JPH0483812A - Iron series sintered machine parts having high bearing pressure fatigue strength and manufacture thereof - Google Patents

Iron series sintered machine parts having high bearing pressure fatigue strength and manufacture thereof

Info

Publication number
JPH0483812A
JPH0483812A JP19479890A JP19479890A JPH0483812A JP H0483812 A JPH0483812 A JP H0483812A JP 19479890 A JP19479890 A JP 19479890A JP 19479890 A JP19479890 A JP 19479890A JP H0483812 A JPH0483812 A JP H0483812A
Authority
JP
Japan
Prior art keywords
fatigue strength
bearing pressure
sintered
iron
machine parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19479890A
Other languages
Japanese (ja)
Inventor
Osamu Furukimi
修 古君
Shigeaki Takagi
高城 重彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19479890A priority Critical patent/JPH0483812A/en
Publication of JPH0483812A publication Critical patent/JPH0483812A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture an iron series sintered machine parts having high bearing pressure fatigue strength by packing fine particle diameter of iron series powder on surface layer part receiving the bearing pressure and the specific particle diameter or more of the iron series powder on the other part, respectively and sintering after pressurize-compacting to the prescribed shape at the time of manufacturing the iron series sintered machine parts. CONSTITUTION:To >=0.5mm depth from a surface loaded with the bearing pressure, the sintered density ratio is necessary to be >=97%. In the case of being <97% of this, the sufficient bearing pressure fatigue strength is not obtd. and further, in the case of being <0.5mm of thickness having >=97% the sintered density ratio, the sufficient fatigue strength to the bearing pressure is not obtd., too. To a position except the part having >=97% sintered density ratio of the face loaded with the bearing pressure, by forming <=93% sintered density ratio to >=85% of this volume, lightening in weight. is obtd. By constituting this in such way, the iron series sintered machine parts is light in weight. and have >=360kgf/mm<2> of durable bearing pressure fatigue strength.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、自動車のギヤなどに用いるに好適な高面圧疲
労強度を有する鉄系焼結機械部品及びその製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a ferrous sintered mechanical component having high surface pressure fatigue strength suitable for use in automobile gears, etc., and a method for manufacturing the same.

〈従来の技術〉 一般に焼結材料の面圧疲労強度を向上させるには、特開
昭63−62801号公報に開示されているように焼結
密度の増加ならびに表面硬化処理が有効とされている。
<Prior art> In general, increasing the sintered density and surface hardening treatment are considered effective in improving the contact fatigue strength of sintered materials, as disclosed in JP-A No. 63-62801. .

しかしながら、現在の圧縮成形−焼結プロセスで製造さ
れる鉄系焼結材料の焼結密度は、高々92%であり、さ
らに、再圧縮プロセスを用いても焼結密度は97%が最
高である。
However, the sintered density of iron-based sintered materials produced by the current compression molding-sintering process is at most 92%, and even when using the recompression process, the sintered density is at most 97%. .

一方、自動車部品には、燃費向上の為小型、軽量化が指
向されている。小型、軽量化には焼結材料の高強度化が
1つの方法であるが、従来は特開昭61−231102
号公報に開示されているように高価な合金元素を多量に
添加して対処していた。
On the other hand, automobile parts are becoming smaller and lighter in order to improve fuel efficiency. One way to reduce size and weight is to increase the strength of sintered materials, but conventionally, Japanese Patent Application Laid-Open No. 61-231102
As disclosed in the above publication, a large amount of expensive alloying elements were added to deal with the problem.

〈発明が解決しようとする課題〉 このように従来の鉄系焼結材料では焼結密度が低いため
360kgf/am”以上の十分な耐久面圧疲労強度が
得られなかった。また軽量化するためには高価な合金元
素を多量に添加していた。
<Problem to be solved by the invention> As described above, with conventional iron-based sintered materials, sufficient durable surface pressure fatigue strength of 360 kgf/am'' or more could not be obtained due to the low sintered density. contained large amounts of expensive alloying elements.

本発明は、このような従来の問題点を解決し、安価で3
60kgf/mm”以上の耐久高面圧疲労強度を有し、
しかも比較的軽量な鉄系焼結機械部品及びその製造方法
を提供することを目的とするものである。
The present invention solves these conventional problems and provides three inexpensive
It has a durable high surface pressure fatigue strength of 60 kgf/mm” or more,
Moreover, it is an object of the present invention to provide a relatively lightweight iron-based sintered mechanical component and a method for manufacturing the same.

〈課題を解決するための手段〉 本発明は、鉄系焼結機械部品の面圧を受ける表層部の厚
さ0−15閣以上の焼結密度比が97%以上、その他の
体積率で85%以上を占める部分の焼結密度比が93%
以下であり、かつ360kgf/W”以上の耐久面圧疲
労強度を有することを特徴とする高面圧疲労強度を有す
る鉄系焼結機械部品であり、また鉄系焼結機械部品を製
造するに際して、面圧を受ける表層部の厚さ5mm以上
に平均粒径15μm以下の鉄系粉末を、その他の体積率
で85%以上を占める部分に平均粒径60μ閘以上の鉄
系粉末をそれぞれ充填し、所定の形状に加圧成形した後
焼結することを特徴とする高面圧疲労強度を有する鉄系
焼結機械部品の製造方法である。
<Means for Solving the Problems> The present invention provides a sintered density ratio of 97% or more for the surface layer of iron-based sintered machine parts that receives surface pressure of 0-15 mm or more, and 85% for other volume ratios. The sintered density ratio of the part that accounts for more than 93%
or less, and has a durable surface pressure fatigue strength of 360 kgf/W" or more. , Fill the surface layer that receives surface pressure with a thickness of 5 mm or more with iron-based powder with an average particle size of 15 μm or less, and fill the other parts that account for 85% or more of the volume with iron-based powder with an average particle size of 60 μm or more. , a method for producing iron-based sintered mechanical parts having high surface pressure fatigue strength, characterized in that the parts are pressure-formed into a predetermined shape and then sintered.

なお、焼結体の要求強度に従い、合金化あるいは合金鋼
粉を用いることが、本発明に含まれることは、言うまで
もなく、このことによって部品の軽量化がなお一層達成
できる。
It goes without saying that the present invention includes alloying or using alloyed steel powder in accordance with the required strength of the sintered body, thereby further reducing the weight of the parts.

〈作用〉 本発明では、面圧が負荷される表面から0.5団以上は
焼結密度比を97%以上とする必要がある。
<Function> In the present invention, it is necessary that the sintered density ratio of 0.5 or more groups from the surface to which surface pressure is applied is 97% or more.

97%未満では十分な面圧疲労強度が得られず、またそ
の焼結密度比が97%以上の厚みが0.5mm未満であ
っても、十分な面圧疲労強度が得られない。
If it is less than 97%, sufficient surface pressure fatigue strength cannot be obtained, and even if the thickness of the sintered density ratio of 97% or more is less than 0.5 mm, sufficient surface pressure fatigue strength cannot be obtained.

面圧が負荷される面の焼結密度比が97%以上である部
位を除いた部位については、その体積の85%以上が焼
結密度比93%以下にすることによって軽量化が図れる
For areas other than areas where the sintered density ratio of the surface to which surface pressure is applied is 97% or more, weight reduction can be achieved by setting the sintered density ratio of 85% or more of the volume to 93% or less.

なお、85%以上を焼結密度比93%以下とするのは、
密度は焼結体表面から中心部まで連続的に変化すること
を考慮したためである。
In addition, setting the sintered density ratio of 85% or more to 93% or less is as follows:
This is because it was taken into consideration that the density changes continuously from the surface of the sintered body to the center.

このように構成することによって本発明の鉄系焼結機械
部品は、軽量でしかも360kgf/mm2以上の耐久
面圧疲労強度を有することができる。
With this configuration, the iron-based sintered mechanical component of the present invention is lightweight and can have a durable surface pressure fatigue strength of 360 kgf/mm2 or more.

次に本発明の鉄系焼結部品の製造方法について述べる。Next, a method for manufacturing iron-based sintered parts according to the present invention will be described.

表層部の焼結密度比を97%以上とするためには、平均
粒径が、15μ■以下の鉄系粉末を用いる必要がある。
In order to make the sintered density ratio of the surface layer part 97% or more, it is necessary to use iron-based powder with an average particle size of 15 μm or less.

平均粒径が15μ蒙超では、以後の通常の加圧成形及び
焼結工程では焼結密度比97%以上を達成するのは困難
である。
If the average particle size exceeds 15 μm, it is difficult to achieve a sintered density ratio of 97% or more in the subsequent normal pressure forming and sintering steps.

また焼結密度比93%以下とするためには平均粒径が6
0μm以上の鉄系粉末を用いる必要がある。
In addition, in order to make the sintered density ratio 93% or less, the average grain size is 6.
It is necessary to use iron-based powder with a diameter of 0 μm or more.

粉末粒径が小さくなるに従い焼結密度が増加するので、
平均粒径60μm未満では焼結密度比93%以下を達成
するのは困難だからである。
As the powder particle size decreases, the sintered density increases.
This is because if the average particle diameter is less than 60 μm, it is difficult to achieve a sintered density ratio of 93% or less.

因みに、鉄系粉末の粒径が小さくなるに従い製造コスト
が高くなるので、平均粒径60μ剛以上の鉄系粉末を多
量に用いる本発明の製品は軽量化がはかれると同時にそ
の分コストが安くなり有利である。
Incidentally, as the particle size of iron-based powder becomes smaller, the manufacturing cost increases, so the product of the present invention, which uses a large amount of iron-based powder with an average particle size of 60μ or more, is lighter and at the same time costs less. It's advantageous.

次に実施例に基づいて本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail based on Examples.

〈実施例〉 実施例1 平均粒径78μmのFe−1,1%Cr−0,7%Mn
成分の銅粉を外径60M、内径20(財)のリング状金
型に7胴厚さに充填し、さらに平均粒径1B、 14.
10. 6μ印に分級した同様の成分の鋼粉を0.71
11m厚さに充填した後、圧力6t/cdで成形、 1
250°Cで60m1nの条件でAXガス中において焼
結、そしてサイジング処理し、引き続き920°Cで1
50Wlin、カーボンポテンシャル0.9%の浸炭処
理と160°C60m1nの焼もどし処理を施して面圧
疲労試験片を作製した。
<Example> Example 1 Fe-1,1%Cr-0,7%Mn with average particle size of 78 μm
14. The component copper powder was filled into a ring-shaped mold with an outer diameter of 60M and an inner diameter of 20mm to a thickness of 7 mm, and the average particle size was 1B.
10. Steel powder of similar composition classified to 6μ mark is 0.71
After filling to a thickness of 11m, molding at a pressure of 6t/cd, 1
Sintering and sizing in AX gas at 250°C and 60ml, followed by sizing at 920°C.
A contact fatigue test piece was prepared by carburizing at 50Wlin and carbon potential of 0.9% and tempering at 160°C and 60ml.

これらの試験片を用いて、6球森式試験を実施して、繰
り返し数107回のときの応力から耐久面圧疲労強度(
σ−)を求めた。表1に光学顕微鏡で求めた、面圧を負
荷した面(高密度面)の焼結密度比と板厚中心部の密度
比を示す。また、σ賀と使用した銅粉の粒径の関係を第
1図に示す。
Using these test pieces, a 6-ball Mori test was conducted to determine the durable contact fatigue strength (
σ−) was calculated. Table 1 shows the sintered density ratio of the surface to which surface pressure was applied (high-density surface) and the density ratio of the center of the plate thickness, as determined by an optical microscope. Moreover, the relationship between σ and the particle size of the copper powder used is shown in FIG.

本発明範囲において、極めて高い疲労強度を示すことが
わかる。
It can be seen that extremely high fatigue strength is exhibited within the scope of the present invention.

実施例2 平均粒径78μmのFe−1,1%Cr−0,7%Mn
成分の鋼粉を外径60閣、内径20++nnのリング状
金型に7閣厚さに充填し、さらに平均粒径10μmの同
様の組成の銅粉を0.3.0.6.0.9.1.2mm
に充填し、実施例1と同様の条件で焼結体を製造し、6
球森式疲労試験を実施した。σ−と微粉の充填厚さの関
係を第2図に示すが、本発明範囲において、高い疲労強
度が得られることがわかる。
Example 2 Fe-1,1%Cr-0,7%Mn with average particle size of 78 μm
A ring-shaped mold with an outer diameter of 60mm and an inner diameter of 20++nn was filled with steel powder to a thickness of 7mm, and then copper powder of the same composition with an average particle size of 10μm was filled with 0.3.0.6.0.9mm. .1.2mm
A sintered body was produced under the same conditions as in Example 1, and 6
Tamamori fatigue test was conducted. The relationship between σ- and the filling thickness of fine powder is shown in FIG. 2, and it can be seen that high fatigue strength can be obtained within the range of the present invention.

表1 試験片の密度 結密度比とすることで、高い疲労密度と軽量化を経済的
に達成できるようになった。
Table 1 Density of test piece By setting the compaction density ratio, it became possible to economically achieve high fatigue density and weight reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、面圧負荷面に配した粉末の粒径と耐久面圧疲
労強度の関係を示すグラフ、第2図は、焼結密度比が9
7%以上の部位の厚さと耐久面圧疲労強度の関係を示す
グラフである。 〈発明の効果〉
Figure 1 is a graph showing the relationship between the particle size of the powder placed on the bearing surface and the durable bearing fatigue strength.
It is a graph showing the relationship between the thickness of a portion of 7% or more and the durable surface pressure fatigue strength. <Effect of the invention>

Claims (2)

【特許請求の範囲】[Claims] 1.鉄系焼結機械部品の面圧を受ける表層部の厚さ0.
5mm以上の焼結密度比が97%以上、その他の体積率
で85%以上を占める部分の焼結密度比が93%以下で
あり、かつ360kgf/mm^2以上の耐久面圧疲労
強度を有することを特徴とする高面圧疲労強度を有する
鉄系焼結機械部品。
1. The thickness of the surface layer of iron-based sintered machine parts that receives surface pressure is 0.
The sintered density ratio of 5 mm or more is 97% or more, the sintered density ratio of other parts that account for 85% or more of the volume is 93% or less, and has a durable surface pressure fatigue strength of 360 kgf/mm^2 or more. Iron-based sintered machine parts with high surface pressure fatigue strength.
2.鉄系焼結機械部品を製造するに際して、面圧を受け
る表層部の厚さ5mm以上に平均粒径15μm以下の鉄
系粉末を、その他の体積率で85%以上を占める部分に
平均粒径60μm以上の鉄系粉末をそれぞれ充填し、所
定の形状に加圧成形した後焼結することを特徴とする高
面圧疲労強度を有する鉄系焼結機械部品の製造方法。
2. When manufacturing iron-based sintered machine parts, iron-based powder with an average particle size of 15 μm or less is applied to the surface layer that receives surface pressure with a thickness of 5 mm or more, and an average particle size of 60 μm is applied to other areas that account for 85% or more of the volume. A method for producing iron-based sintered mechanical parts having high surface pressure fatigue strength, which comprises filling each of the above-mentioned iron-based powders, press-forming them into a predetermined shape, and then sintering them.
JP19479890A 1990-07-25 1990-07-25 Iron series sintered machine parts having high bearing pressure fatigue strength and manufacture thereof Pending JPH0483812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19479890A JPH0483812A (en) 1990-07-25 1990-07-25 Iron series sintered machine parts having high bearing pressure fatigue strength and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19479890A JPH0483812A (en) 1990-07-25 1990-07-25 Iron series sintered machine parts having high bearing pressure fatigue strength and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0483812A true JPH0483812A (en) 1992-03-17

Family

ID=16330437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19479890A Pending JPH0483812A (en) 1990-07-25 1990-07-25 Iron series sintered machine parts having high bearing pressure fatigue strength and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0483812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287302A (en) * 1992-04-07 1993-11-02 Nkk Corp Production of high-density powder sintered titanium alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287302A (en) * 1992-04-07 1993-11-02 Nkk Corp Production of high-density powder sintered titanium alloy

Similar Documents

Publication Publication Date Title
JP3651420B2 (en) Alloy steel powder for powder metallurgy
JP4252625B2 (en) High density forming process using ferroalloy and prealloy
JP4183346B2 (en) Mixed powder for powder metallurgy, iron-based sintered body and method for producing the same
JPH07505679A (en) Bearing manufacturing method
JPS583902A (en) Manufacture of cam shaft
JPH05117703A (en) Iron-base powder composition for powder metallurgy, its production and production of iron-base sintering material
EP3018228A1 (en) Sintered mechanical component and manufacturing method therefor
JPS6366362B2 (en)
CA2294066A1 (en) Method for manufacturing high carbon sintered powder metal steel parts of high density
JPH07505678A (en) Coining method while sintered
CA2390254C (en) Sintered sprocket
JP4201830B2 (en) Iron-based powder containing chromium, molybdenum and manganese and method for producing sintered body
JP2001523763A (en) High density molding method by powder blending
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
JP6528899B2 (en) Method of manufacturing mixed powder and sintered body for powder metallurgy
KR102325463B1 (en) Partially diffusion-alloyed steel powder
JP2003253406A (en) Highly wear-resistant and high strength sintered parts, and production method thereof
JPH0483812A (en) Iron series sintered machine parts having high bearing pressure fatigue strength and manufacture thereof
JP2007169736A (en) Alloy steel powder for powder metallurgy
JP4715358B2 (en) Alloy steel powder for powder metallurgy
JPH06256801A (en) Alloy steel powder for ferrous material to be sintered/ heattreated and production thereof
JPH0959740A (en) Powder mixture for powder metallurgy and its sintered compact
WO2018143088A1 (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
WO2021044869A1 (en) Iron-based pre-alloyed powder for powder metallurgy, diffusion-bonded powder for powder metallurgy, iron-based alloy powder for powder metallurgy, and sinter-forged member
JPH0689363B2 (en) High strength alloy steel powder for powder metallurgy