JPH0483635A - Transparent conductive laminate - Google Patents

Transparent conductive laminate

Info

Publication number
JPH0483635A
JPH0483635A JP2197999A JP19799990A JPH0483635A JP H0483635 A JPH0483635 A JP H0483635A JP 2197999 A JP2197999 A JP 2197999A JP 19799990 A JP19799990 A JP 19799990A JP H0483635 A JPH0483635 A JP H0483635A
Authority
JP
Japan
Prior art keywords
transparent conductive
cyanoethyl
layer
laminate
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2197999A
Other languages
Japanese (ja)
Other versions
JP2874978B2 (en
Inventor
Hitoshi Mikoshiba
均 御子柴
Masao Suzuki
鈴木 将夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2197999A priority Critical patent/JP2874978B2/en
Publication of JPH0483635A publication Critical patent/JPH0483635A/en
Application granted granted Critical
Publication of JP2874978B2 publication Critical patent/JP2874978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain an ELD having a high luminous efficiency when the title laminate is used as a transparent electrode for the ELD and also obtain the transparent conductive laminate excellent in shelf stability by forming a transparent conductive layer consisting of a metallic oxide, and a cyanoethyl resin layer containing fine particles of a metallic compound on polymeric organic moldings. CONSTITUTION:This transparent conductive laminate consists of a transparent conductive layer comprising an oxide, and a cyanoethyl resin layer containing fine particles of a metallic compound, both layers being formed on polymeric organic moldings, which are not particularly limited if they are made of a transparent polymeric organic compound having heat resistance. The transparent conductive layer comprises metallic oxides of tin and/or a fluorine-containing indium oxide and the like. The cyanoethyl resin is resin in which 50% or more of a hydroxyl group is cyano-ethylated and which is a cyanoethyl polyvinyl alcohol and the like. Examples of the fine particles of the metallic compound, which are contained in the cyanoethyl resin layer, include antimony-containing tin oxide and the like. When this laminate is used as a transparent electrode for an ELD, there is no deterioration in the transparent conductive layer and, further, the laminate has excellent properties of adhesion to a luminous layer and also has excellent transparency.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、透明導電性積層体に関し、特にエレクトロル
ミネッセンスデイスプレー用途に適した透明導電性積層
体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a transparent conductive laminate, and particularly to a transparent conductive laminate suitable for electroluminescent display applications.

[従来の技術] 透明な有機高分子成形物表面に、金WA酸化物のvs膜
からなる透明導電層を形成して、透明性があり、かつ1
!電性のある積層体としたものが種々の分野で利用され
ている。かかる利用分野のなかで、エレクトロルミネッ
センスデイスプレー(ELD)のアルミニウム電極に対
向する透明電極としての利用が試みられている。
[Prior art] A transparent conductive layer consisting of a vs film of gold WA oxide is formed on the surface of a transparent organic polymer molded article to provide transparency and 1.
! Electrically conductive laminates are used in various fields. Among these fields of application, attempts have been made to use it as a transparent electrode opposite to the aluminum electrode of electroluminescent display (ELD).

ELDは、携帯型のパーソナルコンビコーターやワード
プロセッサー等に搭載された液晶デイスプレーのバック
ライトとして用いられている。携帯型のパーソナルコン
ピューターやワードプロセッサーは電池で駆動されてい
る。電池の寿命を長くするためELDは、低消費電力で
動作することが求められている。すなわち、ELDの発
光効率を向上させる必要がある。
ELDs are used as backlights for liquid crystal displays installed in portable personal combination coaters, word processors, and the like. Portable personal computers and word processors are powered by batteries. In order to extend battery life, ELDs are required to operate with low power consumption. That is, it is necessary to improve the luminous efficiency of the ELD.

従来、透明導電層上に直接あるいはPd 1111層を
介してシアノエチル樹脂層を形成した透明導電性積層体
が知られている。これをELD作成に利用した場合、E
LDの製造工程の歩留り向上には効果がみられるものの
、ELDの発光効率は、シアンエチル樹脂層のない透明
導電性積層体を用いた場合と比較して全く変化がなかっ
た。
Conventionally, transparent conductive laminates are known in which a cyanoethyl resin layer is formed on a transparent conductive layer either directly or via a Pd 1111 layer. If this is used for ELD creation, E
Although an effect was seen in improving the yield of the LD manufacturing process, there was no change in the luminous efficiency of the ELD compared to the case where a transparent conductive laminate without a cyanethyl resin layer was used.

従来、ELDの発光効率は、発光層によって決まると考
えられ、透明導電性積層体側からのELDの発光効率向
上へのアプローチはほとんどなされていなかった。
Conventionally, the luminous efficiency of an ELD is thought to be determined by the luminescent layer, and almost no approach has been taken to improve the luminous efficiency of an ELD from the side of a transparent conductive laminate.

また、シアノエチル樹脂層を形成した透明導電性積層体
を重ねであるいは0−ル状に巻いて高湿皮下放置した時
に、シアノエチル樹脂層が他の透明導電性積層体背面に
一部転写したり、外観不良となる問題があった。
Furthermore, when a transparent conductive laminate with a cyanoethyl resin layer formed thereon is rolled up in layers or rolled up and left under the skin at high humidity, a part of the cyanoethyl resin layer may be transferred to the back surface of another transparent conductive laminate. There was a problem with poor appearance.

[発明が解決しようとする課題] 本発明は、ELDの透明電極として用いたとき高い発光
効率のELDを得ることができ、かつ保存性に優れた透
明81電性積層体の提供を目的とする。
[Problems to be Solved by the Invention] An object of the present invention is to provide a transparent 81 conductive laminate that can provide an ELD with high luminous efficiency when used as a transparent electrode of an ELD and has excellent storage stability. .

[vI題を解決するための手段] 本発明は、有機高分子成形物(A)上に、酸化物よりな
る透明導電層(B)、さらにその上に金属化合物の微粒
子を含有するシアノエチル樹脂層(C)が形成されてな
る透明導電性積層体である。
[Means for Solving Problem VI] The present invention provides a transparent conductive layer (B) made of an oxide on an organic polymer molded product (A), and further a cyanoethyl resin layer containing fine particles of a metal compound thereon. (C) is a transparent conductive laminate formed by forming.

以下、本発明の詳細な説明に至った経過とともに説明す
る。
Hereinafter, the present invention will be explained in detail along with the progress that has been made.

本発明者らは、透明導電層と発光層との間に介在する透
明導電層上のオーバーコート層に発光効率向上の鍵があ
るのではないかと着目し、該オーバーコート層について
鋭意研究した結果、該オーバーコート層として金属化合
物の微粒子を含有するシアンエチル樹脂層を用いること
により、驚くべきことに、ELDの発光効率が向上する
ことを見出した。
The present inventors focused on the overcoat layer on the transparent conductive layer interposed between the transparent conductive layer and the light-emitting layer, and found that the key to improving luminous efficiency was the result of intensive research on the overcoat layer. It has been surprisingly found that the luminous efficiency of ELD is improved by using a cyanethyl resin layer containing fine particles of a metal compound as the overcoat layer.

更に、金属化合物の微粒子を含有したシアンエチル樹脂
層を用いた場合、透明導電性積層体を重ねであるいはロ
ール状に巻いて高湿度下に放置しても、該シアノエチル
樹脂層の他の透明導電性積層体背面への転写や外観不良
の発生を防止できることを見出し、本発明に到達した。
Furthermore, when a cyanoethyl resin layer containing fine particles of a metal compound is used, even if the transparent conductive laminate is stacked or rolled up and left under high humidity, other transparent conductive conductors in the cyanoethyl resin layer will be removed. The present invention was achieved based on the discovery that transfer to the back surface of the laminate and occurrence of poor appearance can be prevented.

本発明における有機高分子成形物(△)を構成する有機
高分子化合物としては、耐熱性を有する透明な有機高分
子化合物であれば特に限定されない。
The organic polymer compound constituting the organic polymer molded article (Δ) in the present invention is not particularly limited as long as it is a transparent organic polymer compound having heat resistance.

通常、耐熱性としては、100”C以上が好ましい。Usually, the heat resistance is preferably 100''C or more.

耐熱性が100℃未満では、発光層や捕水フィルムと貼
り合わせる際に変形が著しくなり、透明導電層の抵抗値
が増大したり外観不良となるため好ましくない。
If the heat resistance is less than 100° C., deformation becomes significant when bonding with a light-emitting layer or a water-trapping film, and the resistance value of the transparent conductive layer increases and the appearance becomes poor, which is not preferable.

これらの有機高分子化合物としては、例え′ばポリイミ
ド;ポリエーテルスルホン;ポリスルボン:ボリバラバ
ン酸;ポリヒダントイン:ボリアリレートをはじめとし
て、ポリエチレンテレフタレート、ポリエチレン−2,
6−ナフタレンジカルボキシレート、ポリジアリルフタ
レート、ポリカーボネートなどのポリエステル系樹脂;
芳香族ポリアミドおよびセルローストリアゼテートなど
が挙げられる。もちろん、これらはホモポリマー、コポ
リマーとして、また単独またはブレンドとしても使用し
うる。
These organic polymer compounds include, for example, polyimide; polyethersulfone; polysulfone: borivalabanic acid; polyhydantoin: polyarylate, polyethylene terephthalate, polyethylene-2,
Polyester resins such as 6-naphthalene dicarboxylate, polydiallyl phthalate, and polycarbonate;
Examples include aromatic polyamide and cellulose triazetate. Of course, they can be used as homopolymers, copolymers, alone or in blends.

かかる有機高分子化合物の成形物の形状は特に限定され
るものではないが、通常、シート状、フィルム状のもの
が好ましく、なかでもフィルム状のものは巻取り可能で
あり、また連続生産が可能であるため、特に好ましい。
The shape of the molded product of the organic polymer compound is not particularly limited, but sheet-like or film-like products are usually preferred, and film-like products can be rolled up and can be continuously produced. Therefore, it is particularly preferable.

ざらに、フィルム状のものが使用される場合においては
、フィルムの厚さは、6〜500μmが好ましく、12
〜200μm。
In general, when a film-like material is used, the thickness of the film is preferably 6 to 500 μm, and 12 to 500 μm.
~200 μm.

が特に好ましい。is particularly preferred.

これらのフィルムまたはシートは、透明性を損わない程
度において顔料を添加したり、また表面加工、例えばサ
ンドマット加工などを施してもよい。
Pigments may be added to these films or sheets to the extent that transparency is not impaired, or surface treatments such as sand matting may be applied.

また、これらのフィルムまたはシートは、単独でもラミ
ネートして用いてもよい。
Further, these films or sheets may be used alone or in a laminated manner.

本発明の透明導電層<8)は、金属酸化物より構成され
る。例えば、錫および/またはフッ素含有酸化インジウ
ム、CTO(Cadgaiui  TinQxide)
 、アンチモン含有酸化錫、酸化チタンなどを挙げるこ
とができる。なかでもITO(2ndium Tin 
 0xide> 11は、透明性、S電性が特に優れて
おり、さらに電極のパターン化が容易(エツチング特性
が優れている)などの特徴を有し特に好ましい。
The transparent conductive layer <8) of the present invention is composed of a metal oxide. For example, tin and/or fluorine-containing indium oxide, CTO (Cadgaiui TinQxide)
, antimony-containing tin oxide, titanium oxide, and the like. Among them, ITO (2ndium Tin
Oxide>11 is particularly preferable because it has particularly excellent transparency and S-electroconductivity, and also has characteristics such as easy electrode patterning (excellent etching properties).

透明導N層(B)の膜厚は、充分な導電性を得るために
は50A以上であることが好ましい。
The thickness of the transparent conductive N layer (B) is preferably 50A or more in order to obtain sufficient conductivity.

また、充分に透明度の高い被膜を得るためには、透明導
電層(B)の膜厚は500Å以下であることが好ましく
、400A以下がより好ましい。
Furthermore, in order to obtain a film with sufficiently high transparency, the thickness of the transparent conductive layer (B) is preferably 500 Å or less, more preferably 400 Å or less.

透明S電層(8)を形成する方法としては、真空蒸着法
、スパッタリング法、イオンブレーティング法などの物
理的製g1法;導電性微粒子を含有する被覆液を用いる
被覆法;化学メツキ法などがあるが、透明81電層の均
一性、透明性の点で物理的製膜法が好ましい。
Methods for forming the transparent S conductive layer (8) include physical G1 methods such as vacuum evaporation, sputtering, and ion blating; coating methods using a coating liquid containing conductive fine particles; chemical plating methods, etc. However, a physical film forming method is preferable in terms of uniformity and transparency of the transparent 81 electrolyte layer.

さらに、透明S電層(B)と有機高分子成形物(A)と
の密着性を向上させるため、透明101層形成前に有機
高分子成形物上に中間層を形成してもよい。
Furthermore, in order to improve the adhesion between the transparent S conductive layer (B) and the organic polymer molded product (A), an intermediate layer may be formed on the organic polymer molded product before forming the transparent 101 layer.

中間層としては1例えば有機ケイ素化合物、チタンアル
キルエステル、ジルコニウムアルキルエステルなどの有
機金属化合物の加水分解により生成された層が好ましく
用いられる。この中間層は、多層構成としてもよい。
As the intermediate layer, a layer produced by hydrolysis of an organometallic compound such as an organosilicon compound, a titanium alkyl ester, or a zirconium alkyl ester is preferably used. This intermediate layer may have a multilayer structure.

中間層は、有機高分子成形物表面に有機金属化合物を含
む被覆液を被覆後、被VI液中および/または処理雰囲
気中の微量の水分の存在下に、加熱;イオンボンバード
あるいは紫外線;β線、TFllなどの放射線の作用に
より有機金属化合物を加水分解し硬化させることにより
得られる。
After coating the surface of the organic polymer molded article with a coating solution containing an organometallic compound, the intermediate layer is formed by heating; ion bombardment or ultraviolet rays; It is obtained by hydrolyzing and curing an organometallic compound under the action of radiation such as , TFll, etc.

また、中間層の被覆には、透明有機高分子成形物や被覆
液の形状、性質に応じてドクターナイフ、バーコーター
、グラビアロールコータ−、カーテンコーター、ナイフ
コーターなどの公知の塗工機械を用いる塗工法、スプレ
ー法、浸漬法などを用いることができる。
In addition, for coating the intermediate layer, known coating machines such as a doctor knife, bar coater, gravure roll coater, curtain coater, knife coater, etc. are used depending on the shape and properties of the transparent organic polymer molding and coating liquid. A coating method, a spray method, a dipping method, etc. can be used.

中間層の厚さとしては、100〜1,000人が好まし
く、特に200〜900人が好ましい。
The thickness of the intermediate layer is preferably 100 to 1,000 people, particularly preferably 200 to 900 people.

中間層の厚さが100人未満の場合には、連続層を形成
しないため密着性などの向上効果がなく、一方1,00
0人を超えると、クラックや剥離を生じたりして好まし
くない 本発明における透明導電性積層体は、有機高分子成形物
の両面に必要に応じて中間層を介して透明導電層を積層
した構成にしてもよい。
If the thickness of the intermediate layer is less than 100, it will not form a continuous layer and will not have the effect of improving adhesion.
If the number exceeds 0, cracks or peeling may occur, which is undesirable.The transparent conductive laminate of the present invention has a structure in which transparent conductive layers are laminated on both sides of an organic polymer molded material via an intermediate layer if necessary. You can also do this.

本発明のシアンエチル樹脂層(C)を形成するために用
いられるシアノエチル樹脂とは、樹脂中の水酸基の50
%以上がシアノエチル化された樹脂であり、シアノエチ
ルポリビニルアルコール、シアノエチルプルラン、シア
ノエチルヒドロキシエチルセルロース、シアノエチルサ
ッカロース、シアンエチルキシリトール、シアノエチル
アミロース、シアノエチルフェノキシ樹脂等をあげるこ
とができる。こららのシアノエチル樹脂は、単独でも2
種以上を混合して用いても良い。また、本発明の効果を
妨げない範囲でシアンエチル樹脂と他の樹脂を混合して
用いても良い。
The cyanoethyl resin used to form the cyanethyl resin layer (C) of the present invention refers to
% or more of the resin is cyanoethylated, and examples include cyanoethyl polyvinyl alcohol, cyanoethyl pullulan, cyanoethyl hydroxyethyl cellulose, cyanoethyl saccharose, cyanethyl xylitol, cyanoethyl amylose, and cyanoethyl phenoxy resin. These cyanoethyl resins alone have 2
A mixture of more than one species may be used. Further, cyanethyl resin and other resins may be mixed and used within a range that does not impede the effects of the present invention.

本発明のシアンエチル樹脂は必要に応じて接着促進剤、
ぬれ性改良剤、可塑剤、各種安定剤、11燃剤、酸化防
止剤などの各種添加剤と混合して用いることもできる。
The cyan ethyl resin of the present invention may optionally contain an adhesion promoter,
It can also be used in combination with various additives such as wettability improvers, plasticizers, various stabilizers, No. 11 fuel agents, and antioxidants.

次に、本発明のシアノエチル樹脂層(C)に含有される
金属化合物微粒子は、一次粒子径が100〜1000人
であることが好ましい。
Next, it is preferable that the metal compound fine particles contained in the cyanoethyl resin layer (C) of the present invention have a primary particle size of 100 to 1000 particles.

本発明で用いられる金属化合物微粒子としては、アンチ
モン含有酸化スズ、Il化スズ、スズ含有酸化インジウ
ム、酸化インジウム、酸化ケイ素、II化亜鉛、酸化ア
ルミニウム、イツトリウム含有酸化ジルコニウム、tl
化ジルコニウム、酸化セリウム、酸化チタンなどの金属
酸化物、フッ化マグネシウムなど金属フッ化物、チタン
酸バリウム、チタン酸鉛、チタン酸ジルコン酸鉛、チタ
ン酸ジルコン酸ランタン鉛、チタン酸アルミニウムなど
が挙げられる。
The metal compound fine particles used in the present invention include antimony-containing tin oxide, tin Il oxide, tin-containing indium oxide, indium oxide, silicon oxide, zinc II oxide, aluminum oxide, yttrium-containing zirconium oxide, tl
Examples include metal oxides such as zirconium oxide, cerium oxide, and titanium oxide, metal fluorides such as magnesium fluoride, barium titanate, lead titanate, lead zirconate titanate, lead lanthanum zirconate titanate, and aluminum titanate. .

これらのうち、特に酸化ケイ素微粒子の各粒子の表面が
疎水化あるいは改質されており、トルエンのような疎水
性溶剤にも一次粒子のままコロイド次元で透明に分散で
きるものが好ましい。特に、一次粒子径が100〜10
00人のものが、分散の安定性の点で好ましい。
Among these, silicon oxide fine particles whose surfaces are hydrophobicized or modified and which can be transparently dispersed in a colloidal dimension as primary particles even in a hydrophobic solvent such as toluene are particularly preferred. In particular, the primary particle size is 100 to 10
00 people is preferable in terms of stability of dispersion.

シアノエチル樹脂層中の金属化合物微粒子の分散状態が
悪いと、透明導電性積層体と発光層との密着性が低下す
る。この点、酸化ケイ素微粒子は、シアノエチル樹脂と
の相性が良く、シアノエチル樹脂中に均一に分散される
ので好ましい。
If the dispersion state of the metal compound fine particles in the cyanoethyl resin layer is poor, the adhesion between the transparent conductive laminate and the light emitting layer will decrease. In this respect, silicon oxide fine particles are preferred because they have good compatibility with the cyanoethyl resin and are uniformly dispersed in the cyanoethyl resin.

本発明のシアノエチル樹脂@(C)は、有機高分子成型
物(A)上に、金属酸化物よりなる透明sN層(B)を
形成し、さらにその上を前記シアンエチル樹脂と前記金
属化合物微粒子とを含む被覆液で被覆することにより形
成される。
The cyanoethyl resin@(C) of the present invention is produced by forming a transparent sN layer (B) made of a metal oxide on an organic polymer molded product (A), and then layering the cyanethyl resin and the metal compound fine particles on top of the transparent sN layer (B) made of a metal oxide. It is formed by coating with a coating liquid containing.

なお、被覆液は、前記シアノエチル樹脂を含む溶液と前
記金属化合物の微粒子をコロイド状に分散させた溶液と
から得ることができる。
The coating liquid can be obtained from a solution containing the cyanoethyl resin and a solution in which fine particles of the metal compound are colloidally dispersed.

被覆液の被覆には、有機高分子成形物や被覆液の形状、
性質に応じてドクターナイフ、バーコーター、グラビア
コーター カーテンコーター ナイフコーターなどの公
知の塗工機械を用いる塗工法、スプレー法、浸漬法など
を用いることができる。
For coating with the coating liquid, the shape of the organic polymer molding and the coating liquid,
Depending on the properties, a coating method using a known coating machine such as a doctor knife, a bar coater, a gravure coater, a curtain coater, a knife coater, a spray method, a dipping method, etc. can be used.

シアノエチル樹脂層(C)の面内の平均膜厚は、100
〜1000人が好ましく、特に100〜500人が好ま
しい。シアノエチル樹脂層(C)の平均膜厚が100人
未満の場合には、連続層を形成しがたくなるため発光層
との密着性が低く、一方1000人を超えると外観不良
を生じたりして好ましくない。
The average in-plane thickness of the cyanoethyl resin layer (C) is 100
-1000 people are preferable, and 100-500 people are particularly preferable. If the average film thickness of the cyanoethyl resin layer (C) is less than 100, it becomes difficult to form a continuous layer, resulting in poor adhesion with the light emitting layer, while if it exceeds 1,000, poor appearance may occur. Undesirable.

なお、シアンエチル樹脂層(C)の膜厚測定法には種々
の方法があるが、好ましい一例を以下に示す。
There are various methods for measuring the thickness of the cyan ethyl resin layer (C), and a preferred example is shown below.

シアノエチル樹脂層上をプラズマ重合膜で被覆し補強し
た後透明導電性積層体全体を包む様にエポキシ系樹脂で
固める。しかる後、透明導電性積層体の断面が出る様な
切片を切り出し、透過型電子顕微鏡で、シアノエチル樹
脂層を観察する。シアノエチル樹脂層にほとんど凹凸が
ない場合は、正常部数ケ所の膜厚を測定しこれらを平均
に平均膜厚を求める。シアノエチル樹脂層に凹凸がある
場合は、凹部、凸部の平均膜厚を求めた後、平均膜厚=
  1/2  (凹部の平均膜厚十凸部の平均膜厚)で
平均膜厚を算出する。
After covering and reinforcing the cyanoethyl resin layer with a plasma polymerized film, it is hardened with an epoxy resin so as to cover the entire transparent conductive laminate. Thereafter, a section is cut out that shows the cross section of the transparent conductive laminate, and the cyanoethyl resin layer is observed using a transmission electron microscope. If the cyanoethyl resin layer has almost no irregularities, measure the film thickness at several normal parts and average these to determine the average film thickness. If the cyanoethyl resin layer has irregularities, calculate the average film thickness of the recesses and projections, then calculate the average film thickness =
The average film thickness is calculated as 1/2 (the average film thickness of the concave portions and the average film thickness of the convex portions).

ところで、ELDを高温高湿の条件で連続点灯させると
、透明導電層が劣化することによりELDの輝度が急激
に低下することがある。
By the way, when an ELD is continuously lit under conditions of high temperature and high humidity, the brightness of the ELD may suddenly decrease due to deterioration of the transparent conductive layer.

透明導電層の劣化を防止する手段とし、透明導電層(B
)上に直接または、シアノエチル樹脂層(C)を介して
パラジウム、白金、ルテニウム。
As a means to prevent deterioration of the transparent conductive layer, the transparent conductive layer (B
) Palladium, platinum, ruthenium directly or via a cyanoethyl resin layer (C).

オスミウム、イリジウム、ロジウムからなる群から選ば
れた少なくとも1種の金属および/または金属酸化物の
薄膜11(D)を形成することかできる。
A thin film 11 (D) of at least one metal and/or metal oxide selected from the group consisting of osmium, iridium, and rhodium can be formed.

これらの金属および/または金a酸化物は、単独で用い
ても混合物として用いてもよい。また、これらの金属お
よび/または金WA酸化物の薄膜層が積層された構成で
あってもよい。
These metals and/or gold a oxides may be used alone or as a mixture. Further, a structure in which thin film layers of these metals and/or gold WA oxides are laminated may be used.

金属および/または金属酸化物のl膜層(D)の膜厚は
、0.5Å以上20人未満が好ましい。0.5人未満で
は、透明導電層の劣化防止効果がない。
The thickness of the metal and/or metal oxide layer (D) is preferably 0.5 Å or more and less than 20 Å. If it is less than 0.5 people, there is no effect of preventing deterioration of the transparent conductive layer.

一方、20Å以上では透明性が低下して好ましくない。On the other hand, if the thickness is 20 Å or more, the transparency decreases, which is not preferable.

金属および/または金属酸化物の薄膜の層(D)の形成
方法としては、真空蒸着法、スパッタリング法、イオン
ブレーティング法などの物理的製膜法が好ましく用いら
れる。
As a method for forming the metal and/or metal oxide thin film layer (D), a physical film forming method such as a vacuum evaporation method, a sputtering method, or an ion blasting method is preferably used.

[実施例] 以下、実施例を挙げて本発明をさらに具体的に説明する 実施例1および比較例1 シアノエチルプルランのメヂルセロソルブ、メチルエヂ
ルケトン、シクロヘキサノンの混合溶液(1)と表面を
疎水化した酸化ケイ素微粒子(粒径的 120人)をト
ルエン中にコロイド状に分散させた溶液(2)とから、
シアノエチルプルラン。
[Example] Hereinafter, the present invention will be described in more detail with reference to Examples. Example 1 and Comparative Example 1 Cyanoethyl pullulan was mixed with a mixed solution (1) of medyl cellosolve, methyl edyl ketone, and cyclohexanone and its surface was made hydrophobic. From a solution (2) in which silicon oxide fine particles (particle size: 120 particles) are colloidally dispersed in toluene,
Cyanoethyl pullulan.

酸化ケイ素微粒子の固形分濃度がそれぞれ、1.0重a
%、0.5重量%の被覆液を調整した。なお、比較のた
めシアノエチルプルラン、メチルセロソルブ。メチルエ
チルケトン、シクロヘキサノンより、シアノエチルプル
ランの固形分濃度が1.0重量%の被覆液を調整した。
The solid content concentration of silicon oxide fine particles is 1.0 weight a
%, 0.5% by weight coating liquid was prepared. For comparison, cyanoethyl pullulan and methyl cellosolve. A coating liquid having a solid concentration of cyanoethyl pullulan of 1.0% by weight was prepared from methyl ethyl ketone and cyclohexanone.

一方、厚さ75μmのポリエチレンテレフタレートフイ
ルムを直流マグネトロンスパッタ装置内の基板保持台に
固定し、真空度2 X 10′lIT orrまで真空
度を排気した。
On the other hand, a polyethylene terephthalate film having a thickness of 75 μm was fixed to a substrate holder in a DC magnetron sputtering device, and the vacuum level was evacuated to a vacuum level of 2×10′lIT orr.

その後、Ar102混合ガス(Oz=25%)を槽内に
導入し、真空度を4 x 1O−3T orrに保った
のち、In/Sn合金(Sn =5重1%)よりなるタ
ーゲットを用いた反応性スパッタリング法により膜厚が
約250人のインジウム・スズ酸化物膜よりなる透明S
電層付フィルムを作成した。
After that, Ar102 mixed gas (Oz = 25%) was introduced into the tank and the degree of vacuum was maintained at 4 x 1O-3T orr, and then a target made of In/Sn alloy (Sn = 5% by weight) was used. Transparent S made of indium tin oxide film with a film thickness of about 250 mm by reactive sputtering method
A film with an electric layer was created.

透明導電層付フィルムの透過率(550nl )は83
%、抵抗は260Ω/口であった。
The transmittance of the film with transparent conductive layer (550nl) is 83
%, and the resistance was 260Ω/mouth.

次に、透明導電層を形成した面に、前記被覆液をバーコ
ーターで塗布後、140℃で1分間乾燥することにより
シアノエチルプルランと酸化ケイ素微粒子とを含むシア
ノエチル樹脂層またはシアノエチルプルランのみを含む
シアンエチル樹脂層を形成し、実施例1および比較例1
の透明導電性積層体を得た。シアノエチル樹脂層の平均
膜厚はそれぞれ約350人と約300人であった。
Next, the coating liquid is applied to the surface on which the transparent conductive layer is formed using a bar coater, and then dried at 140° C. for 1 minute to form a cyanoethyl resin layer containing cyanoethyl pullulan and silicon oxide fine particles or a cyanogen layer containing only cyanoethyl pullulan. Forming an ethyl resin layer, Example 1 and Comparative Example 1
A transparent conductive laminate was obtained. The average thickness of the cyanoethyl resin layer was about 350 and about 300, respectively.

方、これとは別に、厚さ 100μmのアルミニウムシ
ート上にチタン酸バリウム粉末をシアノエチルプルラン
中に分散した塗工液を塗布後乾燥し、厚さ数μmの絶縁
層を形成した。さらに、その上に硫化亜鉛を主成分とす
る蛍光体粉末をシアノエチルプルラン中に分散させた塗
工液を塗工後乾燥し、厚さ数十μmの発光層を形成する
ことにより、試験用シートを作成した。
Separately, a coating solution in which barium titanate powder was dispersed in cyanoethyl pullulan was applied onto an aluminum sheet with a thickness of 100 μm and dried to form an insulating layer with a thickness of several μm. Furthermore, a coating liquid containing zinc sulfide-based phosphor powder dispersed in cyanoethyl pullulan was applied on top of the test sheet and dried to form a light-emitting layer several tens of micrometers thick. It was created.

透明導電性積層体の透明導電層を形成した面と試験用シ
ートの発光層とを向かい合わせたのち、ローラ温度11
0℃、線圧15Nf/cmに調整したラミネータにより
接着して一体化した。
After facing the surface of the transparent conductive laminate on which the transparent conductive layer was formed and the light emitting layer of the test sheet, the roller temperature was set to 11.
They were bonded and integrated using a laminator adjusted to 0° C. and a linear pressure of 15 Nf/cm.

なお、この時透明導電性積層体の透明導電層を形成した
面には、あらかじめ銀ペースト電極が印刷されており、
銀ペースト電極にはさらに外部電力印加用の端子として
厚さ15μmのステンレス箔が接続された形で透明導電
性積層体と試験用シート間にはさみこまれている。
At this time, silver paste electrodes were printed in advance on the surface of the transparent conductive laminate on which the transparent conductive layer was formed.
A 15 μm thick stainless steel foil was further connected to the silver paste electrode as a terminal for applying external power and was sandwiched between the transparent conductive laminate and the test sheet.

しかるのち、アルミニウム面にも外部電力印加用端子を
接続した後に前記一体止したザンブルの両面に捕水フィ
ルム[ダイセル■製、Z E −135]を、ローラ温
度120℃、線圧8Ny/cmに調整したラミネータに
より接着して一体化した。
After that, after connecting the external power application terminal to the aluminum surface, a water-absorbing film [Z E-135, manufactured by Daicel ■] was applied to both sides of the integrally fixed Zamble at a roller temperature of 120°C and a linear pressure of 8 Ny/cm. They were glued and integrated using an adjusted laminator.

さらに、捕水フィルムの外側に防湿フィルム[日東電気
工業■製、4820 ]を、ローラ温度120℃、線圧
/ly/cmに調整したラミネータにより接着して一体
化することよりELD(発光部面積150Cd)を作成
した。
Furthermore, a moisture-proof film [manufactured by Nitto Electric Industries ■, 4820] is adhered to the outside of the water-catching film using a laminator adjusted to a roller temperature of 120°C and a linear pressure of /ly/cm. 150Cd) was created.

なお、防湿フィルムは、透明導電性積層体、試験用シー
ト、および捕水フィルムより大ぎいサイズのものを使用
し、ELDの周囲は防湿フィルム同士が張り合わされて
おり、透明導電性積層体、試験用シートおよび捕水フィ
ルム全体を包みこんでいる。
The moisture-proof film used is larger than the transparent conductive laminate, the test sheet, and the water-trapping film, and the moisture-proof films are pasted together around the ELD. The entire water-trapping sheet and water-catching film are covered.

かくシテ作成したELDを100V400Hzテ駆動し
た時の輝度、間貸電力1発光効率を調べた。
The brightness and luminous efficiency of the ELD produced in this way were investigated when it was driven at 100V and 400Hz.

測定結宋を第1表に示す。The measured results are shown in Table 1.

本発明の透明導電性積層体を用いるこによりELDの発
光効率が約10%向上することが分かる。
It can be seen that by using the transparent conductive laminate of the present invention, the luminous efficiency of ELD is improved by about 10%.

第1表 実施例2および比較例2 シアノエチルプルランおよびシアノエチルポリビニルア
ルコールのメチルセロンルブ、メチルエチルケトン、シ
クロヘキサノンの混合溶液(1)と表面を疎水化した酸
化ケイ素微粒子(粒径約120人)をトルエン中にコロ
イド状に分散させた溶液(2)とから、シアノエチルプ
ルラン、シアノエチルポリビニルアルコール及び酸化ケ
イ素微粒子の固形分濃度がそれぞれ、0.2重量%、0
.8重F%及び0.5重量%の被覆液を調整した。
Table 1 Example 2 and Comparative Example 2 A mixed solution (1) of cyanoethyl pullulan and cyanoethylpolyvinyl alcohol, methyl ceronelube, methyl ethyl ketone, and cyclohexanone and silicon oxide fine particles (particle size: about 120 particles) whose surface has been made hydrophobic are mixed in toluene. From the colloidally dispersed solution (2), the solid content concentrations of cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, and silicon oxide fine particles were 0.2% by weight and 0.0% by weight, respectively.
.. A coating solution containing 8% F and 0.5% by weight was prepared.

一方、実施例1と同様な方法で厚さ15μmのボリエチ
レンテレフタレートフイルムを用いて、インジウム・ス
ズ酸化物よりなる透明環M層付フィルムを作成した。
On the other hand, in the same manner as in Example 1, a film with a transparent ring M layer made of indium tin oxide was prepared using a polyethylene terephthalate film having a thickness of 15 μm.

透明導電層付フィルムの透過率(550rv )は83
%、抵抗は210Ω/口であった。
Transmittance (550rv) of film with transparent conductive layer is 83
%, and the resistance was 210Ω/mouth.

次に、槽内にArガスを導入し、真空度を4×10−3
7 orrに保ったのちpd金金属ターゲットを用いた
スパッタリング法により、膜厚が約2人のPd金属の1
Il1層を透明導電層上に形成した。
Next, Ar gas was introduced into the tank and the vacuum level was increased to 4×10-3.
After maintaining the film thickness at 7 orr, a sputtering method using a PD gold metal target was used to obtain a film with a film thickness of about 2 mm.
An Il1 layer was formed on the transparent conductive layer.

しかるのち、透明導電層、引き続いてPd金属の薄!l
A層を形成した面に、前記被覆液をバーコーターで塗布
後、140℃で1分間乾燥することによりシアノエチル
プルラン、シアノエチルポリビニルアルコールおよび酸
化ケイ素微粒子を含む平均膜厚約350人のシアンエチ
ル樹脂層を形成し、実施例2の透明導電性vA層体を得
た。比較例2として、シアノエチル樹脂層を形成しない
透明導電性積層体を用いた。
Then a transparent conductive layer, followed by a thin layer of Pd metal! l
The coating liquid was applied to the surface on which layer A was formed using a bar coater, and then dried at 140°C for 1 minute to form a cyanethyl resin layer containing cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, and silicon oxide fine particles with an average thickness of about 350 people. A transparent conductive vA layer of Example 2 was obtained. As Comparative Example 2, a transparent conductive laminate without a cyanoethyl resin layer was used.

実施例2および比較例2の透明導電性積層体を用い、実
施例1と同様な方法でELD(発光部面積150ci)
を作成した。
Using the transparent conductive laminates of Example 2 and Comparative Example 2, ELD (light emitting area: 150 ci) was performed in the same manner as in Example 1.
It was created.

実施例1と同様に、100V 400Hzで駆動した時
の輝度、消費電力2発光効率を調べた測定結果を第2表
に示ず。
Similar to Example 1, Table 2 does not show the measurement results of luminance, power consumption, and luminous efficiency when driven at 100 V and 400 Hz.

本発明の透明導電性積層体を用いることによりELDの
発光効率が約10%向上することが分かる。
It can be seen that by using the transparent conductive laminate of the present invention, the luminous efficiency of ELD is improved by about 10%.

第2表 実施例3および比較例3 シアノエチルプルラン、シアノエチルポリビニルアルコ
ール、メチルセロソルブ、メチルエチルケトン、シクロ
ヘキサノンより固形分濃度が、それぞれ、0.2重量%
、0.8重量%のシアノエチルプルラン、シアノエチル
ポリビニルアルコールを含む被覆液を調整した。
Table 2 Example 3 and Comparative Example 3 Solid content concentration of cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, methyl cellosolve, methyl ethyl ketone, and cyclohexanone was 0.2% by weight, respectively.
A coating liquid containing 0.8% by weight of cyanoethyl pullulan and cyanoethyl polyvinyl alcohol was prepared.

上記被覆液を用いた以外は、実施例2と全く同様にして
、比較例3の透明導電性積層体を得た。
A transparent conductive laminate of Comparative Example 3 was obtained in exactly the same manner as in Example 2 except that the above coating liquid was used.

シアノエチル樹脂層の平均膜厚は約300人であった。The average thickness of the cyanoethyl resin layer was about 300.

実施例2と全く同様にして作成した実施例3の透明導電
性積層体および比較例3の透明導電性積層体を、40w
nx 40g1mの大きさにカットした後、シアノエチ
ル樹脂層を形成した面と反対面が接する様に5枚重ね、
ざらに上下をガラス板(65g+lx 6511X 2
.St )ではさむことにより試験用サンプルを作成し
た。
The transparent conductive laminate of Example 3 and the transparent conductive laminate of Comparative Example 3 prepared in exactly the same manner as Example 2 were heated to 40W.
nx 40g After cutting into pieces of 1m in size, stack 5 sheets so that the side on which the cyanoethyl resin layer was formed is in contact with the opposite side,
Roughly cover the top and bottom with glass plates (65g+lx 6511X 2
.. A test sample was prepared by sandwiching the sample with St.

該サンプルを60℃90%RH雰囲気に20hrtll
置後取り出して透明導電性積層体の外観変化を調べた。
The sample was placed in an atmosphere of 60°C and 90% RH for 20hrtll.
After storage, the transparent conductive laminate was taken out and changes in appearance of the transparent conductive laminate were examined.

測定結果を第3表に示す。The measurement results are shown in Table 3.

本発明の透明導電性積層体は外観変化がなく保存性に優
れていることが分かる。
It can be seen that the transparent conductive laminate of the present invention does not change in appearance and has excellent storage stability.

第3表 [発明の効果] 本発明により、ELDの透明電極として用いたとき透明
導電層の劣化がなく、また、発光層との密着性に優れか
つ透明性が良く、ELD用に充分利用できる透明導電性
v4Wa体が提供可能となる。
Table 3 [Effects of the Invention] According to the present invention, when used as a transparent electrode for ELD, there is no deterioration of the transparent conductive layer, and it has excellent adhesion with the light emitting layer and good transparency, and can be fully used for ELD. A transparent conductive v4Wa body can be provided.

本発明で得られる透明導電性積層体は、ELD用として
適しているだけでなく、例えば透明タッチパネル、電子
写真、帯電防止材料1面発熱体。
The transparent conductive laminate obtained by the present invention is not only suitable for ELD, but also for example, transparent touch panels, electrophotography, and antistatic material one-sided heating elements.

固体デイスプレィ、光メモリ−、光電変換素子。Solid-state displays, optical memories, photoelectric conversion elements.

光通信、光情報処理、太陽エネルギー利用材料などの広
い用途に有用である。
It is useful for a wide range of applications such as optical communications, optical information processing, and solar energy utilization materials.

手続補正書 特許出願人  帝  人  株  式  会  社1、
事件の表示 特願平 2 197999号 2、発明の名称 透明導電性積層体 (1)明細書第15頁第19行の1約350人と約30
0AJを「約600人と約350人」と訂正する。
Procedural Amendment Patent Applicant: Teijin Co., Ltd. 1,
Indication of Case Patent Application No. 197999 No. 2, Title of Invention: Transparent Conductive Laminate (1) Specification, page 15, line 19 1 Approximately 350 people and approximately 30
0AJ is corrected to "approximately 600 people and approximately 350 people."

(2)同第19頁第15行の「約350人」を「約60
0人」と訂正する。
(2) On page 19, line 15, “approximately 350 people” was replaced with “approximately 60 people.”
0 people,” he corrected.

(3)同第21頁第6行の「約300人」を「約350
人」と訂正する。
(3) “About 300 people” on page 21, line 6 of the same page was changed to “about 350 people.”
"People," he corrected.

(4)同第12頁第3行の「100〜500人」を「1
00〜800人」と訂正する。
(4) In the third line of page 12, “100 to 500 people” was changed to “1
00-800 people,” he corrected.

(5)同第15頁第20行〜第16頁第7行を以下の如
く訂正する。
(5) Lines 20 on page 15 to line 7 on page 16 are corrected as follows.

[一方、これとは別に、厚さ100μmのアルミニウム
シート上にチタン酸バリウム粉末をシアノエチルプルラ
ン、シアノエチルポリビニルアルコール中に分散した塗
工液(固形分重量比、シアノエチルプルラン/シアノエ
チルポリビニルアルコール/チタン酸バリウム粉末=3
5/15、/′50 )を塗布後乾燥し、厚さ40μm
の絶縁層を形成した。さらに、その上に硫化亜鉛を主成
分とする蛍光体粉末をシアノエチルプルラン、シアノエ
チルポリビニルアルコール中に分散した塗工液(固形分
重量比、シアノエチルプルラン7/シアノエチルポリビ
ニルアルコール/蛍光体粉末−10/10/80)を塗
布後乾燥し、厚さ40μmの発光層を形成することによ
り、試験用シートを作成した。」 以上
[Separately, a coating solution prepared by dispersing barium titanate powder in cyanoethyl pullulan and cyanoethyl polyvinyl alcohol (solid content weight ratio, cyanoethyl pullulan/cyanoethyl polyvinyl alcohol/barium titanate) was prepared on an aluminum sheet with a thickness of 100 μm. powder = 3
5/15, /'50) was applied and dried to a thickness of 40 μm.
An insulating layer was formed. Furthermore, a coating solution containing phosphor powder containing zinc sulfide as a main component dispersed in cyanoethyl pullulan and cyanoethyl polyvinyl alcohol (solid content weight ratio, cyanoethyl pullulan 7/cyanoethyl polyvinyl alcohol/phosphor powder - 10/10) /80) was applied and dried to form a light-emitting layer with a thickness of 40 μm to prepare a test sheet. "that's all

Claims (3)

【特許請求の範囲】[Claims] (1)有機高分子成型物(A)上に、金属酸化物よりな
る透明導電層(B)、さらにその上に金属化合物の微粒
子を含有するシアノエチル樹脂層(C)が形成されてな
る透明導電性積層体。
(1) A transparent conductive layer in which a transparent conductive layer (B) made of a metal oxide is formed on an organic polymer molded product (A), and a cyanoethyl resin layer (C) containing fine particles of a metal compound is further formed thereon. Sex laminate.
(2)該透明導電層(B)上に直接あるいは該シアノエ
チル樹脂層(C)を介して、パラジウム,白金,ルテニ
ウム,オスミウム,イリジウム,ロジウムからなる群か
ら選ばれた少くとも1種の金属及び/または金属酸化物
の薄膜層(D)が形成されてなる請求項1記載の透明導
電性積層体。
(2) Directly or via the cyanoethyl resin layer (C) on the transparent conductive layer (B), at least one metal selected from the group consisting of palladium, platinum, ruthenium, osmium, iridium, and rhodium; The transparent conductive laminate according to claim 1, further comprising a thin film layer (D) of a metal oxide.
(3)該シアノエチル樹脂層(C)に含有される金属化
合物の微粒子が、その一次粒子径が100〜1000Å
の酸化ケイ素の微粒子である請求項1又は2記載の透明
導電性積層体。
(3) The fine particles of the metal compound contained in the cyanoethyl resin layer (C) have a primary particle diameter of 100 to 1000 Å.
The transparent conductive laminate according to claim 1 or 2, which is fine particles of silicon oxide.
JP2197999A 1990-07-27 1990-07-27 Transparent conductive laminate Expired - Fee Related JP2874978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2197999A JP2874978B2 (en) 1990-07-27 1990-07-27 Transparent conductive laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2197999A JP2874978B2 (en) 1990-07-27 1990-07-27 Transparent conductive laminate

Publications (2)

Publication Number Publication Date
JPH0483635A true JPH0483635A (en) 1992-03-17
JP2874978B2 JP2874978B2 (en) 1999-03-24

Family

ID=16383831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2197999A Expired - Fee Related JP2874978B2 (en) 1990-07-27 1990-07-27 Transparent conductive laminate

Country Status (1)

Country Link
JP (1) JP2874978B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526552A (en) * 2008-06-30 2011-10-13 コーロン インダストリーズ インク Plastic substrate and element including the same
CN110459622A (en) * 2012-07-20 2019-11-15 旭化成株式会社 Semiconductor film and semiconductor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526552A (en) * 2008-06-30 2011-10-13 コーロン インダストリーズ インク Plastic substrate and element including the same
CN110459622A (en) * 2012-07-20 2019-11-15 旭化成株式会社 Semiconductor film and semiconductor element

Also Published As

Publication number Publication date
JP2874978B2 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
JP2003151358A (en) Transparent conductive film and touch panel
JP4068993B2 (en) Transparent conductive laminated film
JP3483355B2 (en) Transparent conductive laminate
JPS6120928A (en) Display device
JP3349194B2 (en) Transparent conductive laminate
JPH0483635A (en) Transparent conductive laminate
JP3048656B2 (en) Transparent conductive laminate
JP4242664B2 (en) Antireflection film
JP3027315B2 (en) Laminated film
JPH02208627A (en) Light control film
JP2019194719A (en) Transparent conductive film for electric field-driven light control element, light control film, and electric field-driven light control element
JPH02199428A (en) Light control laminated body
JPH06290868A (en) Electroluminescent element package
JPH02208630A (en) Light control laminate
JP2922265B2 (en) Transparent conductive laminate
JPH03290237A (en) Transparent conductive laminate
JP2001014952A (en) Transparent conductive film and electroluminescence panel
JPH1148388A (en) Transparent conductive film
JPS61279004A (en) Conducting laminate body
JPH02205822A (en) Light control film
JP3466001B2 (en) Transparent conductive laminate
JPS6362846B2 (en)
JPH04337208A (en) Transparent conducting film
JPH10278159A (en) Production of transparent conductive membrane laminate
JP7534374B2 (en) Method for producing transparent conductive film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees