとして利用できるから、前記
冷媒出口(1b)から液冷媒が流出することも少なくで
き、アキュムレータを小形にできるか又は、省略できる
のである。
Moreover, the liquid level height of the liquid refrigerant can be controlled by controlling the liquid level within the body (1), and individual control is not required, so the control system can be simplified. (1
) can be used as a gas chamber, the flow of liquid refrigerant from the refrigerant outlet (1b) can be reduced, and the accumulator can be made smaller or omitted.

以上説明した第1実施例では、4本の製氷管(2)を用
いたものであるが、この製氷管(2)は4本に限られる
ことなく、2本乃至第3図に示した7本又はそれ以上で
もよい。
In the first embodiment described above, four ice-making tubes (2) are used, but the number of ice-making tubes (2) is not limited to four, and may be two to seven as shown in FIG. It can be a book or more.

尚、前記製氷管(2)の使用数は特に限定するものでな
いが、3本乃至7本が好ましい。
The number of ice-making tubes (2) to be used is not particularly limited, but is preferably 3 to 7.

又、例えば7本の製氷管(2)を用いる場合、前記製氷
管(2)の配列は特に限定されないが、第3図に示した
ように第2実施例のように3本を1組として上下に重合
状に配設する中央紙と、2本を1組として上下に重合状
に配設する2つの側組との3系列とし、これら各組にお
いて直列状に接続する溶液配管(18)の各溶液入口管
(18a)に、流量制御弁(19)をそれぞれ設け、製
氷管(2)の接続個数に対応した溶液流量に制御するよ
うにするのである。
For example, when seven ice-making tubes (2) are used, the arrangement of the ice-making tubes (2) is not particularly limited, but as shown in FIG. Solution pipes (18) are arranged in three series: a central paper arranged vertically in a superimposed manner, and two side sets each consisting of two pipes arranged in a superimposed manner above and below, and connected in series in each set. Each solution inlet pipe (18a) is provided with a flow rate control valve (19) to control the solution flow rate to correspond to the number of ice-making tubes (2) connected.

また、前記製氷管(2)に内装する回転羽根(8)を駆
動するモータ(12)(13)は、第1実施例のように
1組の製氷管(2)に対応して設けてもよいが、個別に
設けてもよいし、製氷管(2)の組込数が少ない場合全
数共用してもよい。
Furthermore, the motors (12) and (13) for driving the rotary vanes (8) installed in the ice-making tubes (2) may be provided corresponding to one set of ice-making tubes (2) as in the first embodiment. However, they may be provided individually, or if the number of ice-making tubes (2) installed is small, they may all be shared.

(発明の効果) 本発明は以上の如く、冷媒配管に接続する冷媒入口(1
a)と冷媒出口(1b)とを備えた胴体(1)の長さ方
向両側に、保持部材(5)(6)を設けて、これら保持
部材(5)(6)に回転羽根(8)を回転自由に内装し
、前記胴体(1)の長さ方向に沿って貫通する複数本の
製氷管(2)・・・を、間隔を置いて保持すると共に、
前記各製氷管(2)・・・の前記保持部材(5)(E3
)に対する突出部分に、溶液入口(2a)と溶液出口(
2b)とを設け、これら溶液入口(2a)と溶液出口(
2b)とに、溶液配管(18)を、製氷用溶液が、前記
各製氷管(2)・・・を直列に流通する如く接続したも
のであるから、複数の製氷管(2)に対し製氷用溶液を
直列状に流通させなから、先に提案した多段式製氷装置
のように、液冷媒の液面高さを個別に制御する必要なく
、前記各製氷管(2)における内壁温度をはメ均一にで
き、各製氷管(2)での氷生成を均一にできるのである
(Effects of the Invention) As described above, the present invention has the refrigerant inlet (1) connected to the refrigerant pipe.
Holding members (5) and (6) are provided on both longitudinal sides of a body (1) having a refrigerant outlet (1b) and a rotary blade (8). A plurality of ice-making tubes (2), which are rotatably installed inside the body (1) and pass through the body (1) along the length direction, are held at intervals,
The holding member (5) (E3) of each ice making tube (2)...
), a solution inlet (2a) and a solution outlet (
2b), and these solution inlet (2a) and solution outlet (
2b), the solution piping (18) is connected so that the ice-making solution flows through each of the ice-making tubes (2) in series, so that ice-making is possible for a plurality of ice-making tubes (2). Since the ice making solution is not passed in series, the inner wall temperature of each ice making tube (2) can be controlled without the need to individually control the liquid level height of the liquid refrigerant as in the multi-stage ice making device proposed earlier. This makes it possible to uniformly generate ice in each ice making tube (2).

従って、冷媒の液面高さ制御のための制御系を単純化で
き、それだけコスト安にできると共に、回転羽根(8)
に、無理な力が作用することも回避できるのであり、そ
の上、胴体(1)に冷媒入口(1a)と冷媒出口(1b
)とを設けるだけで、前記多段式製氷装置における分岐
管(M)や入口及び出口ヘッダーを設ける必要がなく、
構造上からも簡単にでき、前記制御系の簡単化と相俟っ
てコスト安にできるのである。
Therefore, the control system for controlling the liquid level of the refrigerant can be simplified, and the cost can be reduced accordingly.
It is also possible to avoid applying unreasonable force to the body (1), and the refrigerant inlet (1a) and refrigerant outlet (1b)
), there is no need to provide a branch pipe (M) or an inlet and outlet header in the multi-stage ice making device,
This structure is simple, and together with the simplification of the control system, the cost can be reduced.

また、胴体(1)内に配設する複数本の製氷管(2)を
上下方向に重合状に配設することにより、下段製氷管(
2)で熱交換し、沸騰した気泡が上段製水管(2)の伝
熱面を撹乱し、その撹乱効果により伝熱性能を向上させ
られるのである。
In addition, by arranging the plurality of ice-making tubes (2) arranged in the body (1) in a vertically overlapping manner, the lower ice-making tubes (
2), the boiling bubbles disturb the heat transfer surface of the upper water pipe (2), and the disturb effect improves heat transfer performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す一部切欠正面図、第
2図は第1図■−■線における断面図、第3図は第2実
施例の概略断面図、第4図は従来例を示す概略断面図、
第5図は先に提案した多段式製氷装置の概念図である。 (1)・・・・・・胴体 (1a)・・・・・・冷媒入口 (1b)・・・・・・冷媒出口 (2)・・・・・・製氷管 (2a)・・・・・・溶液入口 (2b)・・・・・・溶液出口 (5)(6)・・・・・・保持部材 (8)・・・・・・回転羽根 (18)・・・・・・溶液配管
Fig. 1 is a partially cutaway front view showing the first embodiment of the present invention, Fig. 2 is a sectional view taken along line ■-■ in Fig. 1, Fig. 3 is a schematic sectional view of the second embodiment, and Fig. 4. is a schematic sectional view showing a conventional example,
FIG. 5 is a conceptual diagram of the multistage ice making device proposed earlier. (1)...Body (1a)...Refrigerant inlet (1b)...Refrigerant outlet (2)...Ice making tube (2a)... ...Solution inlet (2b) ...Solution outlet (5) (6) ...Holding member (8) ...Rotating vane (18) ...Solution Piping

Claims (1)

