JPH0483978A - Oil seal for two-way rotation and molding method thereof - Google Patents

Oil seal for two-way rotation and molding method thereof

Info

Publication number
JPH0483978A
JPH0483978A JP2194145A JP19414590A JPH0483978A JP H0483978 A JPH0483978 A JP H0483978A JP 2194145 A JP2194145 A JP 2194145A JP 19414590 A JP19414590 A JP 19414590A JP H0483978 A JPH0483978 A JP H0483978A
Authority
JP
Japan
Prior art keywords
seal element
annular grooves
seal
annular groove
oil seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2194145A
Other languages
Japanese (ja)
Other versions
JP2963159B2 (en
Inventor
Hiromi Obata
博美 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2194145A priority Critical patent/JP2963159B2/en
Publication of JPH0483978A publication Critical patent/JPH0483978A/en
Application granted granted Critical
Publication of JP2963159B2 publication Critical patent/JP2963159B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sealing With Elastic Sealing Lips (AREA)

Abstract

PURPOSE:To further improve a sealing function by arranging three or more annular grooves at unequal intervals such that a distance between the adjoining annular grooves is gradually decreased from the free edge side of a seal element toward the fixed edge side thereof. CONSTITUTION:A seal element 8 is formed of fluorine resin and three or more, for example, six annular grooves T1-T6 are axially formed in a slide surface 8a at unequal intervals during mounting. The annular grooves are formed at unequal intervals such that distances A2...A6 between adjoining annular grooves T1...T6 are gradually decreased by a given length at each interval from the freed edge side toward the external part S side. A press work is applied from the side where the annular groove is formed by means of a taper shank 11, and a curve toward the fluid containing chamber side is formed. This constitution reliably prevents leakage of fluid and further improves low wear resistance, heat resistance, and chemical resistance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自由端縁側が流体収納室側へと曲がる樹脂製
シールエレメントを有し、該シールエレメントが回転軸
に対して軸方向の一定幅で接し、いずれの回転方向に対
しても有効にシール機能を発揮できる両方向回転用オイ
ルシールに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention has a resin sealing element whose free end side bends toward a fluid storage chamber, and the sealing element has an axially constant position with respect to a rotating shaft. The present invention relates to an oil seal for bidirectional rotation that is in contact with the width thereof and can effectively exhibit a sealing function in either direction of rotation.

(従来の技術) シールエレメントとして樹脂、特に4ふり化エチレン樹
脂等のふっ素系樹脂を用いた場合は、耐摩耗性、耐熱性
及び対薬品性に優れたオイルシールを提供できるが、ゴ
ムよりも剛性が高いため摺動面が平滑か単なるブレーン
型ではシール機能が低下する。
(Prior art) When a resin, especially a fluorine-based resin such as tetrafluorinated ethylene resin, is used as the seal element, an oil seal with excellent wear resistance, heat resistance, and chemical resistance can be provided, but it is less effective than rubber. Due to its high rigidity, the sealing function will be degraded if the sliding surface is smooth or if it is just a plain type.

このため従来よりシール機能を向上させる工夫として、
例えばシールエレメントに環状のスプリングを装着して
シール圧を高めたり、あるいはシールエレメントの摺動
面倒に等間隔の同心円の環状溝を付けたりしている。
For this reason, as a way to improve the sealing function compared to before,
For example, an annular spring is attached to the seal element to increase the sealing pressure, or concentric annular grooves are formed at equal intervals on the sliding surface of the seal element.

しかしながらいずれも流体の漏れを充分に封止できると
はいえない。
However, none of these can be said to be able to sufficiently seal fluid leakage.

なお一方向回転用オイルシールの場合には、うす巻き状
の溝を形成してシール機能をさらに向上させることがで
きるが、これを両方向回転軸に用いると、逆回転時には
流体の漏れを促進することになる。
In the case of an oil seal for unidirectional rotation, the sealing function can be further improved by forming a thinly wound groove, but if this is used for a bidirectional rotation shaft, fluid leakage will be promoted during reverse rotation. It turns out.

(発明の目的) 本発明の目的は、耐熱、耐薬品性の高い粗製の両方向回
転用オイルシールにおいて、シール機能を一層向上させ
ることである。
(Objective of the Invention) An object of the present invention is to further improve the sealing function of a crude oil seal for bidirectional rotation with high heat resistance and chemical resistance.

(目的を達成するための技術的手段) 上記目的を達成するために本発明は、自由端縁側が流体
収納室側へと曲がる樹脂製シールエレメントを有し、該
シールエレメントが回転軸に対して軸方向の一定幅で接
する両方向回転用オイルシルにおいて、シールエレメン
トの摺動面側に、シール中心を中心とした同心環状溝を
3本以上形成し、シールエレメントの自由端縁側から固
定端縁側にゆくに従い環状溝間の間隔か順次小さくなる
ように環状溝を不等間隔に配置している。
(Technical Means for Achieving the Object) In order to achieve the above object, the present invention has a resin sealing element whose free end side bends toward the fluid storage chamber, and the sealing element is arranged with respect to the rotating shaft. In oil seals for bidirectional rotation that are in contact with each other at a constant width in the axial direction, three or more concentric annular grooves centered on the seal center are formed on the sliding surface side of the seal element, running from the free end edge of the seal element to the fixed end edge. Accordingly, the annular grooves are arranged at irregular intervals so that the distance between the annular grooves becomes gradually smaller.

また耐摩耗性、耐熱性及び耐薬品性を一層向上させるた
めには、樹脂製のシールエレメントとして、4ふっ化エ
ンチレン樹脂等のふっ素系樹脂を用いる。
Further, in order to further improve wear resistance, heat resistance, and chemical resistance, a fluororesin such as tetrafluoroethylene resin is used as the resin seal element.

上に2シールエレメントを成形する方法として、平板状
の樹脂製シールエレメントの一側面に、シールエレメン
ト中心を中心として直径の異なる同心の環状溝を3本以
上形成すると共に、環状溝間の間隔が、中心側から半径
方向外方側にゆくに従い順次小さくなるように各環状溝
の直径を設定し、該シールエレメントを環状溝が形成さ
れていない側へ曲げ加工(くせ付は加工)する。
As a method of molding two seal elements on the top, three or more concentric annular grooves with different diameters are formed around the center of the seal element on one side of a flat resin seal element, and the interval between the annular grooves is The diameter of each annular groove is set so that it becomes gradually smaller from the center side toward the outer side in the radial direction, and the seal element is bent (beveled) toward the side where the annular groove is not formed.

(実施例) 第1図は本発明によるオイルシールをハウジングに装着
した状態を示しており、ケース4等の/Xウジング2内
にオイルシール10か嵌着されており、オイルシール1
0は外周側に断面形状り字形の外側環状金具5を備え、
該環状金具5の内周側に、流体収納室R側から順に押え
金具6、シールエレメント8及びゴムガスケット7か配
置され、外周環状金具5のフランジ部分5aとかしめ部
分5bの間で挾持されている。流体収納室Rには流体と
してエンジンオイルL等が収納されている。
(Example) Fig. 1 shows the state in which the oil seal according to the present invention is installed in the housing, and the oil seal 10 is fitted in the /X housing 2 of the case 4, etc.
0 is equipped with an outer annular metal fitting 5 having a rectangular cross-section on the outer circumferential side,
A presser metal fitting 6, a seal element 8, and a rubber gasket 7 are arranged on the inner peripheral side of the annular metal fitting 5 in this order from the fluid storage chamber R side, and are held between the flange portion 5a and the caulking portion 5b of the outer peripheral annular metal fitting 5. There is. The fluid storage chamber R stores engine oil L and the like as fluid.

シールエレメント8はふっ素系樹脂、例えば4ふっ化エ
チレン樹脂でできており、耐摩耗性、耐熱性及び耐薬品
性に優れている。シールエレメント8の半径方向外方側
端部が押え金具6とゴムガスケット7の間に挟持固定さ
れ、内周側の自由端縁が流体収納室R側に曲かり、摺動
面8aが軸方向の一定幅で回転軸1の外周面に圧接して
いる。
The seal element 8 is made of a fluororesin, for example, a tetrafluoroethylene resin, and has excellent wear resistance, heat resistance, and chemical resistance. The radially outer end of the seal element 8 is clamped and fixed between the presser metal fitting 6 and the rubber gasket 7, the free inner edge is bent toward the fluid storage chamber R, and the sliding surface 8a is bent in the axial direction. It is pressed against the outer circumferential surface of the rotating shaft 1 with a constant width of .

シールエレメント8の摺動面8aには、装着時おいて軸
方向に不等間隔を隔てて3本以上、例えば6本の環状溝
T1・・・T6が形成されている。
Three or more, for example, six, annular grooves T1...T6 are formed in the sliding surface 8a of the seal element 8 at unequal intervals in the axial direction when the seal element 8 is installed.

第4図はシールエレメント8の自由端縁側部分(摺動面
部分)の拡大断面図を示しており、各環状溝TI・・・
T6はその断面形状が鋭角三角形状に開くと共に、半径
方向外方にゆくに従い流体収納室Rとは反対側、例えば
外部S側にくるように傾斜している。各環状溝T1・1
・16間の間隔A2・・・A6は自由端縁側(流体収納
室R側)から外部S側にいくに従い、所定長さ分づつ(
例えば0.4mmあるいは0.3mmづつ)順次狭くな
るように不等間隔に設定されている。また最も自由端縁
側の環状溝T1と自由端縁TOの間隔A1は上記環状溝
間の間隔の変化に準じて、環状溝T1とT2の間の間隔
よりも上記所定長さ分長く設定されている。即ちAt 
>A2 >A3 >A4 >A5 >ABとなっている 次にオイルシールの成形過程を説明する。第3図は曲状
くせ付は前における平板状態のシールエレメント8を示
しており、該平板状エレメント8の摺動面となる一側面
に、切込みにより、スリット状の環状溝Tl・・・T6
が形成されている。
FIG. 4 shows an enlarged sectional view of the free edge side portion (sliding surface portion) of the seal element 8, and shows each annular groove TI...
T6 has an acute triangular cross-sectional shape and is inclined so that as it goes outward in the radial direction, it comes to the side opposite to the fluid storage chamber R, for example, to the outside S side. Each annular groove T1/1
・The interval A2...A6 between 16 is a predetermined length (
They are set at irregular intervals so as to become narrower (for example, by 0.4 mm or 0.3 mm). Further, the distance A1 between the annular groove T1 closest to the free edge and the free edge TO is set to be longer than the distance between the annular grooves T1 and T2 by the predetermined length, in accordance with the change in the distance between the annular grooves. There is. That is, At
>A2 >A3 >A4 >A5 >AB Next, the process of forming the oil seal will be explained. FIG. 3 shows the sealing element 8 in a flat state at the front of the curved bevel, and one side surface of the flat element 8 that becomes the sliding surface has a slit-shaped annular groove Tl...T6.
is formed.

このスリット状の環状溝TI・・・T6はシールエレメ
ントの厚みの概ね半分の深さまで至り、流体収納室側に
いくに従い外方にくるように傾斜している。軸方向と垂
直な面に対しての傾斜角θか例えば456となっている
。そして各環状溝T1・・・T6はシールエレメント中
心を中心として同心に形成されており、自由端縁TOと
最も内周側の環状溝T1との直径の差Di −Do  
(2AI ) 、並びに隣り合う各環状溝T1・・・1
6間の直径の差(2A2・・・2A6)は、内方側から
外方側にゆくに従い、所定長さ分づつ(例えば0.4m
+11あるいは0.3mmづつ)順次短くなるように不
等間隔になっている。即ちAI >A2 >A3 >A
4 >A5>A6となっている。
The slit-shaped annular grooves TI...T6 extend to a depth approximately half the thickness of the sealing element, and are inclined outward toward the fluid storage chamber. The inclination angle θ with respect to a plane perpendicular to the axial direction is, for example, 456. Each of the annular grooves T1...T6 is formed concentrically around the center of the seal element, and the difference in diameter between the free edge TO and the innermost annular groove T1 is
(2AI), and each adjacent annular groove T1...1
The difference in diameter between the two (2A2...2A6) is determined by a predetermined length (for example, 0.4 m) from the inner side to the outer side.
+11 mm or 0.3 mm) are spaced unevenly so that they become shorter in sequence. That is, AI > A2 > A3 > A
4>A5>A6.

このように直径が異なる同心のスリット状環状溝T1・
・・T6を刻んだものに対して、第2図のように環状溝
形成側からテーパーシャンク11により押し加工し、流
体収納室側に曲状にくせ付けをする。
In this way, the concentric slit-shaped annular grooves T1 with different diameters
...A piece with T6 carved therein is pressed from the annular groove forming side using the tapered shank 11 as shown in Fig. 2, and is bent into a curved shape on the fluid storage chamber side.

次に本発明を適用したオイルシールと、従来のプレーン
型、スプリング装着型、第6図のような等間隔環状溝型
及び第8図のような半径方向外方にゆくに従い環状溝間
隔が広くなる逆不等間隔環状溝型とを、同一条件の下で
比較実験をしたデータを示す。
Next, we will discuss the oil seal to which the present invention is applied, the conventional plain type, the spring-loaded type, the equally spaced annular groove type as shown in Fig. 6, and the annular groove spacing that becomes wider as it goes outward in the radial direction as shown in Fig. 8. The following is data from a comparative experiment under the same conditions with the reverse unevenly spaced annular groove type.

(A)共通条件 (1)ハウジング径: φ80H8 (2)軸径    : φ60H8 (3)軸材料   : 中炭素鋼 (4)軸硬度   :HRc30〜40(5)流体  
  :エンジンオイル SAE  l0W−30 (6)オイルレベル二軸中心 (7)オイル温度 :120@ (8)軸偏心jl:0.1關TIR以下(9)取付偏心
量 :0.1mmTIR以下(10)軸回転数  :6
000rp11(11)回転サイクル:20時間運転、
4時間休止(B)第3図の本願実施例の具体的寸法例1
(1)シールエレメントの厚み:1.11璽(2)環状
溝の数:6本 (3)環状溝の角度θ:45゜ (4)環状溝の切込み深さ二軸方向深さ0.6mm(5
)第3図の自由端縁TOの直径及び各環状溝T1・・・
T6の直径 DO:φ50.0、 Dl :φ52.8、D2 :φ
55.2、 D3 :φ57.2、D4:φ58.8、
 D5 :φ60.0、DO:φ60.8 (6)自由端縁TOと環状溝T1の間並びに環状溝間の
間隔 2A1 : 2.8、 2A2  :2.4.2A3 
:2.0、 2A4:1.6.2A5 :l、2、 2
A6  :0.8、即ち直径差を0.4關ずつ少なくし
ている。
(A) Common conditions (1) Housing diameter: φ80H8 (2) Shaft diameter: φ60H8 (3) Shaft material: Medium carbon steel (4) Shaft hardness: HRc30~40 (5) Fluid
:Engine oil SAE 10W-30 (6) Oil level center of two shafts (7) Oil temperature: 120 @ (8) Shaft eccentricity: 0.1 mm TIR or less (9) Mounting eccentricity: 0.1 mm TIR or less (10) Shaft rotation speed: 6
000rp11 (11) rotation cycle: 20 hours operation,
4-hour break (B) Specific dimension example 1 of the embodiment of the present application in Fig. 3
(1) Thickness of seal element: 1.11 mm (2) Number of annular grooves: 6 (3) Angle θ of annular groove: 45° (4) Cutting depth of annular groove Biaxial depth 0.6 mm (5
) The diameter of the free edge TO in Fig. 3 and each annular groove T1...
T6 diameter DO: φ50.0, Dl: φ52.8, D2: φ
55.2, D3: φ57.2, D4: φ58.8,
D5: φ60.0, DO: φ60.8 (6) Spacing between free edge TO and annular groove T1 and between annular grooves 2A1: 2.8, 2A2: 2.4.2A3
:2.0, 2A4:1.6.2A5 :l, 2, 2
A6: 0.8, that is, the diameter difference is decreased by 0.4 degrees.

(C)第3図の本願実施例の具体的寸法例2(1)シー
ルエレメントの厚み:1.1mm(2)環状溝の数=6
本 (3)環状溝の角度θ:45゜ (4)環状溝の切込み深さ二軸方向深さ0.6mm(5
)自由端縁TO及び各環状溝T1〜T6の直DO:φ5
0.0、  Dl :φ52.4、D2 :φ54.5
、  D3 :φ56.3、D4 :φ57.8、  
D5 :φ59.0、DO: φ59.9 (6)自由端縁TOと環状溝TIの間並びに環状溝間の
間隔 2Al  :2.4、 2A2:2.1.2A3 : 
1.8、 2A4 :l、5.2A3 :l、2、 2
A4 :Q、9、即ち直径差を0.3關ずっ少なくして
いる。
(C) Specific dimension example 2 of the embodiment of the present application shown in Fig. 3 (1) Thickness of seal element: 1.1 mm (2) Number of annular grooves = 6
Book (3) Angle θ of annular groove: 45° (4) Cutting depth of annular groove Biaxial depth 0.6 mm (5
) Free edge TO and straight DO of each annular groove T1 to T6: φ5
0.0, Dl: φ52.4, D2: φ54.5
, D3: φ56.3, D4: φ57.8,
D5: φ59.0, DO: φ59.9 (6) Spacing between free edge TO and annular groove TI and between annular grooves 2Al: 2.4, 2A2: 2.1.2A3:
1.8, 2A4: l, 5.2A3: l, 2, 2
A4: Q, 9, that is, the diameter difference is reduced by 0.3 degrees.

(D)第6図の等間隔環状溝型シールエレメントの寸法
例 (1)シールエレメントの厚み:1.1mm(2)環状
溝の数=6本 (3)環状溝の角度θ:45゜ (4)環状溝の切込み深さ二軸方向深さ0.6+u(5
)自由端縁TO及び各環状溝Tl−T6の直径 DO:φ50.0、  Dl :φ52.0、D3 :
φ54.0、  D4 :φ56.0、D5 :φ58
.0、  DO:φ60.OD7 :φ62.0 (6)自由端縁TOと環状溝TIの間並びに環状溝間の
間隔 直径差2Al 、2A2.2A3.2A4.2A5及び
2ABはすべて2■としている。
(D) Dimension example of the equally spaced annular groove type seal element shown in Fig. 6 (1) Thickness of seal element: 1.1 mm (2) Number of annular grooves = 6 (3) Angle θ of annular groove: 45° ( 4) Cutting depth of annular groove biaxial depth 0.6+u(5
) Diameter of free edge TO and each annular groove Tl-T6 DO: φ50.0, Dl: φ52.0, D3:
φ54.0, D4: φ56.0, D5: φ58
.. 0, DO:φ60. OD7: φ62.0 (6) The diameter differences 2Al, 2A2.2A3.2A4.2A5 and 2AB between the free edge TO and the annular groove TI and between the annular grooves are all 2■.

(E)第8図の逆子等間隔型のシールエレメントの寸法
例 (1)シールエレメントの厚み+1.1mm(2)環状
溝の数二6本 (3)環状溝の角度θ:45゜ (4)環状溝の切込み深さ:軸方同法さ0.6mm(5
)自由端縁TO及び各環状AlT1〜T6の直径 DO:φ50.0、  DI :φ50.8、D2 :
φ52.0、  D3 :φ53.6、D4 :φ55
.6、  D5 :φ58.0゜DO: φ60.8 (6)自由端縁TOと環状溝T1の間並びに環状溝間の
間隔 2Al  :Q、8、 2A2  :l、2.2A3 
 ・1.6、 2A4 :2.0.2A5 : 2.4
、 2A6 :2.8、即ち直径差を0.4tnmずつ
大きくしている。
(E) Dimension example of the seal element of the breech equidistant type shown in Fig. 8 (1) Thickness of the seal element + 1.1 mm (2) Number of annular grooves: 26 (3) Angle θ of the annular groove: 45° (4 ) Cutting depth of annular groove: Axial depth 0.6 mm (5
) Diameter of free edge TO and each annular AlT1 to T6 DO: φ50.0, DI: φ50.8, D2:
φ52.0, D3: φ53.6, D4: φ55
.. 6, D5: φ58.0° DO: φ60.8 (6) Distance between free edge TO and annular groove T1 and between annular grooves 2Al: Q, 8, 2A2: l, 2.2A3
・1.6, 2A4: 2.0.2A5: 2.4
, 2A6: 2.8, that is, the diameter difference is increased by 0.4 tnm.

(F)実験の結果 以上の各条件で実験した結果、本願を適用した前記寸法
例(B)、(C)では共に10サイクル漏れは生じなか
った。
(F) Results of Experiments As a result of experiments under the above conditions, no leakage occurred for 10 cycles in both the dimension examples (B) and (C) to which the present application was applied.

これに対してプレーン型では運転初期から漏れ初め、1
サイクル後(20時間運転4時間休止後)に9.97g
の漏れが検出された。
On the other hand, with the plain type, leakage begins from the beginning of operation, and 1
9.97g after cycle (20 hours operation, 4 hours rest)
A leak was detected.

スプリング装着型では運転初期から漏れ初め、1サイク
ル後(20時間運転4時間休止後)に2゜55gの漏れ
が検出された。
The spring-equipped type began to leak from the beginning of operation, and a leak of 2.55 g was detected after one cycle (after 20 hours of operation and 4 hours of rest).

第6図の同心円等間隔環状溝型では、運転初期から漏れ
初め、1サイクル後(20時間運転4時間休止後)に3
.16gの漏れか検出された。
In the concentrically spaced annular groove type shown in Fig. 6, leakage begins at the beginning of operation, and after 1 cycle (20 hours of operation and 4 hours of rest), leakage begins to leak.
.. A leak of 16g was detected.

第8図の逆子等間隔環状溝型ては、運転初期から漏れ初
め、1サイクル後(20時間運転4時間休止後)に20
.07gの漏れが検出された。
The breech equally spaced annular groove type shown in Fig. 8 starts leaking from the beginning of operation, and after 1 cycle (20 hours of operation and 4 hours of rest), 20
.. A leak of 0.7g was detected.

なお本願のように流体収納室側から順に環状溝間隔を狭
めていくことによりオイルの漏れを効果的に防止できる
理由は、次の通りと考えられる。
The reason why oil leakage can be effectively prevented by narrowing the annular groove interval sequentially from the fluid storage chamber side as in the present application is considered to be as follows.

第4図の接面圧力分布において、流体収納室R側から外
部S側に従い環状溝間隔が狭くなることに伴って、各環
状溝間隔内の圧力分布が尖端状に高くなっていき、全体
の圧力分布として外部S側にいくに従い圧力が高くなる
勾配を有する。この圧力勾配により流体収納室R側から
の流体は、シール摺動面部分に浸入しても順次流体圧力
側に押し戻されると考えられる。又装着時に環状溝TI
・・・T6の形状が第4図のように流体収納室側に向い
て開く鋭角三角形状になっていることにより、くさび作
用が生じてシール圧を高めている。
In the contact surface pressure distribution shown in Fig. 4, as the annular groove interval becomes narrower from the fluid storage chamber R side to the outside S side, the pressure distribution within each annular groove interval increases in a pointed manner, and the overall The pressure distribution has a gradient in which the pressure increases toward the outside S side. It is thought that due to this pressure gradient, even if the fluid from the fluid storage chamber R side enters the seal sliding surface portion, it is sequentially pushed back to the fluid pressure side. Also, when installing the annular groove TI
Because the shape of T6 is an acute triangular shape that opens toward the fluid storage chamber as shown in FIG. 4, a wedge effect is generated to increase the sealing pressure.

一方第7図のように等間隔環状溝型では圧力の勾配が殆
んどなく、くさび作用が生じてシール圧を高めているが
、本発明のような勾配による押し戻し作用は働かない。
On the other hand, in the equally spaced annular groove type shown in FIG. 7, there is almost no pressure gradient and a wedge effect occurs to increase the sealing pressure, but the push-back effect due to the gradient does not work as in the present invention.

また第9図の逆子等間隔型では、勾配が逆になるので、
本発明とは反対にオイルを外部S側に押し出し、それに
より漏油の量か多いと考えられる。
In addition, in the breech equally spaced type shown in Figure 9, the slope is reversed, so
Contrary to the present invention, oil is pushed out to the outside S side, which is thought to cause a large amount of oil leakage.

(別の実施例) 環状溝の数は6本に限定されず少くとも3本以上あれば
よい。またシールエレメントの材料としては他のふっ素
径樹脂を用いることも可能である。
(Another Example) The number of annular grooves is not limited to six, but may be at least three or more. It is also possible to use other fluororesins as the material for the seal element.

(発明の効果) 以上説明したように本発明によると、両方向回転用オイ
ルシールにおいて、シールエレメント8の摺動面側に、
シール中心を中心とした環状溝を3本以上形成し、シー
ルエレメントの自由端縁側から固定端縁側にゆくに従い
環状溝間の幅が順次小さくなるように環状溝を不等間隔
に配置しているので、摺動面において、流体収納室側か
ら外部側にいくに従い接面圧が順次高くかつ尖端状にな
っていくと考えられ、その圧力勾配により流体を流体収
納室側に効果的に押し戻し、前記実験の結果に示すよう
に従来の各種型のオイルシールに比べ流体の漏れを確実
に防止できる。
(Effects of the Invention) As explained above, according to the present invention, in the oil seal for bidirectional rotation, on the sliding surface side of the seal element 8,
Three or more annular grooves are formed around the center of the seal, and the annular grooves are arranged at uneven intervals so that the width between the annular grooves decreases from the free edge side to the fixed edge side of the seal element. Therefore, on the sliding surface, it is thought that the contact pressure becomes higher and more pointed as you go from the fluid storage chamber side to the outside side, and the pressure gradient effectively pushes the fluid back to the fluid storage chamber side. As shown in the results of the above experiments, fluid leakage can be more reliably prevented than with conventional oil seals of various types.

また樹脂製のシールエレメントとして、4ふっ化エンチ
レン樹脂等のふっ素糸樹脂を用いると、低摩擦性、耐熱
性及び耐薬品性に一層優れたものとすることができる。
Further, when a fluorine thread resin such as tetrafluoroethylene resin is used as the resin seal element, it is possible to obtain even more excellent low friction properties, heat resistance, and chemical resistance.

従って例えば高速回転用ディーゼルエンジンのクランク
軸受は部分、薬品ポンプ等各種回転部材の軸受として利
用できる。
Therefore, for example, the crank bearing of a high-speed diesel engine can be used as a bearing for various rotating parts such as parts, chemical pumps, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した両方向回転用シールのハウジ
ング装着時に縦断面図、第2図は自由状態時の縦断面図
、第3図は曲げくせ付は前の状態を示す縦断面図、第4
図は装着使用時における縦断面図及び接面圧力分布図、
第5図は正面部分図、第6図及び第8図はそれぞれ本発
明のオイルシールと実験比較したオイルシールの曲げく
せ付は前の状態を示す縦断面図、第7図及び第9図はそ
れぞれ第6図及び第8図のオイルシールの装着使用時に
おける縦断面図及び接面圧力分布図である。 8・・・シールエレメント、TO・・・自由端縁、T1
、T2、T3、T4、T5、T6・・・環状溝特許出願
人  三菱電線工業株式会社 代理人  弁理士大蒜忠孝 〜−1
FIG. 1 is a vertical cross-sectional view of a bidirectional rotary seal to which the present invention is applied when installed in a housing, FIG. 2 is a vertical cross-sectional view in a free state, and FIG. 3 is a vertical cross-sectional view showing a state before bending. Fourth
The figure is a longitudinal cross-sectional view and contact surface pressure distribution diagram when used.
FIG. 5 is a partial front view, FIGS. 6 and 8 are longitudinal cross-sectional views showing the oil seal in the experimentally compared oil seal with the present invention before bending, and FIGS. 7 and 9 are FIG. 8 is a longitudinal cross-sectional view and a contact pressure distribution diagram of the oil seals of FIGS. 6 and 8, respectively, when installed and in use. 8...Seal element, TO...Free edge, T1
, T2, T3, T4, T5, T6... Annular groove patent applicant Mitsubishi Cable Industries Co., Ltd. agent Patent attorney Tadataka Daihiru ~-1

Claims (3)

【特許請求の範囲】[Claims] (1)自由端縁側が流体収納室側へと曲がる樹脂製シー
ルエレメントを有し、該シールエレメントが回転軸に対
して軸方向の一定幅で接する両方向回転用オイルシール
において、シールエレメントの摺動面側に、シール中心
を中心とした同心の環状溝を3本以上形成し、シールエ
レメントの自由端縁側から固定端縁側にゆくに従い環状
溝間の幅が順次小さくなるように環状溝を不等間隔に配
置したことを特徴とする両方向回転用オイルシール。
(1) In an oil seal for bidirectional rotation, which has a resin seal element whose free edge side bends toward the fluid storage chamber side, and in which the seal element contacts the rotating shaft with a constant width in the axial direction, the sliding of the seal element Three or more concentric annular grooves centered on the seal center are formed on the surface side, and the annular grooves are arranged unequally so that the width between the annular grooves decreases sequentially from the free edge side to the fixed edge side of the seal element. An oil seal for bidirectional rotation characterized by being arranged at intervals.
(2)樹脂製のシールエレメントとして、4ふっ化エン
チレン樹脂等のふっ素系樹脂を用いたことを特徴とする
請求項1記載の両方向回転用オイルシール。
(2) The oil seal for bidirectional rotation according to claim 1, characterized in that the resin seal element is made of a fluororesin such as tetrafluoroethylene resin.
(3)平板状の樹脂製シールエレメントの一側面に、シ
ールエレメント中心を中心として直径の異なる同心の環
状溝を3本以上形成すると共に、環状溝間の間隔が、中
心側から半径方向外方側にゆくに従い順次小さくなるよ
うに各環状溝の直径を設定し、該シールエレメントを環
状溝が形成されていない側へ曲げ加工することにより請
求項1記載の曲状のオイルシールエレメントを成形する
オイルシール成形方法。
(3) Three or more concentric annular grooves with different diameters are formed around the center of the seal element on one side of the flat resin seal element, and the intervals between the annular grooves are radially outward from the center side. The curved oil seal element according to claim 1 is formed by setting the diameter of each annular groove so that it becomes gradually smaller toward the side, and bending the seal element toward the side where the annular groove is not formed. Oil seal forming method.
JP2194145A 1990-07-23 1990-07-23 Oil seal for bidirectional rotation and molding method thereof Expired - Lifetime JP2963159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2194145A JP2963159B2 (en) 1990-07-23 1990-07-23 Oil seal for bidirectional rotation and molding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2194145A JP2963159B2 (en) 1990-07-23 1990-07-23 Oil seal for bidirectional rotation and molding method thereof

Publications (2)

Publication Number Publication Date
JPH0483978A true JPH0483978A (en) 1992-03-17
JP2963159B2 JP2963159B2 (en) 1999-10-12

Family

ID=16319663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2194145A Expired - Lifetime JP2963159B2 (en) 1990-07-23 1990-07-23 Oil seal for bidirectional rotation and molding method thereof

Country Status (1)

Country Link
JP (1) JP2963159B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122723A (en) * 2009-12-09 2011-06-23 Schaeffler Technologies Gmbh & Co Kg Seal device
WO2015092983A1 (en) * 2013-12-17 2015-06-25 株式会社デンソー Air conditioning unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122723A (en) * 2009-12-09 2011-06-23 Schaeffler Technologies Gmbh & Co Kg Seal device
WO2015092983A1 (en) * 2013-12-17 2015-06-25 株式会社デンソー Air conditioning unit
JP2015116883A (en) * 2013-12-17 2015-06-25 株式会社デンソー Air conditioning unit
US10493817B2 (en) 2013-12-17 2019-12-03 Denso Corporation Air conditioning unit

Also Published As

Publication number Publication date
JP2963159B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
US6685194B2 (en) Hydrodynamic rotary seal with varying slope
US4729569A (en) Twist proof seal ring arrangement for shafts
US3527507A (en) Unitary bearing element with improved,integral scraper-sealing lip
EP2492551B1 (en) Hydrodynamic rotary seal with opposed tapering seal lips
US3515395A (en) Unidirectional pumping seal
US7052020B2 (en) Hydrodynamic rotary seal
EP0018370B1 (en) Annular seal
US5975538A (en) Radial lip shaft seal
CA2113878C (en) Shaft seal and bore assembly
US20030209860A1 (en) Sealing ring
WO2003023231A1 (en) Seal device for water pump, rotation support device for water pump, and water pump
US4586718A (en) Sealing assembly with floating gland means for rotatable shafts
CN105473912A (en) Divided mechanical seal
US4436317A (en) Cassette seal having a counterring free from unrelieved internal stress
EP1469238B1 (en) Seal device
US20110018208A1 (en) Rotary oil feedthrough
US4754994A (en) Stub for connecting a hose and especially for coolant hoses in internal combustion engines
US4733873A (en) Mechanical seal
JPH0483978A (en) Oil seal for two-way rotation and molding method thereof
US3497278A (en) Bearing assembly
US3337221A (en) Seal having a drawn thin walled wear sleeve
US4921260A (en) Lip seal device for water pumps
US6913264B2 (en) Sealing arrangement
US11629785B2 (en) Fiber reinforced seal lips for increased pressure resistance
JP3068170B2 (en) Oil seal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

EXPY Cancellation because of completion of term