JPH0481417B2 - - Google Patents

Info

Publication number
JPH0481417B2
JPH0481417B2 JP4288585A JP4288585A JPH0481417B2 JP H0481417 B2 JPH0481417 B2 JP H0481417B2 JP 4288585 A JP4288585 A JP 4288585A JP 4288585 A JP4288585 A JP 4288585A JP H0481417 B2 JPH0481417 B2 JP H0481417B2
Authority
JP
Japan
Prior art keywords
milk
lactic acid
peroxidase
acid bacteria
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4288585A
Other languages
Japanese (ja)
Other versions
JPS62228224A (en
Inventor
Hisashi Kawamoto
Osamu Ashibe
Original Assignee
Glyco Kyodo Nyugyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glyco Kyodo Nyugyo Kk filed Critical Glyco Kyodo Nyugyo Kk
Priority to JP4288585A priority Critical patent/JPS62228224A/en
Publication of JPS62228224A publication Critical patent/JPS62228224A/en
Publication of JPH0481417B2 publication Critical patent/JPH0481417B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dairy Products (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

ア 産業上の利用分野 本発明は食品に係るものであつて、カビ、細
菌、ウイルス等の微生物による腐敗の防止、変異
原物質、発ガン性物質の除去、解毒作用を有する
乳酸菌醗酵食品の製造法に係るものである。 イ 従来の技術 古くから獣乳、血液、果汁あるいは野菜汁など
の生物体液には、抗菌、制菌あるいは解毒作用を
有する物質が含有されていることが知られてい
た。その後、研究がすすむにつれて、これは生物
体内に広く存在している酵素パーオキシダーゼを
中心とした生物体液の抗菌、解毒作用系であり、
この作用が働くためにはパーオキシダーゼの他に
生物体液に広く含有されているチオシアン酸イオ
ン(SCN)と、外的要因により含有され易い過
酸化水素の三要素が共存することが必要であるこ
とが解明された。 パーオキシダーゼは、乳、唾液、胃液、涙のよ
うな生物の分泌液に多く含まれ、チオシアン酸イ
オンも動物の組織、分泌液、生果物、生野菜、新
鮮魚介類等に含まれている。 この作用系のことを、パーオキシダーゼ−チオ
シアン酸イオン−過酸化水素システムあるいは単
にパーオキシダーゼシステムとも呼び、そのシス
テムの所在と酵素名により牛乳であればラクトパ
ーオキシダーゼシステム、血液中にあればミエロ
パーオキシダーゼシステムとも呼ばれる。 この作用系のメカニズムや特異性については多
くの研究がなされているが、未だその詳細は解明
されていない。この作用系を有効に利用したもの
として牛乳が最も知られている。牛乳中のラクト
パーオキシダーゼは乳腺で生成され30mg/L程度
の濃度で存在し、又チオシアン酸イオンも乳牛の
肝臓や、腎臓中での代謝反応の産物として、0.07
〜0.26mM程度含有されているが、第三の要素た
る過酸化水素は生来には乳中には存在しない。従
つて、パーオキシダーゼシステムが働くために
は、自然界においてストレプトコツカス等の細菌
が乳中に入り、その代謝産物として過酸化水素を
生成するか、人為的にはラクターゼ、グルコース
オキシダーゼを添加し、その酵素作用により過酸
化水素を生成させる。あるいは直接過酸化水素溶
液を添加することによりパーオキシダーゼシステ
ムを成立させるのである。具体例として、冷蔵設
備のない熱帯地方において、過酸化水素溶液を添
加したパーオキシダーゼシステムを利用した生牛
乳の保存、輸送方法が知られている。 ウ 発明が解決しようとする問題点 然し乍ら、先に述べたパーオキシダーゼシステ
ムの利用法には欠点がある。過酸化水素を乳に直
接添加する方法は、分解速度が速いため、パーオ
キシダーゼシステムとしての持続性に難があり、
また食品の安全性の見地からも問題がある。尚、
酵素を用いて乳を殺菌する方法及び過酸化水素を
乳に直接添加する方法は我国では許可されていな
い。低温殺菌によりラクトパーオキシダーゼが失
活していない乳を用いた乳酸菌飲料あるいは醗酵
乳の製造は、乳酸菌とラクトパーオキシダーゼの
拮抗作用のため、醗酵時間が著しく遅滞し、やが
てラクトパーオキシダーゼも失活して、システム
として成立しえない。 エ 問題を解決するための手段 発明者は、前記のような欠点がなく、日本にお
いても使用しうるパーオキシダーゼシステムの利
用という見地から、乳酸菌を使用するパーオキシ
ダーゼシステムを研究する中で、次ぎのような発
明をなした。 牛乳に乳酸菌が働くとその代謝過程において
NADH(還元型ニコチンアミドアデニンジヌクレ
オチド)が酸化され過酸化水素が生成する。本発
明はこのような乳酸菌醗酵液に由来し、持続性あ
る代謝産物としての過酸化水素を利用する点に特
徴がある。 本発明の構成は次ぎの通りである。 パーオキシダーゼとチオシアン酸イオンを豊富
に含有する食品、例えば、獣乳、乳清、果汁、野
菜汁、上記二要素を配合した溶液等を用意する。
これを系内のパーオキシダーゼが失活しない範囲
の加熱殺菌処理(例えば約63℃30分間加熱保持)
を行い、これを約10℃以下であつて凍結しない品
温まで冷却する。これを原料Aとする。 一方、牛乳、脱脂乳等の乳及び脱脂粉乳、全粉
乳、濃縮乳等の乳製品を還元した乳性原料であつ
て、乳糖を含有したものを、加熱殺菌処理(例え
ば約90℃10分間加熱保持)を行い、これを直ちに
冷却して乳酸菌醗酵適温度約30〜45℃に保持し培
地とする。これにラクトバチルス属、ストレプト
コツカス属等の乳酸菌スターターを添加し培養す
る。乳酸醗酵が対数増殖期(1.0×106個/ml)以
上の生育段階に達したら、約10℃以下であつて凍
結しない品温まで冷却する。これを原料Bとす
る。 次いで、原料A、Bを約10℃以下の温度域で充
分撹拌し混合する。混合の比率は三要素が長期間
存在し、パーオキシダーゼが持続する範囲で適宜
さだめる。 以上が所望とする乳酸菌醗酵食品の製造法であ
る。このものに要すれば蔗糖、糊料、着香料等任
意に加えればよい。 オ 作用 所望の乳酸菌醗酵食品は、パーオキシダーゼ、
チオシアン酸イオンを豊富に含有しており、乳酸
菌醗酵液から過酸化水素が生成し、かつ消費され
つづけることにより、持続的にパーオキシダーゼ
が作用し続ける。この乳酸菌醗酵食品を約10℃以
下の温度にすることにより、過酸化水素の生成と
消費のバランスがとれて、系中の過酸化水素の量
は最大となり、更に乳酸菌とパーオキシダーゼシ
ステムの拮抗作用が防止できる。 本発明の乳酸菌醗酵食品は当初からの微生物の
一次汚染、あるいは外部からの二次汚染に対し、
パーオキシダーゼシステムが働き、微生物を死滅
させる。大腸菌、シユドモナス、サルモネラ等の
細菌、カビ、ウイルス等の種々の微生物に対し、
制菌、殺菌作用を有する。 パーオキシダーゼシステムの制菌、殺菌作用に
ついて記した文献を参考までに以下に掲載してお
く。 清水誠、山内邦男:乳技協資料、31,2
(1982) ブルーノ.レイテル、ゴーラン.ハーヌルブ
「ジヤーナル オブ フードプロテクシヨン」
(Journal of Food Protection)47,724
(1984) ブレーノ.レイテル「ジヤーナル オブ デ
ーリイリサーチ」(Journal of Dairy
Research)45,131,(1978) パーオキシダーゼシステムは微生物に対する抗
菌作用のみでなく加熱処理によつて生成する変異
原物質であるTrp−P−1(3−アミノ−1.4−ジ
メチル−5H−ピリド[4.3−b]インドール、
Trp−P−2(3−アミノ−1−メチル−5H−ピ
リド[4.3−b]インドールあるいは、カビ汚染
で生成する発ガン物質であるアフラトキシン等の
種々の毒物を不活性物に解毒するものである。 パーオキシダーゼシステムにの解毒作用につい
て記した文献を参考までに以下に記載しておく。 ミチユキ ヤマダ、ミツヒロ ツダ、ミナコ
ナガオ、ミドリ モリ、タカシ スギムラ
「バイオケミカル&バイオフイジカル リサー
チ コミニケーシヨン」(Biochemical&
Biophysical Reseach Communications)45,
557(1982) フオナース.アツプルバーム、エルマーH.
マース「ジヤーナル オブ フードプロテクシ
ヨン」(Journal of Food Protection)45,
557(1982) カ 実施例 実施例 1 生脱脂乳10L(20℃)を90℃10分間加熱保持の
殺菌処理を施す。この殺菌処理により、乳中のラ
クトパーオキシダーゼは失活する。このものにラ
クトバチルス.ブルガリカススターター(29×
107個/ml)と、ストレプトコツカス.サーモフ
イラススターター(65×107個/ml)200mlを接種
し、37℃6時間醗酵培養し、これを冷却して品温
7℃とした。本乳酸菌醗酵乳にラクトパーオキシ
ダーゼ溶液(250Unit/mlを50mlと、0.1Mチオシ
アン酸ナトリウム溶液を10mlを無菌的に添加し、
7℃で保存した。 本乳酸菌醗酵乳は過酸化水素が持続的に生成さ
れ、かつ消費され、パーオキシダーゼシステムが
良好に持続した。各要素の消長は表−1の通りで
ある。対象物Aはいわば従来法による乳酸菌醗酵
乳であり、当初からラクトパーオキシダーゼ活性
がなく、Bはいわば生乳の保存法にあたるが初発
には高濃度の過酸化水素が残留するが持続がなく
消滅した。
A. Field of Industrial Application The present invention relates to foods, and involves the production of lactic acid bacteria-fermented foods that prevent spoilage caused by microorganisms such as molds, bacteria, and viruses, remove mutagens and carcinogenic substances, and have detoxifying effects. It concerns the law. B. Prior Art It has long been known that biological fluids such as animal milk, blood, fruit juice, and vegetable juice contain substances that have antibacterial, antibacterial, or detoxifying effects. Later, as research progressed, it was discovered that this is an antibacterial and detoxifying system for biological body fluids centered on the enzyme peroxidase, which is widely present in living organisms.
In order for this effect to work, in addition to peroxidase, three elements need to coexist: thiocyanate ion (SCN), which is widely contained in biological body fluids, and hydrogen peroxide, which is easily contained due to external factors. was clarified. Peroxidase is abundantly contained in the secretions of living organisms such as milk, saliva, gastric juice, and tears, and thiocyanate ions are also contained in animal tissues, secretions, raw fruits, raw vegetables, fresh seafood, and the like. This action system is also called the peroxidase-thiocyanate ion-hydrogen peroxide system or simply the peroxidase system, and depending on the location of the system and the name of the enzyme, it is the lactoperoxidase system in milk, and the myeloperoxidase system in blood. Also called oxidase system. Although much research has been conducted on the mechanism and specificity of this action system, the details have not yet been elucidated. Milk is the most well-known product that effectively utilizes this action system. Lactoperoxidase in milk is produced in the mammary gland and exists at a concentration of about 30 mg/L, and thiocyanate ions are also produced as a product of metabolic reactions in the liver and kidneys of dairy cows.
The third element, hydrogen peroxide, does not naturally exist in milk, although it is present at about 0.26mM. Therefore, in order for the peroxidase system to work, bacteria such as Streptococcus enter milk in nature and produce hydrogen peroxide as a metabolite, or artificially add lactase or glucose oxidase. Its enzymatic action produces hydrogen peroxide. Alternatively, a peroxidase system can be established by directly adding a hydrogen peroxide solution. As a specific example, a method for preserving and transporting raw milk using a peroxidase system to which a hydrogen peroxide solution is added is known in tropical regions where refrigeration facilities are not available. C. Problems to be Solved by the Invention However, there are drawbacks to the above-mentioned method of using the peroxidase system. The method of adding hydrogen peroxide directly to milk has a high rate of decomposition, so it is difficult to sustain it as a peroxidase system.
There are also problems from a food safety perspective. still,
Methods of pasteurizing milk using enzymes and methods of directly adding hydrogen peroxide to milk are not permitted in Japan. When producing lactic acid bacteria drinks or fermented milk using milk whose lactoperoxidase has not been deactivated by pasteurization, fermentation time is significantly delayed due to the antagonism between lactic acid bacteria and lactoperoxidase, and eventually lactoperoxidase is also deactivated. Therefore, it cannot be established as a system. D. Means for Solving the Problems The inventor discovered the following while researching a peroxidase system using lactic acid bacteria, from the perspective of using a peroxidase system that does not have the above-mentioned drawbacks and can be used even in Japan. He made such an invention. When lactic acid bacteria act in milk, in the metabolic process
NADH (reduced nicotinamide adenine dinucleotide) is oxidized to produce hydrogen peroxide. The present invention is derived from such a lactic acid bacteria fermentation solution and is characterized in that it utilizes hydrogen peroxide as a sustainable metabolic product. The configuration of the present invention is as follows. A food rich in peroxidase and thiocyanate ions, such as animal milk, whey, fruit juice, vegetable juice, or a solution containing the above two elements, is prepared.
This is heat sterilized within a range that does not deactivate the peroxidase in the system (for example, heated and held at approximately 63℃ for 30 minutes).
and cool it to a temperature below about 10°C and not freezing. This is called raw material A. On the other hand, milk raw materials obtained by reducing milk such as milk, skim milk, and dairy products such as skim milk powder, whole milk powder, and concentrated milk, which contain lactose, are subjected to heat sterilization (e.g., heated at approximately 90°C for 10 minutes). This is then immediately cooled and maintained at a temperature suitable for lactic acid bacteria fermentation, approximately 30-45°C, and used as a culture medium. A lactic acid bacteria starter such as Lactobacillus or Streptococcus is added to this and cultured. When the lactic acid fermentation reaches the logarithmic growth phase (1.0×10 6 cells/ml) or higher, the product is cooled to a temperature of about 10° C. or lower, at which it does not freeze. This is called raw material B. Next, raw materials A and B are sufficiently stirred and mixed at a temperature of about 10° C. or lower. The mixing ratio is adjusted as appropriate so that the three elements remain present for a long period of time and peroxidase persists. The above is the method for producing the desired lactic acid bacteria-fermented food. If necessary, sucrose, paste, flavoring, etc. may be added to this product. E. Effect The desired lactic acid bacteria fermented food is peroxidase,
It contains abundant thiocyanate ions, and hydrogen peroxide is produced from the lactic acid bacteria fermentation liquid and continues to be consumed, so that peroxidase continues to act continuously. By keeping this lactic acid bacteria-fermented food at a temperature of about 10°C or less, the production and consumption of hydrogen peroxide are balanced, the amount of hydrogen peroxide in the system is maximized, and the antagonism between lactic acid bacteria and the peroxidase system is achieved. can be prevented. The lactic acid bacteria-fermented food of the present invention is free from primary microbial contamination from the beginning or secondary contamination from the outside.
The peroxidase system works to kill microorganisms. Against various microorganisms such as bacteria such as Escherichia coli, Sydomonas, and Salmonella, molds, and viruses.
It has antibacterial and bactericidal effects. Literature describing the bacteriostatic and bactericidal effects of the peroxidase system is listed below for your reference. Makoto Shimizu, Kunio Yamauchi: Milk Technical Association Materials, 31, 2
(1982) Bruno. Reitel, Golan. Hanulub “Journal of Food Protection”
(Journal of Food Protection) 47, 724
(1984) Breno. Reitel “Journal of Dairy Research”
Research) 45, 131, (1978) The peroxidase system not only has an antibacterial effect on microorganisms, but also a mutagenic substance, Trp-P-1 (3-amino-1,4-dimethyl-5H-pyrido[ 4.3-b] indole,
Trp-P-2 (3-amino-1-methyl-5H-pyrido [4.3-b] indole or a carcinogen produced by mold contamination, aflatoxin, and other toxic substances are detoxified into inert substances. For your reference, the literature describing the detoxification effect of the peroxidase system is listed below: Michiyuki Yamada, Mitsuhiro Tsuda, Minako Nagao, Midori Mori, Takashi Sugimura "Biochemical & Biophysical Research Communication" (Biochemical &
Biophysical Research Communications) 45,
557 (1982) Huonas. Apple Balm, Elmer H.
Mars “Journal of Food Protection” 45,
557 (1982) F. Examples Example 1 10 L of raw skim milk (20°C) is sterilized by heating and holding at 90°C for 10 minutes. This sterilization process deactivates lactoperoxidase in milk. This one is Lactobacillus. Bulgaricus starter (29×
10 7 pieces/ml) and Streptococcus. 200 ml of thermophilus starter (65×10 7 pieces/ml) was inoculated, fermented and cultured at 37°C for 6 hours, and then cooled to a temperature of 7°C. Aseptically add 50 ml of lactoperoxidase solution (250 Units/ml) and 10 ml of 0.1 M sodium thiocyanate solution to this lactic acid bacteria-fermented milk.
Stored at 7°C. In this lactic acid bacteria-fermented milk, hydrogen peroxide was continuously produced and consumed, and the peroxidase system was maintained well. The rise and fall of each element is shown in Table-1. Target A is milk fermented with lactic acid bacteria using the conventional method, and has no lactoperoxidase activity from the beginning, and Target B is a preservation method for raw milk, but at the beginning, a high concentration of hydrogen peroxide remained, but it did not persist and disappeared. .

【表】 実施例 2 生脱脂乳8L(20℃)を65℃30分間加熱する低温
殺菌処理を施し、これをただちに5℃に冷却し
た。この処理によつても脱脂乳中のラクトパーオ
キシダーゼは活性であつた。一方、生脱脂乳4L
(20℃)10分間加熱殺菌処理し、これを40℃まで
冷却し、これにラクトバチルス.アシドフイラス
スターター(22×107個/ml)100ml接種し、37℃
で8時間培養した後、5℃に冷却して乳酸菌醗酵
乳を得た。 先に低温殺菌処理を施された脱脂乳と乳酸菌醗
酵乳とを混合し、品温5℃で保存した。得られた
乳酸菌醗酵乳はパーオキシダーゼシステムが持続
し、カビの一種であるペニシリユームクリソゲノ
ムに対する抗菌作用を示した。 結果は表−2の通りである。
[Table] Example 2 8L of raw skim milk (20°C) was pasteurized by heating at 65°C for 30 minutes, and immediately cooled to 5°C. Lactoperoxidase in skim milk remained active even after this treatment. On the other hand, 4L of raw skimmed milk
(20°C) for 10 minutes, cooled to 40°C, and injected with Lactobacillus. Inoculate 100ml of acidophilus starter (22 x 10 7 pieces/ml) at 37°C.
After culturing for 8 hours, the mixture was cooled to 5°C to obtain lactic acid bacteria-fermented milk. Skimmed milk that had previously been pasteurized and lactic acid bacteria-fermented milk were mixed and stored at a temperature of 5°C. The obtained lactic acid bacteria-fermented milk maintained a peroxidase system and exhibited antibacterial activity against Penicillium chrysogenome, a type of mold. The results are shown in Table-2.

【表】 実施例 3 生脱脂乳5L(20℃)を90℃10分間加熱殺菌処理
し、乳中のラクトパーオキシダーゼを失活させ、
これを40℃に冷却した。これにラクトバチルス.
アシドフイラススターター(90×107個/ml)50
mlを接種し、37℃12時間培養し醗酵する。これを
7℃に冷却し乳酸醗酵乳を得た。 一方、細切りしたキヤベツ1.7Kgに0.7Lの水を
加え、ミキサーで粉砕処理し、これを10000rpm5
分間の遠心分離後、得られた上澄みを0.45μmフ
イルターデ除菌し、1.7L(20℃)のキヤベツ抽出
液を得た。このキヤベツ抽出液にはキヤベツ由来
のパーオキシダーゼが活性で1.5Unit/ml含有さ
れていた。この抽出液を先に準備された乳酸醗酵
乳と混合し、品温7℃にて保存した。ここに得ら
れたキヤベツエキス入り乳酸醗酵乳は、パーオキ
シダーゼシステムが安定に持続し、焼魚等に含ま
れる変異原物質Try−P−2に対する解毒作用を
有していた。 この結果は表−3に示す通りである。
[Table] Example 3 5L of raw skim milk (20℃) was heat sterilized at 90℃ for 10 minutes to deactivate the lactoperoxidase in the milk.
This was cooled to 40°C. This is Lactobacillus.
Acidophilus starter (90×10 7 pieces/ml) 50
Inoculate 1 ml and incubate at 37°C for 12 hours for fermentation. This was cooled to 7°C to obtain lactic acid fermented milk. On the other hand, add 0.7L of water to 1.7Kg of shredded cabbage, grind it with a mixer, and grind it at 10,000rpm5.
After centrifugation for one minute, the resulting supernatant was sterilized using a 0.45 μm filter to obtain 1.7 L (20° C.) of a cabbage extract. This cabbage extract contained active cabbage-derived peroxidase at 1.5 Unit/ml. This extract was mixed with the previously prepared lactic acid fermented milk and stored at a temperature of 7°C. The obtained lactic acid fermented milk containing cabbage extract had a stable peroxidase system and had a detoxifying effect against the mutagen Try-P-2 contained in grilled fish and the like. The results are shown in Table-3.

【表】 キ 発明の効果 実施例でも明確な通り、本発明のパーオキシダ
ーゼシステムを有する乳酸醗酵食品は細菌、カビ
等の微生物に対する殺菌、制菌作用を有し、かつ
有毒といわれる物質の解毒作用を有していた。本
発明は乳酸菌の対数増殖期及びそれ以降の生育期
にある乳酸菌醗酵乳を約10℃以下の温度域でパー
オキシダーゼとチオシアン酸イオンを含む系と混
合するとき、醗酵乳は代謝産物である過酸化水素
をこの温度域において最良に生成し続けるから、
パーオキシダーゼが安定的に持続する。 このような特徴を有する本発明は、チルド(冷
蔵)流通経路が整備されてきている今日におい
て、広く食品工業に利用できるものである。特に
賞味期間表示が要求され、多少乱暴な取扱いをさ
れたときでも品質を保証しなければならない現況
において、微生物汚染に対し、抗菌作用を有する
パーオキシダーゼシステムの持つ意義は大きい。
なお、パーオキシダーゼシステムは、人体の消化
酵素に対し耐性であり、本発明による乳酸菌醗酵
食品を有毒性のある食品、例えばTrp−P−2を
含む焼魚のような変異原物質、発ガン性物質を含
む食品と併せ摂取することにより消化管内での解
毒作用効果は充分に推測することができる。
[Table] G Effect of the invention As is clear from the examples, the lactic acid fermented food containing the peroxidase system of the present invention has bactericidal and antibacterial effects against microorganisms such as bacteria and mold, and has detoxifying effects against substances that are said to be toxic. It had In the present invention, when lactic acid bacteria-fermented milk in the logarithmic growth phase of lactic acid bacteria and the subsequent growth phase is mixed with a system containing peroxidase and thiocyanate ions in a temperature range of approximately 10°C or less, the fermented milk undergoes peroxidation, which is a metabolic product. Because hydrogen oxide continues to be produced best in this temperature range,
Peroxidase remains stable. The present invention having such characteristics can be widely used in the food industry in these days when chilled (refrigerated) distribution channels are being developed. Particularly in the current situation where expiration dates are required and quality must be guaranteed even when handled roughly, a peroxidase system that has antibacterial effects against microbial contamination is of great significance.
The peroxidase system is resistant to the human body's digestive enzymes, and the lactic acid bacteria-fermented food according to the present invention cannot be used for toxic foods, such as mutagens and carcinogenic substances such as grilled fish containing Trp-P-2. The detoxification effect in the gastrointestinal tract can be fully estimated by ingesting it together with foods containing .

Claims (1)

【特許請求の範囲】[Claims] 1 乳酸菌醗酵液であつて約10℃以下の温度にあ
るものに、パーオキシダーゼとチオシアン酸イオ
ンを添加あるいはこれを含む食品を添加し、約10
℃以下に保つことを特徴とするパーオキシダーゼ
−チオシアン酸イオン−過酸化水素システムを有
する乳酸菌醗酵食品の製造法。
1 Add peroxidase and thiocyanate ions or food containing them to a lactic acid bacteria fermentation solution at a temperature of about 10℃ or less,
1. A method for producing a lactic acid bacteria-fermented food having a peroxidase-thiocyanate ion-hydrogen peroxide system, which is maintained at a temperature below °C.
JP4288585A 1985-03-06 1985-03-06 Production of fermented food of lactic acid bacteria Granted JPS62228224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4288585A JPS62228224A (en) 1985-03-06 1985-03-06 Production of fermented food of lactic acid bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4288585A JPS62228224A (en) 1985-03-06 1985-03-06 Production of fermented food of lactic acid bacteria

Publications (2)

Publication Number Publication Date
JPS62228224A JPS62228224A (en) 1987-10-07
JPH0481417B2 true JPH0481417B2 (en) 1992-12-24

Family

ID=12648490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4288585A Granted JPS62228224A (en) 1985-03-06 1985-03-06 Production of fermented food of lactic acid bacteria

Country Status (1)

Country Link
JP (1) JPS62228224A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0521166B1 (en) * 1991-01-23 1999-04-07 Snow Brand Milk Products Co., Ltd. Lactic acid bacterium starter, containing peroxidase, fermented milk product, and production thereof
JP3145829B2 (en) * 1993-03-26 2001-03-12 雪印乳業株式会社 Fermented milk and method for producing the same
JP4177949B2 (en) * 2000-03-28 2008-11-05 雪印乳業株式会社 Vegetable washing and sterilization methods
JP2007053930A (en) * 2005-08-23 2007-03-08 Asama Chemical Co Ltd Method for producing antibody-containing fermented food
NZ569725A (en) 2006-01-20 2011-11-25 Morinaga Milk Industry Co Ltd Pharmaceutical composition, food or drink, or feed for intestinal disease comprising lactoperoxidase
JPWO2023008491A1 (en) * 2021-07-27 2023-02-02

Also Published As

Publication number Publication date
JPS62228224A (en) 1987-10-07

Similar Documents

Publication Publication Date Title
Seifu et al. Significance of the lactoperoxidase system in the dairy industry and its potential applications: a review
EP0778885B1 (en) Preparation of galacto-oligosaccharide and beta-galactosidase enriched products fermented using streptococcus thermophilus
Vedamuthu The dairy Leuconostoc: use in dairy products
Wolfson et al. Antibacterial activity of the lactoperoxidase system: a review
US4797289A (en) Enhancement of lactobacillus acidophilus growth and viability in yogurt and other cultured dairy products
CA2201326C (en) Streptococus thermophilus strain, fermentation process using such strain and product obtained
Mital et al. Acidophilus milk products: manufacture and therapeutics
Pack et al. Effect of temperature on growth and diacetyl production by aroma bacteria in single-and mixed-strain lactic cultures
JPH0481417B2 (en)
US4210672A (en) Preparation of yogurt
EP0154614B1 (en) Method of cultivating, in milk, organisms having a slow growth capacity, and organisms produced by the method, and milk products containing such organisms
JPS5951247B2 (en) Method for producing yogurt flavored beverage
EP0521166B1 (en) Lactic acid bacterium starter, containing peroxidase, fermented milk product, and production thereof
EP0063438A1 (en) Production of powder containing bacteria and product thereof
CN113180113A (en) Preparation method of red beet yoghurt powder
KR20090026849A (en) Efficient process for lactic acid beverage using egg
JPH02191205A (en) Biologically active composition
Rao et al. Role of fermented milk products in milk intolerance and other clinical conditions
KR100285518B1 (en) Yogurt starter culture composition and method for preparing yogurt
RU2097990C1 (en) Dietary bioadditive for dairy and meat products
RU2108724C1 (en) Composition of cultured milk product for children alimentation and method for it production
JPS6251577B2 (en)
Vorobjeva et al. Economic and medical applications
Reichart The commercial application of Lactobacillus acidophilus milk
JPS6152253A (en) Method of stabilizing bifidobacterium longum atcc 15707 in food