【特許請求の範囲】 1)冷媒配管に接続する冷媒入口(1a)と冷媒出口(
1b)とを備えた胴体(1)の長さ方向両側に、保持部
材(5)(6)を設けて、これら保持部材(5)(6)
に回転羽根(8)を回転自由に内装し、前記胴体(1)
の長さ方向に沿って貫通する複数本の製氷管(2)・・
・を、間隔を置いて保持すると共に、前記各製氷管(2
)・・・の前記保持部材(5)(6)に対する突出部分
に、溶液入口(2a)と溶液出口(2b)とを設け、こ
れら溶液入口(2a)と溶液出口(2b)とに、溶液配
管(18)を、製氷用溶液が、前記各製氷管(2)・・
・を直列に流通する如く接続したことを特徴とする製氷
装置。 2)胴体(1)の長さ方向に沿って貫通する複数本の製
氷管(2)を上下方向に重合状に配設し、これら製氷管
(2)・・・に最下段製氷管(2)から最上段製氷管(
2)に向って直列状に製氷用溶液が流れるように溶液配
管(18)を接続した請求項1記載の製氷装置。
[Claims] 1) A refrigerant inlet (1a) and a refrigerant outlet (1a) connected to the refrigerant pipe.
Holding members (5) and (6) are provided on both sides of the body (1) in the longitudinal direction, and these holding members (5) and (6)
A rotary blade (8) is rotatably installed inside the body (1).
Multiple ice-making tubes (2) that penetrate along the length of the...
・ are held at intervals, and each of the ice making tubes (2
)... are provided with a solution inlet (2a) and a solution outlet (2b) on the protruding parts of the holding members (5) and (6), and the solution inlet (2a) and the solution outlet (2b) are provided with a solution inlet (2a) and a solution outlet (2b). The pipe (18) is connected to the ice-making solution, which is connected to each ice-making tube (2)...
An ice-making device characterized in that the ice-making devices are connected so as to flow in series. 2) A plurality of ice-making tubes (2) passing through the body (1) in the length direction are arranged vertically in an overlapping manner, and these ice-making tubes (2)... are connected to the bottom ice-making tube (2). ) to the top ice tube (
2. The ice-making apparatus according to claim 1, wherein the solution pipe (18) is connected so that the ice-making solution flows in series toward the ice-making solution.
JP2201039A 1990-07-26 1990-07-26 Ice making equipment Expired - Lifetime JP2881485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2201039A JP2881485B2 (en) 1990-07-26 1990-07-26 Ice making equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2201039A JP2881485B2 (en) 1990-07-26 1990-07-26 Ice making equipment

Publications (2)

Publication Number Publication Date
JPH0484085A true JPH0484085A (en) 1992-03-17
JP2881485B2 JP2881485B2 (en) 1999-04-12

Family

ID=16434416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2201039A Expired - Lifetime JP2881485B2 (en) 1990-07-26 1990-07-26 Ice making equipment

Country Status (1)

Country Link
JP (1) JP2881485B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100805944B1 (en) * 2007-02-13 2008-02-21 주식회사 아이에스텍 Ice making device for an ice-storage cooling system
US7824725B2 (en) 2007-03-30 2010-11-02 The Coca-Cola Company Methods for extending the shelf life of partially solidified flowable compositions
JP2014219151A (en) * 2013-05-08 2014-11-20 株式会社大気社 Ice and water tank

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100805944B1 (en) * 2007-02-13 2008-02-21 주식회사 아이에스텍 Ice making device for an ice-storage cooling system
US7824725B2 (en) 2007-03-30 2010-11-02 The Coca-Cola Company Methods for extending the shelf life of partially solidified flowable compositions
JP2014219151A (en) * 2013-05-08 2014-11-20 株式会社大気社 Ice and water tank

Also Published As

Publication number Publication date
JP2881485B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
CN101405547B (en) Flash drum, heat pump,heat pump design steam jet system and method of compressor operation
CA2174564C (en) Combination direct and indirect closed circuit evaporative heat exchanger with blow-through fan
AU741596B2 (en) Rotating disk evaporative cooler
JPH0484085A (en) Ice making device
CN105091380B (en) Cooling turbine unit and the cooling system including the cooling turbine unit
CN105408703B (en) Steam compression system
US4429662A (en) Method and apparatus for generating vapor
JPH0480575A (en) Refrigerant distributor
KR100513219B1 (en) Slurry ice generator
US6688376B2 (en) Two port coil capacity modulator
US3820356A (en) Absorption refrigeration plant with auxiliary gas
JPS5938691Y2 (en) ice making device
JPH0438177Y2 (en)
CN210241838U (en) Sewage source heat pump air conditioning unit
US789159A (en) Multiple-effect evaporating apparatus.
JP2741453B2 (en) Auger ice machine
JP3331003B2 (en) Ice storage method for multiple tanks in ice thermal storage system
JPS63194141A (en) Building cooling method by water heat source
US1829865A (en) Refrigerating plant
KR100341013B1 (en) Tubing and whip rod heat exchangers and refrigeration or cooling methods
RU1774143C (en) Immersion-type evaporator
US173315A (en) Improvement in ice-machines
JPS6339571Y2 (en)
JP2000356181A (en) Super efficient double rotating method and its device for convection temperature difference prime mover
JPH0721344B2 (en) Ice making drum unit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110205

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110205

Year of fee payment: 12