JPH0480984B2 - - Google Patents

Info

Publication number
JPH0480984B2
JPH0480984B2 JP59053871A JP5387184A JPH0480984B2 JP H0480984 B2 JPH0480984 B2 JP H0480984B2 JP 59053871 A JP59053871 A JP 59053871A JP 5387184 A JP5387184 A JP 5387184A JP H0480984 B2 JPH0480984 B2 JP H0480984B2
Authority
JP
Japan
Prior art keywords
layer
ceramic layer
ceramic
porosity
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59053871A
Other languages
Japanese (ja)
Other versions
JPS60197861A (en
Inventor
Shuntaro Sudo
Joji Myake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59053871A priority Critical patent/JPS60197861A/en
Publication of JPS60197861A publication Critical patent/JPS60197861A/en
Publication of JPH0480984B2 publication Critical patent/JPH0480984B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】 [技術分野] 本発明は、セラミツク溶射における気孔率を制
御する技術に関するものである。詳細にはZrO2
Al2O3,Cr2O3等のセラミツクスを溶射した溶射
層の厚さ方向での気孔率の制御技術に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a technique for controlling porosity in ceramic thermal spraying. In detail, ZrO 2 ,
This paper relates to a technology for controlling the porosity in the thickness direction of a thermally sprayed layer of ceramics such as Al 2 O 3 and Cr 2 O 3 .

[従来技術] セラミツク溶射においては、従来アンダーコー
トを溶射し、その上にセラミツクス(例えば
ZrO2)を溶射してセラミツク層を形成する技術
が多用されてきた。しかしながら、この方法で溶
射した試験片を熱サイクル試験すると、セラミツ
ク層内のアンダーコートとの界面付近にきれつが
発生し、剥離してしまう。このきれつは母材とセ
ラミツクとの熱膨張差によつて生じるものと考え
られ、熱膨張差の最も大きいと考えられるセラミ
ツク層内のアンダーコートとの界面付近で発生す
るのであると考えられる。
[Prior art] In ceramic thermal spraying, conventionally an undercoat is thermally sprayed, and then ceramics (e.g.
A technique of thermally spraying ZrO 2 ) to form a ceramic layer has been widely used. However, when a test piece sprayed using this method is subjected to a thermal cycle test, cracks occur near the interface with the undercoat in the ceramic layer, resulting in peeling. This cracking is thought to be caused by the difference in thermal expansion between the base material and the ceramic, and is thought to occur near the interface with the undercoat in the ceramic layer, where the difference in thermal expansion is thought to be the largest.

従つて、従来の技術では、セラミツク層と母材
との熱膨張差によるきれつを防止することができ
ない。
Therefore, conventional techniques cannot prevent cracking due to the difference in thermal expansion between the ceramic layer and the base material.

[発明の目的] 本発明は、セラミツク溶射層を、厚さ方向にお
いて、アンダーコートの界面付近と、表面付近で
緻密な層にし、その中間域を多孔質の層とするよ
うに、セラミツク層の気孔率を厚さ方向に対して
制御することにより、セラミツク層の層構成を3
層構成にし、セラミツク溶射部品の耐熱サイクル
性、耐食性を向上させることを目的とする。
[Objective of the Invention] The present invention is directed to forming a ceramic sprayed layer so that in the thickness direction, the ceramic sprayed layer is a dense layer near the interface of the undercoat and near the surface, and the intermediate region is a porous layer. By controlling the porosity in the thickness direction, the layer structure of the ceramic layer can be adjusted to three layers.
The purpose is to improve the heat cycle resistance and corrosion resistance of ceramic sprayed parts.

[発明の構成] かかる目的は、本発明によれば、摺動部材の母
材上にアンダーコートを施した後、内方から順次
に気孔率小なるセラミツク層、気孔率大なるセラ
ミツク層および気孔率小なるセラミツク層を形成
してなることを特徴とする摺動部材によつて達成
される。
[Structure of the Invention] According to the present invention, after applying an undercoat on the base material of a sliding member, a ceramic layer with a low porosity, a ceramic layer with a high porosity, and a ceramic layer with high porosity are formed in order from the inside. This is achieved by a sliding member characterized by forming a ceramic layer with a small ceramic layer.

次に本発明の摺動部材について添付図面を参照
しつつ詳細に説明する。
Next, the sliding member of the present invention will be explained in detail with reference to the accompanying drawings.

本発明においては、第1図に示すように母材a
上にアンダーコートbを形成した後、溶射におけ
る溶射条件を標準条件から変化させることなどに
より、セラミツク溶射層を、気孔率小の層c、気
孔率大の層d、気孔率小の層eの3層を形成す
る。
In the present invention, as shown in FIG.
After forming the undercoat b on top, by changing the thermal spraying conditions from the standard conditions, the ceramic sprayed layer is divided into a layer c with a low porosity, a layer d with a high porosity, and a layer e with a low porosity. Form 3 layers.

アンダーコート層直上の気孔率小のセラミツク
層cはアンダーコートbとセラミツク層eの密着
力をを向上させる作用をし、その層の上の気孔率
大のセラミツク層dは熱サイクル時の母材aとセ
ラミツクとの熱膨張差による応力を緩和して、セ
ラミツク層の剥離をおこしにくくする作用をす
る。また表面近くの気孔率小のセラミツク層cは
熱サイクルによつてセラミツク層内部に厚さ方向
に生ずるきれつの進展を防止し、また外部からの
腐食性ガスの溶射層内への侵入を阻止する作用を
する。
The ceramic layer c with low porosity directly above the undercoat layer acts to improve the adhesion between the undercoat b and the ceramic layer e, and the ceramic layer d with high porosity above that layer acts as a base material during thermal cycling. It acts to reduce the stress caused by the difference in thermal expansion between a and the ceramic, thereby making it difficult for the ceramic layer to peel off. In addition, the ceramic layer c with low porosity near the surface prevents cracks from developing in the thickness direction inside the ceramic layer due to thermal cycles, and also prevents corrosive gases from entering the sprayed layer from the outside. act.

第3図は、本発明の用途の代表例を示す。しか
し、本発明はこれらに限定されることはない。
FIG. 3 shows a representative example of the application of the invention. However, the present invention is not limited thereto.

第3a図はピストン1の側面図であり、ピスト
ン頂部2に本発明のセラミツク層Xを設けた例を
示す。
FIG. 3a is a side view of the piston 1, showing an example in which the piston top 2 is provided with the ceramic layer X of the present invention.

第3b図は、エキゾーストバルブ3の断面図で
あり、エキゾーストバルブステム部4・首部5・
傘おもて部6に本発明のセラミツク層Xを設けた
例を示す。
FIG. 3b is a sectional view of the exhaust valve 3, showing the exhaust valve stem portion 4, neck portion 5,
An example in which the ceramic layer X of the present invention is provided on the umbrella front part 6 is shown.

第3c図はシリンダヘツド下面7の正面図を示
し、ヘツド下面に本発明のセラミツク層Xを設け
た例を示す。
FIG. 3c shows a front view of the lower surface 7 of the cylinder head, showing an example in which the ceramic layer X of the present invention is provided on the lower surface of the head.

第3d図はロアチヤンバー8の断面図を示し、
これに本発明のセラミツク層Xを設けた例を示
す。
FIG. 3d shows a cross-sectional view of the lower chamber 8,
An example in which a ceramic layer X of the present invention is provided thereon is shown.

[発明の作用] アンダーコート層直上の気孔率小のセラミツク
層dは、アンダーコートbとセラミツク層eの密
着力を向上させる作用をし、その層の上の気孔率
大のセラミツク層dは、熱サイクル時の母材aと
セラミツクとの熱膨張差による応力を緩和して、
セラミツク層の剥離をおこしにくくする作用をす
る。また表面近くの気孔率小のセラミツク層e
は、熱サイクルによつてセラミツク層内部に厚さ
方向に生ずるきれつの進展を防止し、また外部か
らの腐食性ガスの溶射層内への侵入を阻止する作
用をする。
[Function of the invention] The ceramic layer d with a low porosity directly above the undercoat layer functions to improve the adhesion between the undercoat b and the ceramic layer e, and the ceramic layer d with a high porosity above that layer acts to improve the adhesion between the undercoat b and the ceramic layer e. By relieving stress due to the difference in thermal expansion between base material a and ceramic during thermal cycling,
It works to prevent the ceramic layer from peeling off. In addition, a ceramic layer with low porosity near the surface
This acts to prevent the propagation of cracks that occur in the thickness direction inside the ceramic layer due to thermal cycles, and also to prevent corrosive gases from entering the sprayed layer from the outside.

[発明の効果] セラミツク層を3層構成にすることにより、今
までの溶射方法で溶射していたセラミツク層に比
べ、耐熱サイクル性が10倍向上する。即ち標準条
件で溶射し、セラミツク層を単一層とした今まで
のセラミツク層は、第2図で示す900℃の高温で
の熱サイクル試験を行うと30回で剥離が起こつて
しまう。しかし、本発明による3層構成のセラミ
ツク層は、同一試験を行なうと、400回まで剥離
せず、450回に剥離した。
[Effects of the Invention] By forming the ceramic layer into a three-layer structure, the heat cycle resistance is improved by 10 times compared to the ceramic layer sprayed using conventional thermal spraying methods. In other words, the conventional ceramic layer, which was thermally sprayed under standard conditions and made into a single ceramic layer, would peel off after 30 cycles when subjected to a thermal cycle test at a high temperature of 900°C as shown in Figure 2. However, when the same test was conducted, the three-layered ceramic layer according to the present invention did not peel off until 400 times, but peeled off after 450 times.

(実施例) 次に本発明を実施例につき説明する。(Example) Next, the invention will be explained with reference to examples.

鋼材(JIS企画SUS304)を母材とする直径8mm、
長さ50mmの円柱試験片を作成した。この試験片
に、プラズマ溶射ガンを用いて、Ni−Cr−Al合
金を厚さ0.1mmになるように溶射して、アンダー
コート層を作成した。その後、溶射ガンのノズル
と被溶射物との距離(以後溶射距離という)、溶
射中の電流値、溶射粉末の粒度(以後粉末粒度と
いう)などの溶射条件を変化させ、セラミツク層
の気孔率が小さい部分と大きい部分を作りセラミ
ツク層を3層形成した。セラミツク層は5wt%の
CaOで安定化したZrO2を溶射して得た。そのセ
ラミツク層の構成と作成方法を各層ごとに次に、
まとめる。
Diameter 8mm with steel material (JIS plan SUS304) as base material,
A cylindrical test piece with a length of 50 mm was prepared. An undercoat layer was created by spraying a Ni-Cr-Al alloy onto this test piece to a thickness of 0.1 mm using a plasma spray gun. After that, the porosity of the ceramic layer was changed by changing the thermal spraying conditions, such as the distance between the nozzle of the thermal spray gun and the object to be thermally sprayed (hereinafter referred to as the thermal spraying distance), the current value during thermal spraying, and the particle size of the thermal spray powder (hereinafter referred to as the powder particle size). Three ceramic layers were formed by creating a small part and a large part. Ceramic layer has 5wt%
Obtained by thermal spraying ZrO 2 stabilized with CaO. Next, we will explain the composition and creation method of each ceramic layer for each layer.
Summarize.

アンダーコート界面付近の気孔率小の層(第
1図のc層)溶射距離を90mmとし、電流値
600A、粉末粒度−350メツシユの溶射条件で、
プラズマ溶射ガンを用いて、厚さを0.1mmにな
るように容射し、気孔率が3〜8%のセラミツ
ク層を形成した。
The spraying distance of the layer with low porosity near the undercoat interface (layer c in Figure 1) was 90 mm, and the current value was
Under the spraying conditions of 600A, powder particle size -350 mesh,
Using a plasma spray gun, the ceramic layer was sprayed to a thickness of 0.1 mm to form a ceramic layer with a porosity of 3 to 8%.

c層の上部に形成する、気孔率大の層(第1
図のd層)溶射距離を132mmとし、電流値を
400A、粉末粒度+350メツシユの溶射条件で、
プラズマ溶射ガンを用いて、厚さ0.2mmになる
ように溶射し、気孔率が12〜18%のセラミツク
層を形成した。
A layer with high porosity (first
d layer in the figure) The spraying distance is 132mm, and the current value is
Under the spraying conditions of 400A, powder particle size + 350 mesh,
A ceramic layer with a porosity of 12 to 18% was formed by spraying to a thickness of 0.2 mm using a plasma spray gun.

d層の上部に形成する、気孔率小の層(第1
図のe層)作成方法、層の厚さ、気孔率はc層
と同じとした。しかし、e層はc層と同じであ
る必要はなく、使用用途に合わせてe層の気孔
率を決定するのが望ましい。
A layer with low porosity (first layer) formed on top of the d layer
Layer e in the figure) The preparation method, layer thickness, and porosity were the same as layer c. However, the e-layer does not need to be the same as the c-layer, and it is desirable to determine the porosity of the e-layer depending on the intended use.

以上の実施例では、上記溶射条件を用いたが、
気孔率が希望のものになれば他の溶射条件(たと
えば溶射面温度、溶射角度など)で溶射してセラ
ミツク層を形成しても良く、また、多くの溶射条
件を組み合わせて溶射しても良いことは言うまで
もない。また、溶射方法については密着性から考
えて、プラズマ溶射が最も良いと考えられるが、
他のガス溶射あるいはアーク式溶射で行なつても
良い。
In the above examples, the above thermal spraying conditions were used, but
Once the desired porosity is achieved, the ceramic layer may be formed by spraying under other spraying conditions (for example, spraying surface temperature, spraying angle, etc.), or by combining many spraying conditions. Needless to say. Regarding thermal spraying methods, plasma spraying is considered to be the best method in terms of adhesion.
Other gas spraying or arc spraying may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の摺動部材の断面図、第2図は
900℃の熱サイクル試験結果を示すグラフ、第3
図は本発明の種々の適用例を示す図である。 符号の説明、a……母材、b……アンダーコー
ト、c……気孔率小のセラミツク層、d……気孔
率大のセラミツク層、e……気孔率小のセラミツ
ク層、1……ピストン、2……ピストン頂部、3
……エキゾーストバルブ、4……ステム部、5…
…首部、6……傘おもて部、7……シリンダヘツ
ド下面、8……ロアチヤンバー。
Fig. 1 is a sectional view of the sliding member of the present invention, and Fig. 2 is a sectional view of the sliding member of the present invention.
Graph showing 900℃ heat cycle test results, 3rd
The figures are diagrams showing various application examples of the present invention. Explanation of symbols, a...Base material, b...Undercoat, c...Ceramic layer with low porosity, d...Ceramic layer with high porosity, e...Ceramic layer with low porosity, 1...Piston , 2...piston top, 3
...Exhaust valve, 4...Stem part, 5...
...Neck, 6... Umbrella top, 7... Lower surface of cylinder head, 8... Lower chamber.

Claims (1)

【特許請求の範囲】[Claims] 1 摺動部材の母材上にアンダーコートを施した
後、内方から順次に気孔率小なるセラミツク層、
気孔率大なるセラミツク層および気孔率小なるセ
ラミツク層を形成してなることを特徴とする摺動
部材。
1. After applying an undercoat on the base material of the sliding member, ceramic layers with decreasing porosity are sequentially applied from the inside,
A sliding member comprising a ceramic layer with a high porosity and a ceramic layer with a low porosity.
JP59053871A 1984-03-21 1984-03-21 Sliding member Granted JPS60197861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59053871A JPS60197861A (en) 1984-03-21 1984-03-21 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59053871A JPS60197861A (en) 1984-03-21 1984-03-21 Sliding member

Publications (2)

Publication Number Publication Date
JPS60197861A JPS60197861A (en) 1985-10-07
JPH0480984B2 true JPH0480984B2 (en) 1992-12-21

Family

ID=12954810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59053871A Granted JPS60197861A (en) 1984-03-21 1984-03-21 Sliding member

Country Status (1)

Country Link
JP (1) JPS60197861A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2592096Y2 (en) * 1991-09-24 1999-03-17 岡崎産業株式会社 Faucet elbow mounting structure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236264A (en) * 1989-03-09 1990-09-19 Tocalo Co Ltd Sound insulating and high damping member
JP4752114B2 (en) * 2001-01-26 2011-08-17 株式会社Ihi Coating structure and coating method
JPWO2013125704A1 (en) * 2012-02-22 2015-07-30 日本碍子株式会社 Engine combustion chamber structure and flow path inner wall structure
JP6821496B2 (en) * 2017-04-26 2021-01-27 三菱重工業株式会社 Thermal barrier coating forming method, thermal barrier coating, and high temperature member
WO2018199237A1 (en) * 2017-04-26 2018-11-01 三菱重工業株式会社 Thermal barrier coating formation method, thermal barrier coating, and high-temperature member
JP6896498B2 (en) * 2017-04-26 2021-06-30 三菱重工業株式会社 Thermal barrier coating forming method, thermal barrier coating, and high temperature member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2592096Y2 (en) * 1991-09-24 1999-03-17 岡崎産業株式会社 Faucet elbow mounting structure

Also Published As

Publication number Publication date
JPS60197861A (en) 1985-10-07

Similar Documents

Publication Publication Date Title
JPH0343339B2 (en)
US6875477B2 (en) Method for coating internal surface of plasma processing chamber
CN108495946A (en) Heat-insulated engine components and the manufacturing method using ceramic coating
JP2002336935A (en) Composite structural part between metallic material and non-metallic material
KR20030005413A (en) Diesel engine piston
CN104988449A (en) Thermal barrier ablation-resisting composite coating and preparing method thereof
JPH0480984B2 (en)
JPH07243018A (en) Surface modification method for heat insulating film
JPS6059989B2 (en) Method of providing a metal-sprayed layer on the inner surface of a hollow body
JPH0435620B2 (en)
JPS54151715A (en) Combustion chamber forming member for internal combustion engine and method of producing the same
JPS61169241A (en) Heat-insulating member
US20050025898A1 (en) Process for obtaining a flexible/adaptive thermal barrier
JPH0620638B2 (en) Adiabatic piston manufacturing method
JPS57140876A (en) Heat resistant ceramic coating
JPS6213236A (en) Metallic mold for casting and its production
JPH05263212A (en) Heat-resistant coating
JPS643795Y2 (en)
US11767774B2 (en) Poppet valve
JPH09279327A (en) Injection nozzle
JP2018013077A (en) Heat barrier film and film deposition method of the same
JPS5963317A (en) Pipe with high heat radiability
JPS59128908A (en) Manufacture of poppet valve
JPS60110862A (en) Manufacture of thruster
JPS60159160A (en) Thermally spraying material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees