JPH0482278A - Light emitting diode - Google Patents

Light emitting diode

Info

Publication number
JPH0482278A
JPH0482278A JP2194928A JP19492890A JPH0482278A JP H0482278 A JPH0482278 A JP H0482278A JP 2194928 A JP2194928 A JP 2194928A JP 19492890 A JP19492890 A JP 19492890A JP H0482278 A JPH0482278 A JP H0482278A
Authority
JP
Japan
Prior art keywords
type semiconductor
layer
active layer
semiconductor substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2194928A
Other languages
Japanese (ja)
Inventor
Nobuo Tsukamoto
信夫 塚本
Tetsuo Minemura
哲郎 峯村
Yoshiaki Yazawa
義昭 矢澤
Hiroyuki Minemura
浩行 峯邑
Junko Asano
純子 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2194928A priority Critical patent/JPH0482278A/en
Publication of JPH0482278A publication Critical patent/JPH0482278A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form an edge light-emitting LED element whose light-emitting output change by a temperature is small by a method wherein an active layer is formed at an acute angle to an electrode and light is taken out directly in a direction which is nearly parallel to the electrode. CONSTITUTION:An n-type GaAs buffer layer 2 is grown heteroepitaxially on a low-resistance n-type Si substrate 1 by a molecular beam epitaxy method or an organometallic vapor growth method. In addition, an n-type GaAlAs layer 3, a GaAs active layer 4 and a p-type GaAlAs layer 5 are epitaxially grown sequentially; after that, one part is etched and removed. After that, an ITO 6 as a transparent conductive substrate is formed by a sputtering operation. The substrate 1 and the ITO 6 are polished and tilted with reference to the active layer 4. Au electrodes 7 high in reflectivity are formed on the substrate 1 and the ITO 6 by a sputtering operation. Thereby, it is possible to form an edge light-emitting LED element whose light-emitting change by a temperature is small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発光ダイオードの基板構造と構成に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a substrate structure and configuration of a light emitting diode.

〔従来の技術〕[Conventional technology]

従来、pn接合に水平な方向に光を取り出す端面発光型
LEDは、例えば、光学(宇治俊男;光学、第15巻第
2号、1986.p53〜P54)に開示されるものが
ある。第2図はこの文献に開示されている端面発光型L
EDの素子構造である。
Conventionally, an edge-emitting type LED that takes out light in a direction horizontal to a p-n junction is disclosed, for example, in Kogaku (Toshio Uji; Kogaku, Vol. 15, No. 2, 1986. p. 53-54). Figure 2 shows the edge-emitting type L disclosed in this document.
This is the element structure of the ED.

第2図において、n型InP基板21上に、n型InP
層22.GaInAsP活性層23.p型InP層24
.n型GaInAsP層25.n型InP層26が、順
次、形成されている。破線で示された領域27は拡散領
域である。28はp型コンタクト、29はn型コンタク
トである。
In FIG. 2, n-type InP is placed on an n-type InP substrate 21.
Layer 22. GaInAsP active layer 23. p-type InP layer 24
.. n-type GaInAsP layer 25. N-type InP layers 26 are successively formed. A region 27 indicated by a broken line is a diffusion region. 28 is a p-type contact, and 29 is an n-type contact.

28中央部のくぼみは、22,23.24の接合部に注
入される電流を集中させるためのものである。n型In
P層22.p型InP層24は、GaInAsP活性層
23に比べて低い屈折率を持ち、G a I n A 
s P活性層23で発光した光はGaInAsP活性層
23の中に閉じ込められて伝播し、pn接合に平行な方
向に出射される。
The depression in the center of 28 is for concentrating the current injected into the junction of 22, 23, and 24. n-type In
P layer 22. The p-type InP layer 24 has a lower refractive index than the GaInAsP active layer 23, and has a lower refractive index than the GaInAsP active layer 23.
The light emitted by the sP active layer 23 is confined in the GaInAsP active layer 23, propagates, and is emitted in a direction parallel to the pn junction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第2図に示されたように従来の端面発光型LEDでは、
pn接合に垂直な方向に光を取り出す面発光LEDに比
べ、出力の温度変化が王ないし十倍と大きい。特に、電
流注入領域を狭くしたり、埋込み構造を用いた場合に、
低温で発振したり、使用温度範囲で出力が十倍以上変動
する場合があり光伝送技術などに用いる場合に安定性に
問題があった。前述のように、第2図の活性層23にお
いて発光した光は活性層23より小さな屈折率をもつn
型InP層22.p型InP層24によって閉じ込めら
れ、活性層23は導波層の役割も果たす。この導波層は
出力に波長依存性を持つ。温度が変わり活性層2の禁制
帯幅が変わると最大利得の波長が変わる。従って、出力
の温度変化が大きくなる。そのため従来技術のもつ問題
点を解決し、様々な温度環境で安定に動作する端面発光
LED素子を提供するためには温度変化に対する出力変
化を抑える対策が必要となる。
As shown in Figure 2, in the conventional edge-emitting LED,
Compared to surface-emitting LEDs that emit light in a direction perpendicular to the pn junction, the temperature change in output is about 1 to 10 times larger. In particular, when the current injection region is narrowed or a buried structure is used,
There are problems with stability when used in optical transmission technology, as it may oscillate at low temperatures or its output may fluctuate by a factor of ten or more over the operating temperature range. As mentioned above, the light emitted in the active layer 23 in FIG.
type InP layer 22. Confined by the p-type InP layer 24, the active layer 23 also serves as a waveguide layer. The output of this waveguide layer is wavelength dependent. When the temperature changes and the forbidden band width of the active layer 2 changes, the wavelength of maximum gain changes. Therefore, the temperature change in the output becomes large. Therefore, in order to solve the problems of the prior art and provide edge-emitting LED elements that operate stably in various temperature environments, it is necessary to take measures to suppress output changes due to temperature changes.

半導体基板上にその半導体と熱膨張係数や格子定数の異
なる半導体を積層し、発光領域を形成するとき、その積
層半導体の結晶性が低下するという問題があり、良質の
発光素子を得るには熱膨張係数や格子定数の差を緩和す
る必要がある。
When forming a light-emitting region by stacking semiconductors with different thermal expansion coefficients and lattice constants on a semiconductor substrate, there is a problem that the crystallinity of the stacked semiconductors decreases, and heat is required to obtain high-quality light-emitting elements. It is necessary to alleviate differences in expansion coefficients and lattice constants.

端面発光LED素子を作成する場合、活性層で発光した
光は、その進行経路で吸収されることにより発光素子と
しての光利用効率が低下する。そこで、光の進行経路で
の吸収を抑える対策が必要となる。また、さらに光利用
効率を向上するには光の出力方向を限定する必要がある
When producing an edge-emitting LED element, the light emitted by the active layer is absorbed along its traveling path, resulting in a decrease in light utilization efficiency as a light-emitting element. Therefore, it is necessary to take measures to suppress absorption along the path of light. Furthermore, in order to further improve the light utilization efficiency, it is necessary to limit the direction in which the light is output.

〔課題を解決するための手段〕[Means to solve the problem]

温度による発光出力変化の小さい端面発光LED素子を
提供するには、活性層を発光した光を内側に閉じ込める
導波層として用いず、活性層で発光した光をその外部に
取り出して伝播させる。
In order to provide an edge-emitting LED element with a small change in luminous output due to temperature, the active layer is not used as a waveguide layer that confines the emitted light inside, but the light emitted by the active layer is taken out and propagated outside.

本発明では、活性層を含む積層構造と、この積層構造に
電界を印加する電極とをもつ発光ダイオードにおいて、
活性層を含む積層構造が電極に対し鋭角をなし、電極に
よって遮蔽されない方向に、直接、光を取り出すことに
より目的を達成する。
In the present invention, in a light emitting diode having a laminated structure including an active layer and an electrode for applying an electric field to this laminated structure,
The layered structure including the active layer forms an acute angle to the electrodes, and the objective is achieved by directly extracting light in a direction that is not blocked by the electrodes.

半導体基板上にその半導体と熱膨張係数や格子定数の異
なる半導体を積層するとき、その間に適当なバッファ層
を挾んで積層することにより積層された半導体層の結晶
性を良好なものとする。
When semiconductors having different thermal expansion coefficients and lattice constants are stacked on a semiconductor substrate, the stacked semiconductor layers are made to have good crystallinity by sandwiching an appropriate buffer layer therebetween.

活性層で発光した光の進行経路での吸収を抑える対策と
して、活性層を含む積層構造と、電極との間に活性層で
発光する光に対して透明な導電性物質を介することによ
り、発光素子としての光利用効率を向上する。また、電
極を反射率が高くなるようにすることによりさらに光利
用効率を向上する。
As a measure to suppress the absorption of light emitted from the active layer in the traveling path, a conductive material that is transparent to the light emitted from the active layer is interposed between the laminated structure including the active layer and the electrode. Improve the light utilization efficiency as an element. Furthermore, by making the electrodes have high reflectance, the light utilization efficiency is further improved.

〔作用〕[Effect]

活性層と、それに隣接し基板側にあり活性層より大きな
禁制帯幅を持つ第一導電型半導体層、および活性層に隣
接し、基板と反対側にあり活性層より大きな禁制帯幅を
持つ第二導電型半導体層とを含む積層構造と、この積層
構造に電界を印加する電極とをもつ発光ダイオードにお
いて、活性層が電極に対して鋭角を成し、電極に略平行
な方向に、直接、光を取り出すことによって温度による
発光出力変化の小さい端面発光LED素子を形成するこ
とができる。また、この端面発光LEDで電極をA u
 + A Q t Cu等の金属とすることによって光
利用効率の高い端面発光LED素子を形成することがで
きる。さらに、この端面発光LEDで第一導電型半導体
基板と、活性層を含む積層構造との間にバッファ層を介
することにより、結晶性の良い積層構造を持つ端面発光
LED素子を形成することができる。この端面発光LE
Dにおいて活性層を含む積層構造と、電極との間に活性
層で発光する光に対して透明な導電性物質を介在させる
ことにより光利用効率の高い端面発光LED素子を形成
することができる。
an active layer, a first conductivity type semiconductor layer adjacent to the active layer on the substrate side and having a larger forbidden band width than the active layer; and a first conductivity type semiconductor layer adjacent to the active layer and on the opposite side to the substrate and having a larger forbidden band width than the active layer. In a light emitting diode, the active layer forms an acute angle to the electrode and directly extends in a direction substantially parallel to the electrode in a light emitting diode having a laminated structure including a biconducting semiconductor layer and an electrode for applying an electric field to the laminated structure. By extracting light, it is possible to form an edge-emitting LED element whose light emission output changes little due to temperature. In addition, in this edge-emitting LED, the electrode is A u
+ A Q t By using a metal such as Cu, an edge-emitting LED element with high light utilization efficiency can be formed. Furthermore, in this edge-emitting LED, by interposing a buffer layer between the first conductivity type semiconductor substrate and the laminated structure including the active layer, an edge-emitting LED element having a laminated structure with good crystallinity can be formed. . This edge-emitting LE
In D, by interposing a conductive material transparent to light emitted by the active layer between the laminated structure including the active layer and the electrode, an edge-emitting LED element with high light utilization efficiency can be formed.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。低抵
抗n型Si基板1上にn型のGaAsバッファ層2を分
子線エピタキシ法(MBE)、または、有機金属気相成
長法(MOCVD)によりヘテロエピタキシャル成長さ
せ、さらに、n型GaAlAs層3 、 G a A 
s活性層4tP型G a A Q A s層5を次々に
エピタキシャル成長させる所定の結晶成長を行なった後
に2〜5層の一部をエツチング除去する。その後、透明
な導電性物質としてIrO6をスパッタにより形成する
An embodiment of the present invention will be described below with reference to FIG. An n-type GaAs buffer layer 2 is heteroepitaxially grown on a low-resistance n-type Si substrate 1 by molecular beam epitaxy (MBE) or metal organic chemical vapor deposition (MOCVD), and an n-type GaAlAs layer 3, G a A
After a predetermined crystal growth is performed to epitaxially grow the s active layer 4tP type GaAQAs layer 5 one after another, parts of layers 2 to 5 are removed by etching. Thereafter, IrO6 is formed as a transparent conductive material by sputtering.

図に示すように、Si基板1およびIrO6を研磨して
活性層4に対して斜めにする。Si基板1およびIrO
2に高反射率のAu電極7をスッパタにより形成する。
As shown in the figure, the Si substrate 1 and IrO 6 are polished to be oblique to the active layer 4. Si substrate 1 and IrO
2, an Au electrode 7 with high reflectance is formed by sputtering.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているので以下
に記載されるような効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

本発明では、活性層と、それに隣接し活性層より大きな
禁制帯幅をもつ第一導電型半導体層、および活性層に隣
接し活性層より大きな禁制帯幅を持つ第二導電型半導体
層とを含む積層構造と、この積層構造に電界を印加する
電極とをもった発光ダイオードにおいて、活性層が電極
に対し鋭角を成し、電極に略平行な方向に直接、光を取
り呂すことによって、温度による発光出力変化の小さい
端面発光LED素子を形成することができる。
In the present invention, an active layer, a first conductivity type semiconductor layer adjacent to the active layer having a larger forbidden band width than the active layer, and a second conductive type semiconductor layer adjacent to the active layer having a larger forbidden band width than the active layer are provided. In a light-emitting diode having a laminated structure including a laminated structure and an electrode for applying an electric field to this laminated structure, the active layer forms an acute angle to the electrode and directs light in a direction substantially parallel to the electrode, It is possible to form an edge-emitting LED element whose light emission output changes little due to temperature.

また、本発明では、この端面発光LEDにおいて第一導
電型半導体基板と、活性層を含む積層構造との間にバッ
ファ層を介することにより結晶性の良い積層構造を持つ
端面発光LEDi子を形成することができる。
Further, in the present invention, in this edge-emitting LED, a buffer layer is interposed between the first conductivity type semiconductor substrate and the laminated structure including the active layer, thereby forming an edge-emitting LED element having a laminated structure with good crystallinity. be able to.

さらに、本発明では、この端面発光LEDにおいて、活
性層を含む積層構造と、電極との間に透明な導電性物質
を介することにより光利用効率の高い端面発光LED素
子を形成することができる。
Further, in the present invention, in this edge-emitting LED, an edge-emitting LED element with high light utilization efficiency can be formed by interposing a transparent conductive material between the laminated structure including the active layer and the electrode.

本発明では、この端面発光LEDにおいて電極をAu、
AQ、Cu等の金属とすることによって光利用効率の高
い端面発光LED素子を形成することができる。
In the present invention, the electrodes in this edge-emitting LED are made of Au,
By using a metal such as AQ or Cu, an edge-emitting LED element with high light utilization efficiency can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による端面発光LEDの一実施例の斜視
図、第2図は従来の端面発光LEDの斜視図である。
FIG. 1 is a perspective view of an embodiment of an edge-emitting LED according to the present invention, and FIG. 2 is a perspective view of a conventional edge-emitting LED.

Claims (1)

【特許請求の範囲】 1、第一導電型半導体基板上に形成され、少なくとも一
つの活性層に隣接し前記第一導電型半導体基板側にあり
前記活性層より大きな禁制帯幅を持つ第一導電型半導体
層と、前記活性層に隣接し前記第一導電型半導体基板と
反対側にあり前記活性層より大きな前記禁制帯幅を持つ
第二導電型半導体層とを含む積層構造と、前記第一導電
型半導体基板の上面に略平行であり前記積層構造に電界
を印加する電極とを備えた発光ダイオードにおいて、前
記活性層が前記電極に対して鋭角を成して配置され、前
記電極に略平行な方向に光を取り出せるように構成した
ことを特徴とする発光ダイオード。 2、n型半導体基板上に形成され、少なくとも一つの活
性層に隣接し前記n型半導体基板側にあり前記活性層よ
り大きな禁制帯幅を持つn型半導体層、前記活性層に隣
接し前記n型半導体基板と反対側にあり前記活性層より
大きな前記禁制帯幅を持つp型半導体層を含む積層構造
と、前記n型半導体基板の上面に略平行であり前記積層
構造に電界を印加する電極とを備えた発光ダイオードに
おいて、 前記活性層が前記電極に対し鋭角を成し、前記電極に略
平行な方向に光を取り出すことを特徴とする発光ダイオ
ード。 3、p型半導体基板上に形成され、少なくとも一つの活
性層に隣接し前記p型半導体基板側にあり前記活性層よ
り大きな禁制帯幅を持つp型半導体層、前記活性層に隣
接し前記p型半導体基板と反対側にあり前記活性層より
大きな禁制帯幅を持つn型半導体層を含む積層構造と、
前記p型半導体基板上面に略平行であり前記積層構造に
電界を印加する電極とを備えた発光ダイオードにおいて
、 前記活性層が前記電極に対し鋭角を成し、前記電極に略
平行な方向に光を取り出すことを特徴とする発光ダイオ
ード。 4、請求項2において、前記n型半導体基板としてn型
Si基板、前記活性層としてGaAs層、前記n型半導
体層としてn−GaAlAs層、p型半導体層としてp
−GaAlAs層を、それぞれ、用いる発光ダイオード
。 5、請求項3において、前記p型半導体基板としてp型
Si基板、前記活性層としてGaAs層、前記p型半導
体層としてp−GaAlAs層、n型半導体層としてn
−GaAlAs層を、それぞれ、用いる発光ダイオード
。 6、請求項1において、前記第一導電型半導体基板と、
少なくとも一つの活性層に隣接し前記第一導電型半導体
基板側にあり前記活性層より大きな禁制帯幅を持つ第一
導電型半導体層、前記活性層に隣接し前記第一導電型半
導体基板と反対側にあり前記活性層より大きな禁制帯幅
を持つ第二導電型半導体層を含む積層構造との間にバッ
ファ層を設けた発光ダイオード。 7、請求項1において、少なくとも一つの活性層に隣接
し前記第一導電型半導体基板側にあり前記活性層より大
きな禁制帯幅を持つ第一導電型半導体層、前記活性層に
隣接し前記第一導電型半導体基板と反対側にあり前記活
性層より大きな前記禁制帯幅を持つ第二導電型半導体層
を含む積層構造と、電極との間に前記活性層で発光する
光に対して透明な導電性物質を介在させた発光ダイオー
ド。 8、請求項7において、前記活性層で発光する光に対し
て透明な導電性物質としてITOを用いた発光ダイオー
ド。 9、請求項1において、前記電極をAu、Al、Cu等
の金属を用いて形成した発光ダイオード。
[Claims] 1. A first conductive layer formed on a first conductive type semiconductor substrate, adjacent to at least one active layer, on the first conductive type semiconductor substrate side, and having a larger forbidden band width than the active layer. a second conductivity type semiconductor layer adjacent to the active layer and on the opposite side of the first conductivity type semiconductor substrate and having the forbidden band width larger than the active layer; In the light emitting diode, the active layer is arranged at an acute angle to the electrode and is substantially parallel to the electrode, and the electrode is substantially parallel to the upper surface of the conductive semiconductor substrate and applies an electric field to the laminated structure. A light emitting diode characterized by being configured so that light can be extracted in a specific direction. 2. an n-type semiconductor layer formed on an n-type semiconductor substrate, adjacent to at least one active layer and having a larger forbidden band width than the active layer; a stacked structure including a p-type semiconductor layer on the opposite side to the active layer and having the forbidden band width larger than the active layer; and an electrode that is substantially parallel to the upper surface of the n-type semiconductor substrate and applies an electric field to the stacked structure. A light emitting diode comprising: the active layer forming an acute angle with respect to the electrode and extracting light in a direction substantially parallel to the electrode. 3. A p-type semiconductor layer formed on a p-type semiconductor substrate, adjacent to at least one active layer and on the side of the p-type semiconductor substrate, and having a larger forbidden band width than the active layer; a laminated structure including an n-type semiconductor layer on the opposite side of the type semiconductor substrate and having a larger forbidden band width than the active layer;
and an electrode that is substantially parallel to the upper surface of the p-type semiconductor substrate and applies an electric field to the layered structure, wherein the active layer forms an acute angle with the electrode and emits light in a direction substantially parallel to the electrode. A light emitting diode characterized by taking out. 4. In claim 2, the n-type semiconductor substrate is an n-type Si substrate, the active layer is a GaAs layer, the n-type semiconductor layer is an n-GaAlAs layer, and the p-type semiconductor layer is a p-type semiconductor layer.
- Light emitting diodes each using a GaAlAs layer. 5. In claim 3, the p-type semiconductor substrate is a p-type Si substrate, the active layer is a GaAs layer, the p-type semiconductor layer is a p-GaAlAs layer, and the n-type semiconductor layer is an n-type semiconductor layer.
- Light emitting diodes each using a GaAlAs layer. 6. In claim 1, the first conductivity type semiconductor substrate;
a first conductivity type semiconductor layer adjacent to at least one active layer and on the first conductivity type semiconductor substrate side and having a larger forbidden band width than the active layer; adjacent to the active layer and opposite to the first conductivity type semiconductor substrate; A light emitting diode in which a buffer layer is provided between a laminated structure including a second conductivity type semiconductor layer located on the side and having a larger forbidden band width than the active layer. 7. In claim 1, a first conductivity type semiconductor layer adjacent to at least one active layer and on the side of the first conductivity type semiconductor substrate and having a larger forbidden band width than the active layer; A laminated structure including a second conductivity type semiconductor layer opposite to the first conductivity type semiconductor substrate and having the forbidden band width larger than the active layer, and a layer transparent to the light emitted by the active layer between the electrode and the second conductivity type semiconductor layer. A light emitting diode with a conductive substance interposed in it. 8. The light emitting diode according to claim 7, wherein ITO is used as the conductive material that is transparent to the light emitted by the active layer. 9. The light emitting diode according to claim 1, wherein the electrode is formed using a metal such as Au, Al, or Cu.
JP2194928A 1990-07-25 1990-07-25 Light emitting diode Pending JPH0482278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2194928A JPH0482278A (en) 1990-07-25 1990-07-25 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2194928A JPH0482278A (en) 1990-07-25 1990-07-25 Light emitting diode

Publications (1)

Publication Number Publication Date
JPH0482278A true JPH0482278A (en) 1992-03-16

Family

ID=16332676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2194928A Pending JPH0482278A (en) 1990-07-25 1990-07-25 Light emitting diode

Country Status (1)

Country Link
JP (1) JPH0482278A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100284235B1 (en) * 1996-08-31 2001-04-02 니시무로 타이죠 Semiconductor light emitting device using semiconductor light emitting device and manufacturing method of semiconductor light emitting device
JP2010135678A (en) * 2008-12-08 2010-06-17 Toshiba Corp Optical semiconductor device and method of manufacturing optical semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100284235B1 (en) * 1996-08-31 2001-04-02 니시무로 타이죠 Semiconductor light emitting device using semiconductor light emitting device and manufacturing method of semiconductor light emitting device
JP2010135678A (en) * 2008-12-08 2010-06-17 Toshiba Corp Optical semiconductor device and method of manufacturing optical semiconductor device

Similar Documents

Publication Publication Date Title
US20230197906A1 (en) Semiconductor light emitting device
JP6320486B2 (en) Light emitting diode
JP4126749B2 (en) Manufacturing method of semiconductor device
US7491565B2 (en) III-nitride light emitting devices fabricated by substrate removal
US5739552A (en) Semiconductor light emitting diode producing visible light
US20030231683A1 (en) Nitride based semiconductor structures with highly reflective mirrors
KR20080087135A (en) Nitride semiconductor light emitting element
JPH07221409A (en) Semiconductor device having incorporated p-type and n-type impurity inductive layer non-ordered material
US6546038B1 (en) Semiconductor surface-emitting element
JP2884603B2 (en) Semiconductor laser device
JPH06334215A (en) Surface emission led
JP5382289B2 (en) Light emitting device
JP5277066B2 (en) Semiconductor light emitting device and manufacturing method thereof
JPH118406A (en) Surface-emitting element
JPH1027945A (en) Surface light-emitting device
JPH0482278A (en) Light emitting diode
JP2009238843A (en) Light-emitting device
JP2000058918A (en) Semiconductor light emitting element
US6501778B1 (en) Plane emission type semiconductor laser and method of manufacturing the same
KR20050042715A (en) Electrode structure, semiconductor light-emitting device provided with the same and method for manufacturing the same
JP2004128107A (en) Optical semiconductor device
JPH01200678A (en) Light-emitting diode
JPH06326409A (en) Surface emission element
JP2003133584A (en) Semiconductor light emitting element
JPH0738147A (en) Semiconductor light emitting device