JPH0481602A - Polar coordinate type apparatus for noncontact measurement of distance - Google Patents

Polar coordinate type apparatus for noncontact measurement of distance

Info

Publication number
JPH0481602A
JPH0481602A JP2195961A JP19596190A JPH0481602A JP H0481602 A JPH0481602 A JP H0481602A JP 2195961 A JP2195961 A JP 2195961A JP 19596190 A JP19596190 A JP 19596190A JP H0481602 A JPH0481602 A JP H0481602A
Authority
JP
Japan
Prior art keywords
arm
polar coordinate
base
stator
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2195961A
Other languages
Japanese (ja)
Other versions
JP2947894B2 (en
Inventor
Takayuki Kataoka
隆之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2195961A priority Critical patent/JP2947894B2/en
Publication of JPH0481602A publication Critical patent/JPH0481602A/en
Application granted granted Critical
Publication of JP2947894B2 publication Critical patent/JP2947894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To use an optical heterodyne method for measurement of the amount of movement in the radial direction of an arm moving in a polar coordinate fashion and thereby to enable execution of highly precise measurement by using an optical fiber having a polarization maintaining property. CONSTITUTION:A laser beam generated in a two-frequency helium-neon laser oscillator 11 and condensed by a condenser lens 12 is led to a stator 23 on the base 22 of a polar coordinate type arm 21 by an optical fiber 13 having a polarization maintaining property. On the occasion of employment, a noncontact type measurer 19 is so regulated as to follow the surface of an object of measurement by the rotation of the base 22 of the polar coordinate type arm in the direction of an arrow U by the rotation of a motor 15 and by the adjustment of the amounts of projection and withdrawal of first and second extension parts 22a and 22b. As the result, distances to an interference system 17 and a reflector 18 are varied and a distance from the base 22 to the reflector 18 is measured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非接触測距装置、特に光ヘテロゲイン法による
非接触測距装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a non-contact distance measuring device, and particularly to a non-contact ranging device using an optical heterogain method.

(従来の技術) 従来の光ヘテロダイン法では、測定用レーザーがミラー
により方向を変えられたのち測定対象物へ照射されるも
のであった。このため、精密測定にとって重要なレーザ
ーの偏波面が所要の方向を保持できる直交座標型動作製
置にのみ適用されている。
(Prior Art) In the conventional optical heterodyne method, the direction of a measurement laser is changed by a mirror, and then the object to be measured is irradiated with the laser. For this reason, it is only applied to orthogonal coordinate type operation installation where the polarization plane of the laser, which is important for precision measurement, can maintain the required direction.

極座標型に動作する装置ではミラーによる方向変更の際
に偏波面がねしれる。従って、この型の場合は機械的計
測(モーターの回転量の計測等)による他なかった。
In devices operating in polar coordinates, the plane of polarization is distorted when the direction is changed by a mirror. Therefore, in the case of this type, the only option was to use mechanical measurements (measuring the amount of rotation of the motor, etc.).

(発明が解決しようとする課題) 現在、検査の際に要求される測定精度は土1万レベルも
しくはサブミクロンレヘルが要求されており、レーザー
光ヘテロダイン法によれば極小波長を利用するためこれ
を容易に実現できる。しかし、この光ヘテロダイン法は
光の偏波を利用しているから、単なる鏡による反射等を
用いる方法では回転部分を有する極座標型アームへ正し
い偏光面のレーザーを供給することが不可能であった。
(Problem to be solved by the invention) Currently, the measurement accuracy required for inspection is at the 10,000 level or submicron level, and according to the laser light heterodyne method, this is possible because it uses an extremely small wavelength. It can be easily achieved. However, since this optical heterodyne method uses the polarization of light, it was impossible to supply a laser with the correct plane of polarization to a polar coordinate arm with a rotating part using methods such as simple reflection from a mirror. .

このような実情に鑑み、本発明の目的は基部の周りに回
動する極座標型アームに対し、反射鏡によることなく、
歪みのないレーザー光線が導かれる構成の光ヘテロダイ
ン法による非接触測距装置を提供することにある。
In view of these circumstances, an object of the present invention is to provide a polar coordinate type arm that rotates around the base without using a reflector.
An object of the present invention is to provide a non-contact distance measuring device using an optical heterodyne method, which is configured to guide a laser beam without distortion.

(課題を解決するための手段) 本発明による極座標型非接触測距装置は、光ヘテロゲイ
ン法による計測回路へのレーザ受信結果出力信号発信器
と、レーザー照射用の固定子とが、基部の周りの回動と
テレスコピック伸縮とが可能な極座標型アームの該基部
に並置され、2周波レーザー光源と前記固定子とが偏波
保存性の光ファイバーで接続されでいると共に、該固定
子から前記極座標型アームの先端近傍に設けた反射鏡に
至る往路と該反射鏡から前記発信器へ帰還する帰路とか
らなるレーザー光路が該アームに沿って形成されている
ことを特徴とする。
(Means for Solving the Problems) A polar coordinate type non-contact ranging device according to the present invention has a laser reception result output signal transmitter to a measurement circuit using an optical heterogain method, and a stator for laser irradiation. A two-frequency laser light source and the stator are connected by a polarization-maintaining optical fiber, and the polar coordinate type arm that can be rotated and telescopically extended and retracted is juxtaposed to the base of the polar coordinate type arm. A laser beam path is formed along the arm, consisting of an outgoing path to a reflecting mirror provided near the tip of the arm and a returning path from the reflecting mirror to the transmitter.

そして、前記レーザー光路における反射鏡と前記固定子
及び発信器との間に、前記往路と帰路とが通る干渉計が
前記基部からの距離を不変に介装され、該反射鏡の背面
側からは非接触型の測定子が前記アームの先端に突設さ
れていることが望ましい。
An interferometer, through which the outgoing path and the return path pass, is interposed between the reflecting mirror in the laser optical path, the stator, and the transmitter, and the distance from the base remains unchanged, and from the back side of the reflecting mirror, It is desirable that a non-contact type measuring element is provided protruding from the tip of the arm.

さらに具体的には、前記干渉計が前記基部から延長した
支持板に固定され、該支持板に対し相対動、つまり前記
の如くテレスコピックに伸縮するようアーム本体が設け
られた構成である。
More specifically, the interferometer is fixed to a support plate extending from the base, and the arm body is provided so as to move relative to the support plate, that is, to expand and contract telescopically as described above.

(作 用) 前記の極座標型アームの基部に固定されたレーザー光線
照射用の固定子へは、可撓性のガラスファイバーを通し
て光源から2周波レーザー光線か導かれるので、アーム
がどのように回動してもレーザー光線の偏光面は変化し
ない。尚、アーム先端近傍の1対の反射鏡における反射
の態様、つまり反射角度は該アームの回動・伸縮とは無
関係に一定であるから、前記光路中においてレーザー偏
光面が捩じれる恐れはない。
(Function) Since a two-frequency laser beam is guided from a light source through a flexible glass fiber to the laser beam irradiation stator fixed to the base of the polar coordinate type arm, it is possible to control how the arm rotates. However, the plane of polarization of the laser beam does not change. Note that since the mode of reflection at the pair of reflecting mirrors near the tip of the arm, that is, the angle of reflection, is constant regardless of the rotation, expansion and contraction of the arm, there is no possibility that the laser polarization plane will be twisted in the optical path.

前記アームの固定中心軸と被測定物体との間の距離が変
わると、該アームがテレスコピック、つまり望遠鏡の筒
のように伸縮し、該アーム先端の反射鏡は該固定中心軸
からの距離を変える。
When the distance between the fixed central axis of the arm and the object to be measured changes, the arm expands and contracts like a telescopic tube, and the reflector at the tip of the arm changes the distance from the fixed central axis. .

これに反し、前記干渉計は該固定中心軸からの距離が常
に一定であるから、結局該干渉計と反射鏡との間の光路
長が被測定物体の距離に応して変化する。その結果、該
干渉計を通る往路のレーザー光線と、同じく該干渉計を
通る帰路のレーザー光線との間における干渉の状態も前
記距離の変化につれて変化することになる。従って、こ
の干渉状態の変化を検出すれば対物距離を測定できる。
On the other hand, since the distance of the interferometer from the fixed central axis is always constant, the optical path length between the interferometer and the reflecting mirror ultimately changes depending on the distance of the object to be measured. As a result, the state of interference between the outbound laser beam passing through the interferometer and the return laser beam passing through the interferometer also changes as the distance changes. Therefore, by detecting a change in this interference state, the object distance can be measured.

光ヘテロダイン法による測距原理は第2図の通りである
The principle of distance measurement using the optical heterodyne method is shown in FIG.

即ち、測定光f1と参照光f2の周波数をずらせ、ビー
ト周波数f2−f、と、被測定物からの反射光f1+Δ
fを参照光から引いた値f2   (r+ +Δf)、
との差Δfをカウントして被測定物の変位を測定する。
That is, by shifting the frequencies of the measurement light f1 and the reference light f2, the beat frequency f2-f and the reflected light from the object to be measured f1+Δ
The value f2 (r+ +Δf) obtained by subtracting f from the reference light,
The displacement of the object to be measured is measured by counting the difference Δf.

被測定物が光スX ここの測定光f1と参照光f2は互いに直交する偏波で
あり、−本のレーザー光乙こまとめられ照射されている
The object to be measured is the light beam X. The measurement light f1 and the reference light f2 here are polarized waves orthogonal to each other, and the - laser beams A and B are collectively irradiated.

具体的には例えば2周波ヘリウムネオンレーザー発振器
1から出て基準ビームスプリンター2を通過した周波数
f1 ・f2の偏波レーザービームは、ミラー3.4で
反射されてレシーバ−5に至る。このとき、例えば周波
数f、の方のレーザービームの周波数はf7士Δfとな
っているものとし、これと周波数f2との差f2f1±
Δfはレシーバ−5により該差に相当した電気信号に変
換されて、例えば差動回路などを含んだ出力回路6へ測
定信号Sとして供給される。
Specifically, for example, polarized laser beams of frequencies f1 and f2 that are emitted from the two-frequency helium-neon laser oscillator 1 and passed through the reference beam splinter 2 are reflected by the mirror 3.4 and reach the receiver 5. At this time, for example, assume that the frequency of the laser beam with frequency f is f7 minus Δf, and the difference between this and frequency f2 is f2f1±
Δf is converted into an electrical signal corresponding to the difference by the receiver 5, and is supplied as a measurement signal S to an output circuit 6 including, for example, a differential circuit.

一方基準ビームスプリンター2から反射されたレーザー
ビームは、偏光ビームスプリッタ−7からミラー8を経
て光電変換素子9で電気信号に変えられ、増幅器10を
経て、2周波数f1とf2の差fz   f+ に相当
した参照信号Rとして前記出力回路6へ供給される。
On the other hand, the laser beam reflected from the reference beam splinter 2 passes from the polarizing beam splitter 7 to the mirror 8, is converted into an electrical signal by the photoelectric conversion element 9, passes through the amplifier 10, and is converted into an electrical signal corresponding to the difference fz f+ between the two frequencies f1 and f2. The reference signal R is supplied to the output circuit 6 as a reference signal R.

該出力回路6では、前記両信号の差±Δfが求められ出
力信号Tとして、図外の、例えばリバーシブルカウンタ
ーへ送られ、そこでアーム回動中心軸から先端の測定子
までの距離χがこのように求められる。
In the output circuit 6, the difference ±Δf between the two signals is determined and sent as an output signal T to a reversible counter (not shown), for example. is required.

他方、該測定子には、これから測定対象物までの間の距
離yを非接触方式で簡単に求めることができる手段、例
えばレーザによる三角測量方式のV字形先端形状の非接
触形状測定子などを備えているから、x + yの計算
(但しx:>y)によりアームの回動中心軸から測定対
象物までの距離が、偏波レーザービームを利用して極座
標方式で測定されるのである。
On the other hand, the measuring stylus is equipped with a means for easily determining the distance y from the object to be measured in a non-contact manner, such as a non-contact measuring stylus with a V-shaped tip using a laser triangulation method. Therefore, by calculating x + y (where x:>y), the distance from the rotation center axis of the arm to the object to be measured can be measured in polar coordinates using a polarized laser beam.

(実施例) 次に、本発明の具体的な一実施例を図面を参照しつつ説
明する。第1図に示されるように、支持台20には、周
波数の異なる2条の偏波レーザービームを発振する構成
の、2周波ヘリウムネオンレーザー発振器11が設置さ
れている。
(Example) Next, a specific example of the present invention will be described with reference to the drawings. As shown in FIG. 1, a dual-frequency helium-neon laser oscillator 11 configured to oscillate two polarized laser beams with different frequencies is installed on the support base 20.

このレーザー発振器11で発生され集光レンズ12で集
光されたレーザービームは、偏波保存性の光ファイバー
13によって極座標型アーム21の基部22上の固定子
23へ導かれる。該基部22には同軸芯上にモーター1
5が取付けられ、該モーター15を介して架台14へ該
アームが枢着されている。
A laser beam generated by this laser oscillator 11 and condensed by a condensing lens 12 is guided to a stator 23 on a base 22 of a polar coordinate arm 21 by a polarization-maintaining optical fiber 13. The base 22 has a motor 1 on a coaxial core.
5 is attached, and the arm is pivotally connected to the pedestal 14 via the motor 15.

前記極座標型アーム21はテレスコピック構造であり、
基部22に内嵌されこの基部22からの摺動的突出と引
込みが制御される第1延長部22aと、該第1延長部2
2aに内嵌され、この第1延長部22aからの摺動的突
出と引込みが制御される第2延長部22bを備えている
。第1および第2延長部22a、22bの引込み時のほ
ぼ全長に相当した長さの固定突出部22cは前記基部2
2と一体に形成され、該基部22から離隔した側の端部
近傍には干渉計17が取付けられている。一方、第2延
長部22bの先端側には反射鏡18と、更にこれよりも
前方へ突出した非接触型測定子19とが取付けられてい
る。
The polar coordinate type arm 21 has a telescopic structure,
a first extension 22a that is fitted into the base 22 and whose sliding protrusion and retraction from the base 22 is controlled;
The second extension part 22b is fitted into the second extension part 2a and whose sliding protrusion and retraction from the first extension part 22a is controlled. The fixed protrusion 22c has a length corresponding to almost the entire length of the first and second extensions 22a and 22b when they are retracted.
2, and an interferometer 17 is attached near the end on the side remote from the base 22. On the other hand, a reflecting mirror 18 and a non-contact type probe 19 protruding further forward than the reflecting mirror 18 are attached to the distal end side of the second extension part 22b.

前記基部22において前記固定子23と並置されている
のはレシーバ−16であり、従って該極座標型アーム2
1上には、固定子23から干渉計17を通り反射鏡18
に至る往路(1点鎖線)30と、該反射鏡18から干渉
計17を経て出力信号発信器としてのレシーバ−16に
帰還する帰路(2点鎖線)31とからなる光路が形成さ
れ、該光路は第2図右上部の1点鎖線枠に内の構成部分
に対応している。
Juxtaposed with the stator 23 in the base 22 is a receiver 16 and thus the polar arm 2
1, a reflecting mirror 18 passes from the stator 23 to the interferometer 17.
An optical path is formed, consisting of an outgoing path (dotted chain line) 30 leading to the reflector 18, and a return path (double chain line) 31 returning from the reflecting mirror 18 to the receiver 16 as an output signal transmitter via the interferometer 17. corresponds to the component inside the dashed-dotted line frame at the upper right of FIG.

使用に当っては、前記モーター15の回転による矢印U
方向の、前記極座標型アーム基部22の回動と、前記第
1および第2延長部22a、22bの出退量の調節とに
よって測定対象物(図示せず)表面に倣うように非接触
型測定子19が合致させられる。
In use, the arrow U due to the rotation of the motor 15
By rotating the polar coordinate arm base 22 in the direction and adjusting the amount of protrusion and retraction of the first and second extensions 22a and 22b, non-contact measurement can be performed to follow the surface of the object to be measured (not shown). Child 19 is matched.

その結果、干渉計17と反射鏡18までの距離が変わり
、第3図に示されるように基部22から該反射鏡18ま
での間の距離Xが前記第2図の原理により測定されるこ
とになる。その際、レシーバ−16から制御装置32へ
図外のケーブルを通し送られる出力信号と、同しく前記
レーザー発振器11及び第2図の2点鎖線り内に示した
各部から図外のケーブルを通し制御装置32へ送られる
各種信号とが距離の演算に利用されるのである。
As a result, the distance between the interferometer 17 and the reflecting mirror 18 changes, and as shown in FIG. 3, the distance X between the base 22 and the reflecting mirror 18 is measured according to the principle shown in FIG. 2. Become. At that time, an output signal is sent from the receiver 16 to the control device 32 through a cable (not shown), and an output signal is also sent from the laser oscillator 11 and each part shown within the two-dot chain line in FIG. 2 through a cable (not shown). Various signals sent to the control device 32 are used to calculate the distance.

上記実施例は次のように改変できる。例えば、アームの
先端にアーム先端から対象物Wまての距離を非接触で計
測する測定子19をとりつけ、その距離yを求め、これ
乙こ極座標用測距装置で求めたアーム中心からアーム先
端までの直線距gl xを足し合わすと、このx−5y
はアーム中心から測定対象物Wまでの高精度な距離を示
す。
The above embodiment can be modified as follows. For example, a probe 19 is attached to the tip of the arm to measure the distance from the tip of the arm to the object W without contact, and the distance y is determined from the center of the arm to the tip of the arm, which is determined by a polar coordinate distance measuring device. By adding up the straight line distance gl x, we get this x-5y
indicates a highly accurate distance from the center of the arm to the object W to be measured.

これを用いれば検査用、測定用三次元非接触測定機に応
用できる。
If this is used, it can be applied to three-dimensional non-contact measuring machines for inspection and measurement.

そのほか、前記モーター15を介し架台14へ連結され
ているアーム基部22を、該架台14に対し平行に移動
できるようにいわばX−Y移動型に近い構成とすれば、
測定対象製図が拡大し好都合である。
In addition, if the arm base 22 connected to the pedestal 14 via the motor 15 is configured to be similar to an X-Y moving type so that it can move parallel to the pedestal 14,
It is convenient because the drawing to be measured is enlarged.

(発明の効果) 偏波保存性の光ファイバーを用いることにより、本発明
によれば極座標型に動くアームの半径方向の移動量測定
に光へテロゲイン法を用いることが可能となった。これ
により従来の機械的な計測(アーム先端の移動量をモー
ターの回転等で知る)より格段に高精度(分解能はヘリ
ウムネオンレーザ−使用で0.1582n)な計測が可
能である。
(Effects of the Invention) According to the present invention, by using a polarization-maintaining optical fiber, it has become possible to use the optical heterogain method to measure the amount of movement in the radial direction of an arm that moves in polar coordinates. This enables much more accurate measurement (resolution: 0.1582n using a helium-neon laser) than conventional mechanical measurement (in which the amount of movement of the arm tip is determined by the rotation of a motor, etc.).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る装置の斜視説明図、第
2図は測定原理を示した光路・回路図、第3図は要部拡
大斜視図であるとともに応用例を示す図である。 1・・・・・・2周波ヘリウムネオンレーザー発振器2
・・・・・・基準ビームスプリッタ−3,4,8・・・
・・・ミラー 5・・・・・・レシーバ− 6・・・・・・出力回路 7・・・・・・a光ビームスブυツタ−9・・・・・・
光電変換素子 10・・・・・・増幅器 11・・・・・・2周波ヘリウムネオンレーサー発振器
12・・・・・・集光レンズ 13・・・・・・光ファイバー 14・・・・・・架 台 15・・・・・・モーター 16・・・・・・レシーバ− 17・・・・・・干渉計 18・・・・・・反射鏡 19・・・・・・非接触型測定子 20・・・・・・支持台 21・・・・・・極座標型アーム 22・・・・・・基部 23・・・・・・固定子 30・・・・・・往 路 31・・・・・・帰 路 32・・・・・・制御装置
Fig. 1 is a perspective explanatory diagram of an apparatus according to an embodiment of the present invention, Fig. 2 is an optical path/circuit diagram showing the measurement principle, and Fig. 3 is an enlarged perspective view of the main part and a diagram showing an application example. be. 1...2 frequency helium neon laser oscillator 2
...Reference beam splitter-3, 4, 8...
...Mirror 5...Receiver 6...Output circuit 7...A light beam sub-tube 9...
Photoelectric conversion element 10...Amplifier 11...Two-frequency helium neon laser oscillator 12...Condensing lens 13...Optical fiber 14... Frame Base 15...Motor 16...Receiver 17...Interferometer 18...Reflector 19...Non-contact probe 20. ... Support stand 21 ... Polar coordinate arm 22 ... Base 23 ... Stator 30 ... Outward path 31 ... Return route 32... Control device

Claims (1)

【特許請求の範囲】 1 光ヘテロダイン法による計測回路へのレーザ受信結
果出力信号発信器と、レーザー照射用の固定子とが、基
部の周りの回動とテレスコピック伸縮とが可能な極座標
型アームの該基部に並置され、2周波レーザー光源と前
記固定子とが偏波保存性の光ファイバーで接続されてい
ると共に、該固定子から前記極座標型アームの先端近傍
に設けた反射鏡に至る往路と該反射鏡から前記発信器へ
帰還する帰路とからなるレーザー光路が該アームに沿っ
て形成されていることを特徴とする極座標型非接触測距
装置。 2 前記レーザー光路における反射鏡と前記固定子及び
発信器との間に、前記往路と帰路とが通る干渉計が前記
基部からの距離を不変に介装され、該反射鏡の背面側か
らは非接触型の測定子が前記アームの先端に突設されて
いる請求項1に記載の極座標型非接触測距装置。
[Scope of Claims] 1. A signal transmitter for outputting laser reception results to a measurement circuit using the optical heterodyne method and a stator for laser irradiation are arranged in a polar coordinate type arm that can rotate around the base and telescopically expand and contract. A two-frequency laser light source and the stator are juxtaposed at the base, and are connected to each other by a polarization-maintaining optical fiber, and an outgoing path from the stator to a reflecting mirror provided near the tip of the polar coordinate arm is connected to the stator. A polar coordinate type non-contact ranging device characterized in that a laser optical path consisting of a return path from a reflecting mirror to the transmitter is formed along the arm. 2. An interferometer, through which the outgoing path and the return path pass, is interposed between the reflecting mirror in the laser optical path, the stator, and the transmitter, and the distance from the base remains unchanged, and a 2. The polar coordinate type non-contact distance measuring device according to claim 1, wherein a contact type measuring element is provided protruding from the tip of the arm.
JP2195961A 1990-07-24 1990-07-24 Polar coordinate type non-contact distance measuring device Expired - Fee Related JP2947894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2195961A JP2947894B2 (en) 1990-07-24 1990-07-24 Polar coordinate type non-contact distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2195961A JP2947894B2 (en) 1990-07-24 1990-07-24 Polar coordinate type non-contact distance measuring device

Publications (2)

Publication Number Publication Date
JPH0481602A true JPH0481602A (en) 1992-03-16
JP2947894B2 JP2947894B2 (en) 1999-09-13

Family

ID=16349868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2195961A Expired - Fee Related JP2947894B2 (en) 1990-07-24 1990-07-24 Polar coordinate type non-contact distance measuring device

Country Status (1)

Country Link
JP (1) JP2947894B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100762A1 (en) * 2016-11-30 2018-06-07 株式会社ジャスティ Displacement measurement device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100762A1 (en) * 2016-11-30 2018-06-07 株式会社ジャスティ Displacement measurement device
JP6357713B1 (en) * 2016-11-30 2018-07-18 石川 輝子 Displacement measuring device
US10571239B2 (en) 2016-11-30 2020-02-25 Teruko ISHIKAWA Displacement measuring device

Also Published As

Publication number Publication date
JP2947894B2 (en) 1999-09-13

Similar Documents

Publication Publication Date Title
US4824251A (en) Optical position sensor using coherent detection and polarization preserving optical fiber
US3885875A (en) Noncontact surface profilometer
WO2018103268A1 (en) Laser measurement system for measuring geometric error in six degrees of freedom of rotating shaft, and method therefor
US6819434B2 (en) Multi-axis interferometer
CN104634283A (en) Laser heterodyne interference linearity measuring device and laser heterodyne interference linearity measuring method with six-degree-of-freedom detection
US7158236B2 (en) Heterodyne laser interferometer for measuring wafer stage translation
US5135307A (en) Laser diode interferometer
US7030994B2 (en) Method and apparatus to measure fiber optic pickup errors in interferometry systems
EP0244275A2 (en) Angle measuring interferometer
US4775236A (en) Laser based roundness and diameter gaging system and method of using same
US4848908A (en) Optical heterodyne roughness measurement system
CN112781529A (en) Straightness interference measuring device insensitive to incident angle
Wu et al. Heterodyne interferometer with two spatial-separated polarization beams for nanometrology
US4807997A (en) Angular displacement measuring interferometer
US6856402B2 (en) Interferometer with dynamic beam steering element
JP2023171867A (en) Multiaxis laser interference length measurer
JP2725434B2 (en) Absolute length measuring method and absolute length measuring device using FM heterodyne method
JPH0481602A (en) Polar coordinate type apparatus for noncontact measurement of distance
JPH04351905A (en) Xy stage possessing laser length measuring device
JPH0452402B2 (en)
JP3045567B2 (en) Moving object position measurement device
JP3448779B2 (en) Fiber optic sensor
JPH0754802Y2 (en) Contact type profilometer
JPH08304027A (en) Method and apparatus for measurement of very small displacement amount
JPS58151509A (en) Optical measuring method of surface roughness

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees