JP2963159B2 - Oil seal for bidirectional rotation and molding method thereof - Google Patents

Oil seal for bidirectional rotation and molding method thereof

Info

Publication number
JP2963159B2
JP2963159B2 JP2194145A JP19414590A JP2963159B2 JP 2963159 B2 JP2963159 B2 JP 2963159B2 JP 2194145 A JP2194145 A JP 2194145A JP 19414590 A JP19414590 A JP 19414590A JP 2963159 B2 JP2963159 B2 JP 2963159B2
Authority
JP
Japan
Prior art keywords
annular grooves
oil seal
seal
annular groove
sealing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2194145A
Other languages
Japanese (ja)
Other versions
JPH0483978A (en
Inventor
博美 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2194145A priority Critical patent/JP2963159B2/en
Publication of JPH0483978A publication Critical patent/JPH0483978A/en
Application granted granted Critical
Publication of JP2963159B2 publication Critical patent/JP2963159B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sealing With Elastic Sealing Lips (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自由端縁側が流体収納室側へと曲がる樹脂
製シールエレメントを有し、該シールエレメントが回転
軸に対して軸方向の一定幅で接し、いずれの回転方向に
対しても有効にシール機能を発揮できる両方向回転用オ
イルシールに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention has a resin sealing element whose free edge bends toward a fluid storage chamber, and the sealing element is fixed in an axial direction with respect to a rotating shaft. The present invention relates to a bidirectional rotation oil seal that contacts in width and can effectively exert a sealing function in any rotation direction.

(従来の技術) シールエレメントとして樹脂、特に4ふっ化エチレン
樹脂等のふっ素系樹脂を用いた場合は、耐摩耗製、耐熱
性及び対薬品性に優れたオイルシールを提供できるが、
ゴムよりも剛性が高いため摺動面が平滑か単なるプレー
ン型ではシール機能が低下する。
(Prior art) When a resin, particularly a fluororesin such as an ethylene tetrafluoride resin, is used as a seal element, an oil seal made of wear-resistant, excellent in heat resistance and chemical resistance can be provided.
Since the rigidity is higher than that of rubber, the sliding surface is smooth or the seal function is reduced in a simple plain type.

このため従来よりシール機能を向上させる工夫とし
て、例えばシールエレメントに環状のスプリングを装着
してシール圧を高めたり、あるいはシールエレメントの
摺動面側に等間隔の同心円の環状溝を付けたりしてい
る。
For this reason, as a device for improving the sealing function than before, for example, an annular spring is mounted on the sealing element to increase the sealing pressure, or an equidistant concentric annular groove is provided on the sliding surface side of the sealing element. I have.

しかしながらいずれも流体の漏れを充分に封止できる
とはいえない。
However, in any case, it cannot be said that leakage of the fluid can be sufficiently sealed.

なお一方向回転用オイルシールの場合には、うず巻き
状の溝を形成してシール機能をさらに向上させることが
できるが、これを両方向回転軸に用いると、逆回転時に
は流体の漏れを促進することになる。
In the case of a one-way rotation oil seal, a spiral-shaped groove can be formed to further improve the sealing function.However, when this is used for a two-way rotation shaft, fluid leakage is promoted during reverse rotation. become.

(発明の目的) 本発明の目的は、耐熱、耐薬品性の高い脂製の両方向
回転用オイルシールにおいて、シール機能を一層向上さ
せることである。
(Object of the Invention) It is an object of the present invention to further improve the sealing function of a bidirectional rotating oil seal made of a high heat and chemical resistance.

(目的を達成するための技術的手段) 上記目的を達成するために本発明は、自由端縁側が流
体収納室側へと曲がる樹脂製シールエレメントを有し、
該シールエレメントが回転軸に対して軸方向の一定幅で
接する両方向回転用オイルシールにおいて、シールエレ
メントの摺動面側に、シール中心を中心とした同心環状
溝を3本以上形成し、シールエレメントの自由端縁側か
ら固定端縁側にゆくに従い環状溝間の間隔が順次小さく
なるように環状溝を不等間隔に配置している。
(Technical Means for Achieving the Object) In order to achieve the above object, the present invention has a resin sealing element having a free edge bent toward the fluid storage chamber,
In a two-way rotary oil seal in which the seal element is in contact with the rotary shaft at a constant width in the axial direction, three or more concentric annular grooves centered on the seal center are formed on the sliding surface side of the seal element. The annular grooves are arranged at unequal intervals so that the distance between the annular grooves gradually decreases from the free edge side to the fixed edge side.

また耐摩耗性、耐熱性及び耐薬品性を一層向上させる
ためには、樹脂製のシールエレメントとして、4ふっ化
エンチレン樹脂等のふっ素系樹脂を用いる。
Further, in order to further improve the wear resistance, heat resistance and chemical resistance, a fluorine-based resin such as a tetrafluoroethylene resin is used as the resin sealing element.

上記シールエレメントを成形する方法として、平板状
の樹脂製シールエレメントの一側面に、シールエレメン
ト中心を中心として直径の異なる同心の環状溝を3本以
上形成すると共に、環状溝間の間隔が、中心側から半径
方向外方側にゆくに従い順次小さくなるように各環状溝
の直径を設定し、該シールエレメントを環状溝が形成さ
れていない側へ曲げ加工(くせ付け加工)する。
As a method of forming the seal element, three or more concentric annular grooves having different diameters around the center of the seal element are formed on one side surface of a flat resin seal element, and the interval between the annular grooves is set at the center. The diameter of each annular groove is set so as to gradually decrease from the side toward the radially outward side, and the seal element is bent (has a bending process) toward the side where the annular groove is not formed.

(実施例) 第1図は本発明によるオイルシールをハウジングに装
着した状態を示しており、ケース4等のハウジング2内
にオイルシール10が嵌着されており、オイルシール10は
外周側に断面形状L字形の外側環状金具5を備え、該環
状金具5の内周側に、流体収納室R側から順に押え金具
6、シールエレメント8及びゴムガスケット7が配置さ
れ、外周環状金具5のフランジ部分5aとかしめ部分5bの
間で挾持されている。流体収納室Rには流体としてエン
ジンオイルL等が収納されている。
(Embodiment) FIG. 1 shows a state in which an oil seal according to the present invention is mounted on a housing. An oil seal 10 is fitted in a housing 2 such as a case 4, and the oil seal 10 has a cross section on the outer peripheral side. An outer annular metal fitting 5 having an L-shape is provided. A holding metal fitting 6, a seal element 8 and a rubber gasket 7 are arranged on the inner peripheral side of the annular metallic fitting 5 in this order from the fluid storage chamber R side. It is clamped between 5a and swaged portion 5b. The fluid storage chamber R stores engine oil L and the like as a fluid.

シールエレメント8はふっ素系樹脂、例えば4ふっ化
エチレン樹脂でできており、耐摩耗性、耐熱性及び耐薬
品性に優れている。シールエレメント8の半径方向外方
側端部が押え金具6とゴムガスケット7の間に挾持固定
され、内周側の自由端縁が流体収納室R側に曲がり、摺
動面8aが軸方向の一定幅で回転軸1の外周面に圧接して
いる。
The seal element 8 is made of a fluororesin, for example, an ethylene tetrafluoride resin, and has excellent wear resistance, heat resistance and chemical resistance. The radially outer end of the seal element 8 is clamped and fixed between the presser fitting 6 and the rubber gasket 7, the inner peripheral free end bends toward the fluid storage chamber R, and the sliding surface 8a extends in the axial direction. It is in pressure contact with the outer peripheral surface of the rotating shaft 1 with a constant width.

シールエレメント8の摺動面8aには、装着時おいて軸
方向に不等間隔を隔てて3本以上、例えば6本の環状溝
T1…T6が形成されている。
On the sliding surface 8a of the seal element 8, three or more, for example, six annular grooves are provided at uneven intervals in the axial direction during mounting.
T1 to T6 are formed.

第4図はシールエレメント8の自由端縁側部分(摺動
面部分)の拡大断面図を示しており、各環状溝T1…T6は
その断面形状が鋭角三角形状に開くと共に、半径方向外
方にゆくに従い流体収納室Rとは反対側、例えば外部S
側にくるように傾斜している。各環状溝T1…T6間の間隔
A2…A6は自由端縁側(流体収納室R側)から外部S側に
いくに従い、所定長さ分づつ(例えば0、4mmあるいは
0.3mmづつ)順次狭くなるよう不等間隔に設定されてい
る。また最も自由端縁側の環状溝T1と自由端縁T0の間隔
A1は上記環状溝間の間隔の変化に準じて、環状溝T1とT2
の間の間隔よりも上記所定長さ分長く設定されている。
即ちA1>A2>A3>A4>A5>A6となっている。
FIG. 4 is an enlarged sectional view of a free edge side portion (sliding surface portion) of the seal element 8. Each of the annular grooves T1... T6 has an acute triangular cross section and a radially outward portion. As it goes, the side opposite to the fluid storage chamber R, for example, the outside S
It is inclined to come to the side. Spacing between each annular groove T1… T6
A2... A6 are separated by a predetermined length (for example, 0, 4 mm, or 0 mm) from the free edge side (the fluid storage chamber R side) to the outside S side.
(Each 0.3 mm) The intervals are set to be unequal so that they gradually become narrower. Also, the interval between the annular groove T1 on the most free edge side and the free edge T0
A1 corresponds to the change in the interval between the annular grooves, and the annular grooves T1 and T2
Is set to be longer by the above-mentioned predetermined length than the interval between.
That is, A1>A2>A3>A4>A5> A6.

次にオイルシールの成形過程を説明する。第3図は曲
状くせ付け前における平板状態のシールエレメント8を
示しており、該平板状エレメント8の摺動面となる一側
面に、切込みにより、スリット状の環状溝T1…T6が形成
されている。
Next, the process of forming the oil seal will be described. FIG. 3 shows the seal element 8 in a flat plate state before being bent, and a slit-shaped annular groove T1... T6 is formed on one side of the flat plate element 8 serving as a sliding surface by cutting. ing.

このスリット状の環状溝T1…T6はシールエレメントの
厚みの概ね半分の深さまで至り、流体収納室側にいくに
従い外方にくるように傾斜している。軸方向と垂直な面
に対しての傾斜角θが例えば45゜となっている。そして
各環状溝T1…T6はシールエレメント中心を中心として同
心に形成されており、自由端縁T0と最も内周側の環状溝
T1との直径の差D1−D0(2A1)、並びに隣り合う各環状
溝T1…T6間の直径の差(2A2…2A6)は、内方側から外方
側にゆくに従い、所定長さ分づつ(例えば0、4mmある
いは0.3mmづつ)順次短くなるように不等間隔になって
いる。即ちA1>A2>A3>A4>A5>A6となっている。
The slit-shaped annular grooves T1 to T6 reach a depth of approximately half the thickness of the seal element, and are inclined so as to become outward as they approach the fluid storage chamber. The inclination angle θ with respect to a plane perpendicular to the axial direction is, for example, 45 °. Each annular groove T1 ... T6 is formed concentrically with the center of the seal element as the center, and the free end edge T0 and the innermost annular groove
The difference D1-D0 (2A1) in diameter from T1 and the difference in diameter (2A2 ... 2A6) between the adjacent annular grooves T1 ... T6 are divided by a predetermined length from the inside to the outside. (Each 0, 4 mm, or 0.3 mm, for example) are unequally spaced so as to be sequentially shorter. That is, A1>A2>A3>A4>A5> A6.

このように直径が異なる同心のスリット状環状溝T1…
T6を刻んだものに対して、第2図のように環状溝形成側
からテーパーシャンク11により押し加工し、流体収納室
側に曲状にくせ付けをする。
In this way, concentric slit-shaped annular grooves T1 with different diameters…
As shown in FIG. 2, the cut T6 is pressed from the side where the annular groove is formed by the tapered shank 11, and is curved to the fluid storage chamber side.

次に本発明を適用したオイルシールと、従来のプレー
ン型、スプリング装着型、第6図のような等間隔環状溝
型及び第8図のような半径方向外方にゆくに従い環状溝
間隔が広くなる逆不等間隔環状溝型とを、同一条件の下
で比較実験をしたデータを示す。
Next, the oil seal to which the present invention is applied, the conventional plain type, the spring mounted type, the equally-spaced annular groove type as shown in FIG. 6 and the annular groove interval are widened radially outward as shown in FIG. 7 shows data obtained by performing a comparative experiment under the same conditions with an inverted unequally spaced annular groove type.

(A)共通条件 (1)ハウジング径:φ80H8 (2)軸径 :φ60H8 (3)軸材料 :中炭素鋼 (4)軸硬度 :HRc30〜40 (5)流体 :エンジンオイルSAE 10W−30 (6)オイルレベル:軸中心 (7)オイル温度 :120゜ (8)軸偏心量 :0.1mmTIR以下 (9)取付偏心量 :0.1mmTIR以下 (10)軸回転数 :6000rpm (11)回転サイクル:20時間運転、4時間休止 (B)第3図の本願実施例の具体的寸法例1 (1)シールエレメントの厚み:1.1mm (2)環状溝の数:6本 (3)環状溝の角度θ:45゜ (4)環状溝の切込み深さ:軸方向深さ0.6mm (5)第3図の自由端縁T0の直径及び各環状溝T1…T6の
直径 D0:φ50.0、D1:φ52.8、 D2:φ55.2、D3:φ57.2、 D4:φ58.8、D5:φ60.0、 D6:φ60.8 (6)自由端縁T0と環状溝T1の間並びに環状溝間の間隔 2A1:2.8、2A2:2.4、 2A3:2.0、2A4:1.6、 2A5:1.2、2A6:0.8、 即ち直径差を0.4mmずつ少なくしている。
(A) Common conditions (1) Housing diameter: φ80H8 (2) Shaft diameter: φ60H8 (3) Shaft material: Medium carbon steel (4) Shaft hardness: HRc30-40 (5) Fluid: Engine oil SAE 10W-30 (6) ) Oil level: Shaft center (7) Oil temperature: 120 ゜ (8) Shaft eccentricity: 0.1mm TIR or less (9) Mounting eccentricity: 0.1mm TIR or less (10) Shaft rotation speed: 6000rpm (11) Rotation cycle: 20 hours Operation, pause for 4 hours (B) Specific dimension example 1 of the embodiment of the present invention in FIG. 3 (1) Thickness of seal element: 1.1 mm (2) Number of annular grooves: 6 (3) Angle θ of annular grooves: 45 ゜ (4) Depth of cut of annular groove: axial depth 0.6mm (5) Diameter of free edge T0 and diameter of each annular groove T1 ... T6 in Fig. 3 D0: φ50.0, D1: φ52. 8, D2: φ55.2, D3: φ57.2, D4: φ58.8, D5: φ60.0, D6: φ60.8 (6) Distance between free edge T0 and annular groove T1 and between annular grooves 2A1: 2.8, 2A2: 2.4, 2A3: 2.0, 2A4: 1.6, 2A5: 1.2, 2A6: 0.8, i.e. difference in diameter It is less by 0.4mm.

(C)第3図の本願実施例の具体的寸法例2 (1)シールエレメントの厚み:1.1mm (2)環状溝の数:6本 (3)環状溝の角度θ:45゜ (4)環状溝の切込み深さ:軸方向深さ0.6mm (5)自由端縁T0及び各環状溝T1〜T6の直径 D0:φ50.0、D1:φ52.4、 D2:φ54.5、D3:φ56.3、 D4:φ57.8、D5:φ59.0、 D6:φ59.9 (6)自由端縁T0と環状溝T1の間並びに環状溝間の間隔 2A1:2.4、2A2:2.1、 2A3:1.8、2A4:1.5、 2A3:1.2、2A4:0.9、 即ち直径差を0.3mmずつ少なくしている。(C) Specific dimension example 2 of the embodiment of the present invention in FIG. 3 (1) Thickness of seal element: 1.1 mm (2) Number of annular grooves: 6 (3) Angle θ of annular grooves: 45 ° (4) Cutting depth of annular groove: axial depth 0.6mm (5) Diameter of free edge T0 and each annular groove T1 to T6 D0: φ50.0, D1: φ52.4, D2: φ54.5, D3: φ56 .3, D4: φ57.8, D5: φ59.0, D6: φ59.9 (6) Distance between free edge T0 and annular groove T1 and between annular grooves 2A1: 2.4, 2A2: 2.1, 2A3: 1.8 , 2A4: 1.5, 2A3: 1.2, 2A4: 0.9, that is, the diameter difference is reduced by 0.3 mm.

(D)第6図の等間隔環状溝型シールエレメントの寸法
例 (1)シールエレメントの厚み:1.1mm (2)環状溝の数:6本 (3)環状溝の角度θ:45゜ (4)環状溝の切込み深さ:軸方向深さ0.6mm (5)自由端縁T0及び各環状溝T1〜T6の直径 D0:φ50.0、D1:φ52.0、 D3:φ54.0、D4:φ56.0、 D5:φ58.0、D6:φ60.0 D7:φ62.0 (6)自由端縁T0と環状溝T1の間並びに環状溝間の間隔 直径差2A1、2A2、2A3、2A4、2A5及び2A6はすべて2mm
としている。
(D) Example of dimensions of the equally spaced annular grooved seal element in FIG. 6 (1) Thickness of seal element: 1.1 mm (2) Number of annular grooves: 6 (3) Angle θ of annular groove: 45 ° (4) ) Cut depth of annular groove: axial depth 0.6mm (5) Diameter of free edge T0 and each annular groove T1-T6 D0: φ50.0, D1: φ52.0, D3: φ54.0, D4: φ56.0, D5: φ58.0, D6: φ60.0 D7: φ62.0 (6) Distance between free edge T0 and annular groove T1 and between annular grooves Difference in diameter 2A1, 2A2, 2A3, 2A4, 2A5 And 2A6 are all 2mm
And

(E)第8図の逆不等間隔型のシールエレメントの寸法
例 (1)シールエレメントの厚み:1.1mm (2)環状溝の数:6本 (3)環状溝の角度θ:45゜ (4)環状溝の切込み深さ:軸方向深さ0.6mm (5)自由端縁T0及び各環状溝T1〜T6の直径 D0:φ50.0、D1:φ50.8、 D2:φ52.0、D3:φ53.6、 D4:φ55.6、D5:φ58.0、 D6:φ60.8 (6)自由端縁T0と環状溝T1の間並びに環状溝間の間隔 2A1:0.8、2A2:1.2、 2A3:1.6、2A4:2.0、 2A5:2.4、2A6:2.8、 即ち直径差を0.4mmずつ大きくしている。
(E) Example of dimensions of reverse unequal spacing type seal element in FIG. 8 (1) Seal element thickness: 1.1 mm (2) Number of annular grooves: 6 (3) Angle of annular grooves θ: 45 ° ( 4) Cut depth of annular groove: axial depth 0.6mm (5) Diameter of free edge T0 and each annular groove T1 to T6 D0: φ50.0, D1: φ50.8, D2: φ52.0, D3 : φ53.6, D4: φ55.6, D5: φ58.0, D6: φ60.8 (6) Spacing between free edge T0 and annular groove T1 and between annular grooves 2A1: 0.8, 2A2: 1.2, 2A3 : 1.6, 2A4: 2.0, 2A5: 2.4, 2A6: 2.8, that is, the diameter difference is increased by 0.4 mm.

(F)実験の結果 以上の各条件で実験した結果、本願を適用した前記寸
法例(B)、(C)では共に10サイクル漏れは生じなか
った。
(F) Results of Experiments As a result of experiments under the above-mentioned conditions, in the above-mentioned dimensional examples (B) and (C) to which the present invention was applied, no leakage occurred for 10 cycles.

これに対してプレーン型では運転初期から漏れ初め、
1サイクル後(20時間運転4時間休止後)に9.97gの漏
れが検出された。
In contrast, the plain type begins to leak from the early stage of operation,
After one cycle (after a 20-hour operation and a 4-hour pause), a leak of 9.97 g was detected.

スプリング装着型では運転初期から漏れ初め、1サイ
クル後(20時間運転4時間休止後)に2.55gの漏れが検
出された。
In the case of the spring-mounted type, leakage started at the beginning of the operation, and 2.55 g of leakage was detected one cycle later (after a 20-hour operation and a 4-hour pause).

第6図の同心円等間隔環状溝型では、運転初期から漏
れ初め、1サイクル後(20時間運転4時間休止後)に3.
16gの漏れが検出された。
In the concentric circularly-spaced annular groove type shown in FIG. 6, the leakage starts at the beginning of the operation, and after one cycle (after a 20-hour operation and a 4-hour pause), 3.
A leak of 16 g was detected.

第8図の逆不等間隔環状溝型では、運転初期から漏れ
初め、1サイクル後(20時間運転4時間休止後)に20.0
7gの漏れが検出された。
In the case of the reverse unequally-spaced annular groove type shown in FIG.
A 7 g leak was detected.

なお本願のように流体収納室側から順に環状溝間隔を
狭めていくことによりオイルの漏れを効果的に防止でき
る理由は、次の通りと考えられる。
The reason why oil leakage can be effectively prevented by decreasing the annular groove interval in order from the fluid storage chamber side as in the present application is considered as follows.

第4図の接面圧力分布において、流体収納室R側から
外部S側に従い環状溝間隔が狭くなることに伴って、各
環状溝間隔内の圧力分布が尖端状に高くなっていき、全
体の圧力分布として外部S側にいくに従い圧力が高くな
る勾配を有する。この圧力勾配により流体収納室R側か
らの流体は、シール摺動面部分に浸入しても順次流体圧
力側に押し戻されると考えられる。又装着時に環状溝T1
…T6の形状が第4図のように流体収納室側に向いて開く
鋭三角形状になっていることにより、くさび作用が生じ
てシール圧を高めている。
In the contact pressure distribution in FIG. 4, as the interval between the annular grooves becomes narrower from the fluid storage chamber R side to the outside S side, the pressure distribution in each annular groove interval increases sharply, and the entire The pressure distribution has a gradient in which the pressure increases as going to the outside S side. It is considered that the fluid from the fluid storage chamber R side is sequentially pushed back to the fluid pressure side even if it enters the seal sliding surface portion due to this pressure gradient. At the time of installation, annular groove T1
... Since the shape of T6 is an acute triangle that opens toward the fluid storage chamber as shown in FIG. 4, a wedge action occurs to increase the sealing pressure.

一方第7図のように等間隔環状溝型では圧力の勾配が
殆んどなく、くさび作用が生じてシール圧を高めている
が、本発明のような勾配による押し戻し作用は働かな
い。また第9図の逆不等間隔型では、勾配が逆になるの
で、本発明とは反対にオイルを外部S側に押し出し、そ
れにより漏油の量が多いと考えられる。
On the other hand, as shown in FIG. 7, in the case of the equally-spaced annular groove type, there is almost no pressure gradient and a wedge effect is generated to increase the sealing pressure, but the push-back effect by the gradient as in the present invention does not work. In the reverse unequal spacing type shown in FIG. 9, since the gradient is reversed, the oil is pushed out to the outside S side contrary to the present invention, whereby it is considered that the amount of oil leakage is large.

(別の実施例) 環状溝の数は6本に限定されず少くとも3本以上あれ
ばよい。またシールエレメントの材料としては他のふっ
素径樹脂を用いることも可能である。
(Another embodiment) The number of annular grooves is not limited to six, and may be at least three or more. It is also possible to use other fluororesins as the material of the seal element.

(発明の効果) 以上説明したように本発明によると、両方向回転用オ
イルシールにおいて、シールエレメント8の摺動面側
に、シール中心を中心とした環状溝を3本以上形成し、
シールエレメントの自由端縁側から固定端縁側にゆくに
従い環状溝間の幅が順次小さくなるように環状溝を不等
間隔に配置しているので、摺動面において、流体収納室
側から外部側にいくに従い接面圧が順次高くかつ尖端状
になっていくと考えられ、その圧力勾配により流体を流
体収納室側に効果的に押し戻し、前記実験の結果に示す
ように従来の各種型のオイルシールに比べ流体の漏れを
確実に防止できる。
(Effect of the Invention) As described above, according to the present invention, in the oil seal for two-way rotation, three or more annular grooves centered on the seal center are formed on the sliding surface side of the seal element 8,
Since the annular grooves are arranged at unequal intervals so that the width between the annular grooves gradually decreases as going from the free edge side to the fixed edge side of the seal element, the sliding surface extends from the fluid storage chamber side to the outside side. It is thought that the contact pressure gradually increases and becomes pointed as the pressure increases, and the pressure gradient effectively pushes the fluid back to the fluid storage chamber side. As a result, leakage of fluid can be prevented more reliably.

また樹脂製シールエレメントとして、4ふっ化エンチ
レン樹脂等のふっ素系樹脂を用いると、低摩耗性、耐熱
性及び耐薬品性に一層優れたものとすることができる。
Further, when a fluorine-based resin such as an ethylene tetrafluoride resin is used as the resin sealing element, it is possible to further improve low abrasion resistance, heat resistance and chemical resistance.

従って例えば高速回転用ディーゼルエンジンのクラン
ク軸受け部分、薬品ポンプ等各種回転部材の軸受として
利用できる。
Therefore, it can be used, for example, as a bearing for various rotating members such as a crank bearing portion of a high-speed rotation diesel engine and a chemical pump.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を適用した両方向回転用シールのハウジ
ング装着時に縦断面図、第2図は自由状態時の縦断面
図、第3図は曲げくせ付け前の状態を示す縦断面図、第
4図は装着使用時における縦断面図及び接面圧力分布
図、第5図は正面部分図、第6図及び第8図はそれぞれ
本発明のオイルシールと実験比較したオイルシールの曲
げくせ付け前の状態を示す縦断面図、第7図及び第9図
はそれぞれ第6図及び第8図のオイルシールの装着使用
時における縦断面図及び接面圧力分布図である。 8……シールエレメント、T0……自由端縁、T1、T2、T
3、T4、T5、T6……環状溝
FIG. 1 is a longitudinal sectional view of the seal for two-way rotation to which the present invention is applied when the housing is mounted, FIG. 2 is a longitudinal sectional view in a free state, FIG. 3 is a longitudinal sectional view showing a state before bending. 4 is a longitudinal sectional view and a contact surface pressure distribution diagram during mounting use, FIG. 5 is a partial front view, and FIGS. 6 and 8 are before and after the oil seal of the present invention is compared with the oil seal of the present invention. 7 and 9 are a longitudinal sectional view and a contact pressure distribution diagram when the oil seal of FIGS. 6 and 8 is used, respectively. 8 …… Seal element, T0 …… Free edge, T1, T2, T
3, T4, T5, T6 ... annular groove

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】自由端縁側が流体収納室側へと曲がる樹脂
製シールエレメントを有し、該シールエレメントが回転
軸に対して軸方向の一定幅で接する両方向回転用オイル
シールにおいて、シールエレメントの摺動面側に、シー
ル中心を中心とした同心の環状溝を3本以上形成し、シ
ールエレメントの自由端縁側から固定端縁側にゆくに従
い環状溝間の幅が順次小さくなるように環状溝を不等間
隔に配置したことを特徴とする両方向回転用オイルシー
ル。
An oil seal for bidirectional rotation having a resin sealing element having a free end bent toward a fluid storage chamber and having a fixed width in an axial direction with respect to a rotating shaft. Three or more concentric annular grooves centering on the center of the seal are formed on the sliding surface side, and the annular grooves are formed so that the width between the annular grooves gradually decreases from the free edge side to the fixed edge side of the seal element. An oil seal for bidirectional rotation, which is arranged at unequal intervals.
【請求項2】樹脂製のシールエレメントとして、4ふっ
化エチレン樹脂等のふっ素系樹脂を用いたことを特徴と
する請求項1記載の両方向回転用オイルシール。
2. The oil seal for two-way rotation according to claim 1, wherein a fluorine resin such as ethylene tetrafluoride resin is used as the resin sealing element.
【請求項3】平板状の樹脂製シールエレメントの一側面
に、シールエレメント中心を中心として直径の異なる同
心の環状溝を3本以上形成すると共に、環状溝間の間隔
が、中心側から半径方向外方側にゆくに従い順次小さく
なるように各環状溝の直径を設定し、該シールエレメン
トを環状溝が形成されていない側へ曲げ加工することに
より請求項1記載の曲状のオイルシールエレメントを成
形するオイルシール成形方法。
3. A flat plate-shaped resin sealing element having three or more concentric annular grooves having different diameters centered on the center of the sealing element on one side surface of the sealing element, and the interval between the annular grooves is radially increased from the center side. The curved oil seal element according to claim 1, wherein the diameter of each annular groove is set so as to gradually decrease toward the outer side, and the seal element is bent toward a side where the annular groove is not formed. Oil seal molding method to be molded.
JP2194145A 1990-07-23 1990-07-23 Oil seal for bidirectional rotation and molding method thereof Expired - Lifetime JP2963159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2194145A JP2963159B2 (en) 1990-07-23 1990-07-23 Oil seal for bidirectional rotation and molding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2194145A JP2963159B2 (en) 1990-07-23 1990-07-23 Oil seal for bidirectional rotation and molding method thereof

Publications (2)

Publication Number Publication Date
JPH0483978A JPH0483978A (en) 1992-03-17
JP2963159B2 true JP2963159B2 (en) 1999-10-12

Family

ID=16319663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2194145A Expired - Lifetime JP2963159B2 (en) 1990-07-23 1990-07-23 Oil seal for bidirectional rotation and molding method thereof

Country Status (1)

Country Link
JP (1) JP2963159B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062629A1 (en) * 2009-12-09 2011-06-16 Schaeffler Technologies Gmbh & Co. Kg sealing arrangement
JP6115462B2 (en) 2013-12-17 2017-04-19 株式会社デンソー Air conditioning unit

Also Published As

Publication number Publication date
JPH0483978A (en) 1992-03-17

Similar Documents

Publication Publication Date Title
US6685194B2 (en) Hydrodynamic rotary seal with varying slope
US5190299A (en) Radially undulating shaft seal
US4783086A (en) Sealing ring with two rows of projections and for a rotary shaft
CA2746726C (en) Pump seal
US5358390A (en) Eccentric screw pump
EP1469238B1 (en) Seal device
US4586718A (en) Sealing assembly with floating gland means for rotatable shafts
US4436317A (en) Cassette seal having a counterring free from unrelieved internal stress
JP2001317635A (en) Lip type seal
US4896976A (en) Supporting disk for a supporting disk bearing
JP2963159B2 (en) Oil seal for bidirectional rotation and molding method thereof
JP5088551B2 (en) Sealing device
US3713659A (en) Seal for relatively rotatable parts
US3738667A (en) Self-energizing face seals
US4921260A (en) Lip seal device for water pumps
US3408084A (en) Precision seal for a rotating shaft
US3337221A (en) Seal having a drawn thin walled wear sleeve
US6913264B2 (en) Sealing arrangement
JP4094682B2 (en) Vane pump
JP3166062B2 (en) Lip type seal
JP3068170B2 (en) Oil seal
JPS6118002B2 (en)
JP2000310342A (en) Floating seal for rotating machine
JP2001065703A (en) Lip type seal
EP0233909B1 (en) Face seals

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

EXPY Cancellation because of completion of term