JPH0480852B2 - - Google Patents

Info

Publication number
JPH0480852B2
JPH0480852B2 JP24337284A JP24337284A JPH0480852B2 JP H0480852 B2 JPH0480852 B2 JP H0480852B2 JP 24337284 A JP24337284 A JP 24337284A JP 24337284 A JP24337284 A JP 24337284A JP H0480852 B2 JPH0480852 B2 JP H0480852B2
Authority
JP
Japan
Prior art keywords
acid
reaction
magnesium
concentration
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24337284A
Other languages
Japanese (ja)
Other versions
JPS61122112A (en
Inventor
Masayoshi Ito
Hiroji Myagawa
Toshihiro Abe
Kenji Iwata
Kyogo Koizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP24337284A priority Critical patent/JPS61122112A/en
Publication of JPS61122112A publication Critical patent/JPS61122112A/en
Publication of JPH0480852B2 publication Critical patent/JPH0480852B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は、ケイ素とマグネシウムを含む合金と
酸とを反応させることにより、一般式SioH2o+2
(nは正の整数)で表わされる水素化ケイ素を製
造する方法に関する。 背景技術 近年エレクトロニクス工業の発展に伴い、多結
晶シリコンあるいはアモルフアスシリコン等の半
導体用シリコンの需要が急激に増大している。水
素化ケイ素SioH2o+2はかかる半導体用シリコンの
製造用原料として最近その重要性を増しており、
特にシラン(SiH4)、ジシラン(Si2H6)は太陽
電池用半導体の原料として、今後大幅な需要増加
が期待されている。 従来、水素化ケイ素の製造方法としては、以下
に例示するようないくつかの方法が知られてい
る。 Mg Si+4+HClag.→2MgCl2+1/nSioH2o+2+(1
−1/n)H2 Mg2Si+4NH4Br−33℃ ―――――――→ in lig.NH3 2MgBr2+4NH3+1/nSioH2o+2+(1−1/
n)H2 SiCl4+LiAlH4 ―――――――――→ in etharLiCl+AlCl3+SiH4 Si+SiCl4+2N2→SiHCl3+SiH3Cl 2SiHCl3→SiCl4+SiH2Cl2 2SiH2Cl→SiHCl3+SiH3Cl 2SiH3Cl→SiH4+SiH2Cl2 従来技術の問題点 これらの従来公知の方法の中でケイ化マグネシ
ウムのごときケイ素合金と酸とを水溶液中で反応
させるの方法は、たとえば、の反応のごと
く、高価な還元剤を必要とせず、またやの反
応のごとく低温または加圧下に反応させる必要も
ない上、特にジシラン(Si2H6)を製造する場
合、の反応のごとく原料として高価なヘキサク
ロロジシラン(Si2Cl6)を使用するといつた欠点
もないため、基本的には最も実施容易なすぐれた
方法である。 しかしながら、の方法においてはケイ素合金
中のケイ素のモノシラン(SiH4)、ジシラン
(Si2H6)等利用価値の高い水素化ケイ素への転
化率(以下収率という)が低いという致命的な欠
点がある(Z.Anorg、Allgem.Chem.,303、283
(1960),J.A.C.S.,57,1349(1935))。 本発明者らは、上記の方法における問題点を
解決すべく鋭意努力した結果、先に提案したごと
き種々の技術開発により有用なSiH4、Si2H6の収
率を大幅に向上することができた。例えばの方
法において反応系内に炭化水素、エーテル、有機
ケイ素化合物などの有機溶剤を共存させることに
より(特願昭58−245773、58−245772、59−
119380)、また副生する高級ケイ素化合物(一般
式SixHyOzで表わされるもの、ただしxは3以
上の正の整数であり、yおよびzはそれぞれ2x
+2、2xを越えない正の整数であり、どちらか
一方は0でない)を塩基触媒によりSiH4、Si2H6
に分解、低級化することにより(特願昭59−
110703、59−113194、59−106461、59−175663、
59−141331)、SiH4、Si2H6の収率を大幅に向上
することができた。 一方の方法において、ケイ素合金と酸との使
用割合は、通常酸を大過剰に用いることが水素化
ケイ素の収率上好ましく、従つて反応後の未反応
の酸を使い捨てる場合にはプロセスの経済性に乏
しい。従つて反応は大過剰の酸を用い、反応残液
中の未反応の酸は循環、再使用することがプロセ
スの経済上望ましい。 基本的着想 本発明者らは、上記したの方法における収率
が低いという問題点を解決するため、鋭意検討し
た結果、マズネシウム合金と酸との反応によつ
て、反応系に副生するマグネシウム塩(たとえば
酸として塩酸を用いた場合は塩化マグネシウム、
硫酸を用いた場合は硫酸マグネシウムである)
が、生成する水素化ケイ素の収率(転化率)とき
わめて強い相関関係を有するというきわめて意外
な事実を見出した。さすれば、反応系内の該副生
マグネシウム塩の量を特定濃度以下に制御するこ
とにより、これらの収率を大幅に向上できるので
はないかという基本的着想を得て本発明を完成す
るに到つたものである。 発明の詳細な開示 本発明の方法において用いられるケイ素合金と
は、ケイ素とマグネシウムを必須成分とするもの
であり、他に第3成分金属を含むことができる。
マグネシウムとケイ素の原子比(Mg/Si)は
1/3及至3/1の範囲であることが望ましい。
具体例としては、Mg2Si、Mg2SiNi、Mg2SiAl、
Mg2SiBa、Mg2Si2Ce、Mg6Si17Cu16
Mg3Si6Al8Fe等が挙げられ、特にMg2Siが最も好
ましい。これらは2種以上の混合物として用いる
こともできる。ケイ素合金の粒径は、小さい程望
ましく、具体的には1000μm以下、好ましくは
100μm以下、更に好ましくは10μm以下である。
ケイ素合金の細分化には、通常の粉砕による方法
が採用でき、例えばボールミル、ロツドミル、ジ
エツトミルなどの粉砕機により目的は達せられ
る。 また使用する酸は、塩化水素酸、臭化水素酸、
フツ化水素酸、硫酸、リン酸などの無機酸、およ
びギ酸、蓚酸、プロピオン酸などの有機酸があげ
られる。これらのうち塩化水素酸、硫酸が特に好
ましい。溶液中の酸濃度は、本発明において特に
制限するものではないが、酸濃度1乃至50wt%
の範囲であることが、水素化ケイ素の収率上好ま
しい。なおこれらの酸水溶液中には、エーテル化
合物、炭化水素、ハロゲン化炭化水素、水素化ケ
イ素、有機ケイ素化合物などの有機溶剤を共存さ
せることもできる。これらの使用割合は酸性水溶
液の0.001乃至1000倍容量、好ましくは0.01乃至
10倍容量である。 上記ケイ素合金と酸との反応において、ケイ素
合金と酸との使用割合は反応モル当量で行なうこ
とが経済上望ましいが、実際には酸の使用量が過
剰であることが水素化ケイ素の収率上好ましい。
例えば、Mg2Siと酸との使用割合は反応モル当量
((H+/Mg2Si)モル比=4.0)以上、好ましくは
(H+/Mg2Si)モル比=4.4以上、さらに好まし
くは8.0以上である。反応モル当量((H+
Mg2Si)モル比=4.0)で反応させた場合には、
未反応のケイ素合金粒子が反応器中に残る場合が
しばしばであり、水素化ケイ素の収率が極端に低
いばかりでなく、反応系内に合金粒子が蓄積する
ため運転上好ましくない。 一方、酸を大過剰に用いた場合にはプロセスの
経済性上、、反応残液中の未反応の酸を循環、再
使用する必要がある。この場合において、反応残
液に、合金との反応によつて消費された量の酸を
追加して反応器に再度供給する方法が考えられる
が、反応器に供給する酸性水溶液中に溶存してい
る副生マグネシウム塩の濃度はかなり大きく、常
時飽和溶解度に近い状態で反応を進行させなけれ
ばないこととなる。本発明は、この反応器に供給
する酸性水溶液中のマグネシウム塩の濃度を規定
するものである。 本発明者らの知見によると、副生するマグネシ
ウム塩の濃度と水素化ケイ素、特にSiH4、Si2H6
の収率との関係は後述の実施例において示すよう
にlinearな関係にあるのでなくマグネシウム塩の
濃度がある値を越えると急激に収率が低下するの
である。したがつて該濃度を常にある一定値以下
に保つた状態になるように細心の注意を払つてコ
ントロールしつつ反応を進行させることにより
SiH4、Si2H6収率が大幅に向上することを見出し
たのである。 本発明において、該反応器における反応液中
の、あるいは該反応器に供給する酸水溶液中にお
けるマグネシウム塩の濃度範囲は、それぞれ塩化
マグネシウム、硫酸マグネシウム、リン酸マグネ
シウム、硝酸マグネシウム等の塩の種類によつて
多少異なるが、10wt%以下、好ましくは5wt%以
下である。後述するように濃度が10wt%えた場
合には水素化ケイ素の収率が著しく低下する。 ただし本発明における酸性水溶液中のマグネシ
ウム塩の濃度、および酸の濃度とは、それぞれ 酸成分の重量/酸成分の重量+H2Oの重量×100 マグネシウム塩の重量/マグネシウム塩の重量+H2
Oの重量×100 をいう。 なぜにマグネシウムの濃度と水素化ケイ素の収
率の間に強い相関関係があるかについて、詳細な
理由ないしその正確なメカニズムは現在ではもち
ろん不明であるが、酸と合金との反応はミクロ的
に見れば合金粒子の表面を反応ゾーンとする異相
系反応であるところ、生成したマグネシウム塩が
その濃度によつては反応ゾーンから離脱せず粒子
表面に蓄積しその表面をほとんど覆つてしまつて
反応のそれ以上の進行を実質的に停止せしめるの
ではないかと我々は推定している。そしておそら
く、本発明で規定するごとく、反応系中における
マグネシウム塩の濃度を上記値以下に保持するこ
とにより反応途中においてケイ素合金粒子表面で
生成するマグネシウム塩の溶解性ないし離脱性が
良好に保たれ、その結果ケイ素合金表面の反応が
常に効果的に促進され、その結果水素化ケイ素へ
の収率が増すものと思われる。 次に本発明方法を実施する場合の具体的な反応
様式について述べる。 ケイ素合金と酸との反応様式は、本発明におい
て特に制限するものではないが、例えば酸性水溶
液を含む反応器にケイ素合金を装入する方法、酸
性水溶液とケイ素合金をそれぞれ所定の速度で反
応器に装入するなどの方法があげられる。(ケイ
素合金と酸との使用割合は、ケイ素合金中のケイ
素1モルに対し、酸が4.4倍モル当量以上、好ま
しくは8倍モル当量以上であり、通常酸の使用量
は多い程水素化ケイ素の収率が良い。)反応温度
は、低温ほど好ましく、−90乃至100℃、好ましく
は−50乃至50℃の範囲である。ケイ素合金と酸と
の反応はきわめて速く、通常数分の接触時間で反
応は終了する。雰囲気ガスは必ずしも必要でない
が、必要に応じ生成する水素化ケイ素と反応しな
い、例えば水素、ヘリウム、アルゴン、窒素等を
用い得る。 反応器に供給する酸性水溶液中のマグネシウム
塩の濃度を一定以下、特に10%以下に保つには
種々の方法を採用できる。例えば、 酸に揮発性の酸たとえば塩酸を用いる場合、
反応残液を加熱蒸留することにより、未反応の
酸を塩化水素ガスとして回収し再循環させる方
法、 温度によるマグネシウム塩の溶解度差を利用
する方法、すなわち反応残液を冷却することに
よりマグネシウム塩の一部を固形物として分離
除去する方法、 反応残液を加熱蒸留することにより、反応残
液中の一部の水を分離し、一部のマグネシウム
塩を析出させ分離する方法、 反応残液の一部をそのまま棄却する方法(す
なわちいわゆるパージである)、 溶存しているマグネシウム塩を溶媒抽出する
方法、 などがあげられる。なお本発明は上記の方法に限
定されるものではないことはもちろんである。 生成ガスの分離及び精製は、それぞれ通常の深
冷分離、吸着剤等によつて容易に行ない得る。 以下、実施例により、本発明の好ましい実施の
態様を示す。 実施例 以下、本発明を実施例によつて具体的に説明す
る。 実施例 1乃至6 濃度20wt%の塩酸水溶液650gを装入した容量
1のセパラブルフラスコに、予め無水の塩化マ
グネシウムをそれぞれ0g、20g、50g、70g、
100g、140gを溶解させ、その後水素ガス雰囲気
中、ケイ化マグネシウム(Mg2Si)6.0g(粒度
100乃至200メツシユ、78.2mmol−Si)を撹拌し
ながら0.15g/minの一定速度で40分間加え続け
た。この間、冷媒により反応液を冷却することに
より反応温度を0℃に保つた。反応終了後(ケイ
素合金投入終了後)更に水素ガス雰囲気中にて反
応液の温度を上昇させ、反応液が還流している状
態(約106乃至109℃)で30分間保つた。反応中及
び加熱処理している間に生成したガスは、液体チ
ツ素温度で冷却したトラツプ中に捕集し、加熱処
理終了後、ガス中のSiH4、Si2H6、Si3H8の量を
ガスクロマトグラフにより分析、定量した。 結果を第1表および第1図に示す。 以上のごとく塩化マグネシウムの濃度を試薬塩
化マグネシウム添加により0〜20%の範囲で変化
させた場合、10%を境として収率が急激に低下す
ることがわかる。 実施例 7乃至12 上記の実施例1乃至6において、塩酸のかわり
に濃度20wt%の硫酸水溶液710gを用い、これに
予めそれぞれ硫酸マグネシウムを0g、20g、40
g、60g、80g、100g溶解させた後、ケイ化マ
グネシウムを加えた以外は実施例1乃至6と同様
に実験を行なつた。 結果を第1表および第2図に示す。 以上のごとく硫酸マグネシウムの濃度を試薬硫
酸マグネシウム添加により0〜20%の範囲で変化
させた場合、10%を境として収率が急激に低下す
ることがわかる。 実施例 13 第3図に示すフローにより実際に連続反応を行
なつた。第3図において、1は反応器、2はこの
場合蒸留装置、3は塩酸濃度調製槽である。水素
ガス雰囲気中、−17℃に設定したコンデンサーを
取付けた容量200mlの反応器に、濃度25wt%の塩
酸水溶液を13.34g/minジエチルエーテルを5
g/minおよびケイ化マグネシウムを0.55g/
minの一定速度で加え続け8時間連続運転を行な
つた。この場合におけるケイ化マグネシウムと酸
との使用割合は(H+/Mg2Si)モル比=12.8で
あつた。反応はジエチルエーテルを還流しながら
(約35℃)行なつた。また連続反応中、反応液の
一部をオーバーフロー形式で抜出することによ
り、反応器中の反応液をほぼ一定量(約70ml)に
保つた。反応器より抜出した反応残液は水層とジ
エチルエール層に層分離した。連続反応中におけ
るこの水層中の塩酸濃度は約20wt% (HCl重量/(HCl重量+H2O重量)×100)、塩
化マグネシウム濃度は約12wt% (MgCl2重量/(MgCl2重量+H2O重量)×100)
であつた。次にこの水層を蒸留装置2にて約105
℃で加熱蒸留し、塩酸を塩化水素ガスとして回収
し(塩酸回収率約90%)、ガスを水で吸収した後、
塩酸濃度調製槽にて所定量の塩酸および水を加え
ることにより塩酸濃度を25wt%とし、反応器1
に供給した。なお、塩化水素回収時、塩化マグネ
シウムは全量罐残として析出させ、廃棄した。す
なわち、反応器に供給する酸水溶液中の塩濃度は
0であつた。 反応中に生成したガスは初め−70℃に冷却した
ジエチルエーテルの入つたトラツプ(トラツプ
())にて、次に液体チツ素温度で冷却したトラ
ツプ(トラツプ())にて捕集した。反応終了
後、ジエチエーテル層、トラツプ()およびト
ラツプ()中のSiH4、Si2H6、Si3H8の量をガ
スクロマトグラフにより分析、定量した。 結果を第1表に示す。 実施例 14 実施例1において、反応残液を層分離した後、
水層の2/3を棄却し、更に塩酸濃度調製槽3にお
いて、残りの1/3の反応残液に農塩酸を約7.2g/
min、水を約2.1g/minの速度で加え、塩酸濃度
を25wt%として14.02g/minの一定速度で反応
器に供給した以外は実施例1と同様に実験を行な
つた。この場合における反応器に供給した酸性水
溶液中の塩化マグネシウム濃度 (MgCl2重量/(MgCl2重量+H2
O重量×100) は約6.4wt%であつた。 結果を第1表に示す、 比較例 1 実施例13において塩化マグネシウム濃度12wt
%の反応残液の水層をそのまま塩酸濃度調製槽3
にて、濃塩酸および水を加えることにより塩酸濃
度を25wt%とし15.77g/minの一定速度で反応
器に供給した。反応途中で析出した塩化マグネシ
ウムは固形物として系外に取出し、アルカリで中
和の後棄却した。この場合における反応器に供給
した酸性水溶液中の塩化マグネシウムの濃度は
20wt%であつた。 結果を第1表に示す。 実施例 15 実施例13において、濃度25wt%の塩酸水溶液
を供給するかわりに30wt%の硫酸水溶液を供給
した。反応残液の水層を蒸留装置2において加熱
蒸留することにより、水の一部を留出させた。同
時に析出した硫酸マグネシウムを固形物として分
離除去し、残りの硫酸マグネシウムを含む硫酸水
溶液は、更に硫酸濃度調製槽3において所定量の
濃硫酸および水を加えることにより硫酸水溶液中
の硫酸濃度を30wt%とし、15.14g/minの一定
速度で反応器に供給した。この場合における硫酸
水溶液中の硫酸マグネシウムの濃度は7.8wt%で
あつた。 結果を第1表に示す。 実施例 16 実施例15において、反応残液の水層を−5℃に
冷却、析出した硫酸マグネシウムを固形物として
分離除去し、残りの硫酸マグネシウムを含む硫酸
水溶液は、更に硫酸濃度調製槽3において所定量
の濃硫酸および水を加えることにより硫酸水溶液
中の硫酸濃度を30wt%とし、15.21g/minの一
定速度で反応器に供給した。この場合における硫
酸水溶液中の硫酸マグネシウムの濃度は8.5wt%
であつた。 結果を第1表に示す。 比較例 2 実施例15において、反応残液の水層をそのまま硫
酸濃度調製槽3にて、濃硫酸および水を加えるこ
とにより硫酸濃度を30wt%とし、15.67g/min
の一定速度で反応器に供給した。この場合におけ
る硫酸水溶液中の硫酸マグネシウムの濃度は
12.7wt%であつた。 結果を第1表に示す。 比較例 3、4 実施例13および15において、塩酸および硫酸の
供給速度をそれぞれ4.29g/min、4.80g/min
とし、反応残液は再使用することなく棄却した以
外は実施例1と同様に実験を行なつた。この場合
におけるケイ化マグネシウムと酸との使用割合は
(H+/Mg2Si)モル比=4.1であつた。 結果を第1表に示す。
Technical Field The present invention is a method of forming a compound with the general formula Si o H 2o+2 by reacting an alloy containing silicon and magnesium with an acid.
The present invention relates to a method for producing silicon hydride represented by (n is a positive integer). BACKGROUND ART In recent years, with the development of the electronics industry, the demand for silicon for semiconductors such as polycrystalline silicon or amorphous silicon has increased rapidly. Silicon hydride, Si o H 2o+2 , has recently gained importance as a raw material for the production of silicon for semiconductors.
In particular, demand for silane (SiH 4 ) and disilane (Si 2 H 6 ) is expected to increase significantly in the future as raw materials for semiconductors for solar cells. Conventionally, several methods as illustrated below are known as methods for producing silicon hydride. Mg Si+4+HClag.→2MgCl 2 +1/nSi o H 2o+2 +(1
−1/n) H 2 Mg 2 Si+4NH 4 Br−33℃ ―――――――→ in lig.NH 3 2MgBr 2 +4NH 3 +1/nSi o H 2o+2 +(1−1/
n) H 2 SiCl 4 +LiAlH 4 ――――――――→ in etharLiCl+AlCl 3 +SiH 4 Si+SiCl 4 +2N 2 →SiHCl 3 +SiH 3 Cl 2SiHCl 3 →SiCl 4 +SiH 2 Cl 2 2SiH 2 Cl→SiHCl 3 +SiH 3 Cl 2SiH 3 Cl →SiH 4 +SiH 2 Cl 2Problems with the prior art Among these conventionally known methods, the method of reacting a silicon alloy such as magnesium silicide with an acid in an aqueous solution, for example, This method does not require an expensive reducing agent, nor does the reaction need to be carried out at low temperatures or under pressure , as in other reactions. This is basically the easiest method to implement since it does not have the disadvantages of using hexachlorodisilane (Si 2 Cl 6 ). However, the fatal drawback of this method is that the conversion rate (hereinafter referred to as yield) of silicon in silicon alloys to monosilane (SiH 4 ), disilane (Si 2 H 6 ), and other highly useful silicon hydrides is low. (Z.Anorg, Allgem.Chem., 303, 283
(1960), JACS, 57, 1349 (1935)). As a result of our earnest efforts to solve the problems in the above-mentioned method, the present inventors have discovered that the yield of useful SiH 4 and Si 2 H 6 can be significantly improved by developing various technologies such as those proposed above. did it. For example, in the method described above, by coexisting an organic solvent such as a hydrocarbon, ether, or organosilicon compound in the reaction system (Japanese Patent Application No. 58-245773, 58-245772, 59-
119380), and by-product higher silicon compounds (represented by the general formula SixHyOz, where x is a positive integer of 3 or more, and y and z are each 2x
+2, a positive integer not exceeding 2x, and one of which is not 0) is converted into SiH 4 , Si 2 H 6 using a base catalyst.
By decomposing and lowering the grade of
110703, 59−113194, 59−106461, 59−175663,
59-141331), the yields of SiH 4 and Si 2 H 6 could be significantly improved. In one method, it is usually preferable to use a large excess of acid in terms of the yield of silicon hydride, and therefore, if the unreacted acid after the reaction is to be discarded, it is preferable to use a large excess of acid. Not economical. Therefore, it is desirable from the economic point of view of the process to use a large excess of acid in the reaction and to circulate and reuse the unreacted acid in the reaction residue. Basic idea In order to solve the problem of low yield in the method described above, the present inventors have conducted intensive studies and found that magnesium salts are produced as by-products in the reaction system by the reaction of maznesium alloy and acid. (For example, if hydrochloric acid is used as the acid, magnesium chloride,
When using sulfuric acid, it is magnesium sulfate)
The extremely surprising fact has been discovered that there is a very strong correlation between the yield (conversion rate) of silicon hydride and the yield (conversion rate) of silicon hydride produced. The present invention was completed based on the basic idea that by controlling the amount of the by-product magnesium salt in the reaction system to a specific concentration or less, the yield of these substances could be greatly improved. This is what we have reached. DETAILED DISCLOSURE OF THE INVENTION The silicon alloy used in the method of the present invention contains silicon and magnesium as essential components, and may also contain a third component metal.
The atomic ratio of magnesium to silicon (Mg/Si) is preferably in the range of 1/3 to 3/1.
Specific examples include Mg 2 Si, Mg 2 SiNi, Mg 2 SiAl,
Mg 2 SiBa, Mg 2 Si 2 Ce, Mg 6 Si 17 Cu 16 ,
Examples include Mg 3 Si 6 Al 8 Fe, and Mg 2 Si is particularly preferred. These can also be used as a mixture of two or more. The particle size of the silicon alloy is preferably as small as possible, specifically 1000 μm or less, preferably
It is 100 μm or less, more preferably 10 μm or less.
A conventional pulverization method can be used to subdivide the silicon alloy, and the purpose can be achieved using a pulverizer such as a ball mill, rod mill, or jet mill. The acids used are hydrochloric acid, hydrobromic acid,
Examples include inorganic acids such as hydrofluoric acid, sulfuric acid, and phosphoric acid, and organic acids such as formic acid, oxalic acid, and propionic acid. Among these, hydrochloric acid and sulfuric acid are particularly preferred. The acid concentration in the solution is not particularly limited in the present invention, but the acid concentration is 1 to 50 wt%.
The range is preferably from the viewpoint of yield of silicon hydride. Note that organic solvents such as ether compounds, hydrocarbons, halogenated hydrocarbons, silicon hydrides, and organosilicon compounds can also be present in these acid aqueous solutions. The ratio of these used is 0.001 to 1000 times the volume of the acidic aqueous solution, preferably 0.01 to 1000 times the volume of the acidic aqueous solution.
It has 10 times the capacity. In the reaction between the silicon alloy and the acid mentioned above, it is economically desirable to use the silicon alloy and the acid in the reaction molar equivalent ratio, but in reality, the yield of silicon hydride is reduced if the amount of acid used is excessive. It is preferable.
For example, the ratio of Mg 2 Si and acid used is at least the reaction molar equivalent ((H + /Mg 2 Si) molar ratio = 4.0), preferably (H + /Mg 2 Si) molar ratio = 4.4 or more, more preferably 8.0 or higher. Reaction molar equivalent ((H + /
When reacting at Mg 2 Si) molar ratio = 4.0),
Unreacted silicon alloy particles often remain in the reactor, which not only results in an extremely low yield of silicon hydride, but also accumulates alloy particles in the reaction system, which is unfavorable for operation. On the other hand, when a large excess of acid is used, it is necessary to circulate and reuse the unreacted acid in the reaction residual liquid from the economical point of view of the process. In this case, one possible method is to add the amount of acid consumed by the reaction with the alloy to the reaction residual liquid and re-supply it to the reactor. The concentration of the by-product magnesium salt is quite high, and the reaction must always proceed in a state close to saturated solubility. The present invention defines the concentration of magnesium salt in the acidic aqueous solution fed to the reactor. According to the findings of the present inventors, the concentration of by-product magnesium salt and silicon hydride, especially SiH 4 and Si 2 H 6
As shown in the examples below, the relationship between the yield and the magnesium salt is not a linear relationship, but when the concentration of the magnesium salt exceeds a certain value, the yield decreases rapidly. Therefore, by allowing the reaction to proceed while paying close attention to control so that the concentration is always kept below a certain value.
They found that the yields of SiH 4 and Si 2 H 6 were significantly improved. In the present invention, the concentration range of the magnesium salt in the reaction solution in the reactor or in the acid aqueous solution supplied to the reactor depends on the type of salt such as magnesium chloride, magnesium sulfate, magnesium phosphate, magnesium nitrate, etc. Although it varies somewhat, it is 10wt% or less, preferably 5wt% or less. As will be described later, when the concentration increases by 10 wt%, the yield of silicon hydride decreases significantly. However, in the present invention, the concentration of the magnesium salt in the acidic aqueous solution and the concentration of the acid are, respectively, weight of acid component/weight of acid component + weight of H2O x 100 weight of magnesium salt/weight of magnesium salt + H2
The weight of O x 100. The detailed reason and exact mechanism as to why there is a strong correlation between the concentration of magnesium and the yield of silicon hydride are currently unknown, but the reaction between acids and alloys is microscopic. As you can see, it is a heterophasic reaction in which the surface of the alloy particle is the reaction zone, but depending on its concentration, the produced magnesium salt does not leave the reaction zone and accumulates on the particle surface, covering most of the surface, causing the reaction to fail. We estimate that this will effectively halt further progress. Perhaps, as defined in the present invention, by maintaining the concentration of magnesium salt in the reaction system below the above value, the solubility or detachability of the magnesium salt generated on the surface of the silicon alloy particles during the reaction can be maintained well. As a result, the reaction on the silicon alloy surface is always effectively promoted, and as a result, the yield to silicon hydride is considered to be increased. Next, a specific reaction pattern when carrying out the method of the present invention will be described. The method of reaction between the silicon alloy and the acid is not particularly limited in the present invention, but for example, a method of charging the silicon alloy into a reactor containing an acidic aqueous solution, a method of charging the silicon alloy with the reactor containing the acidic aqueous solution, and a method of charging the acidic aqueous solution and the silicon alloy into the reactor at predetermined rates, respectively. Methods include charging the (The ratio of the silicon alloy to the acid used is such that the acid is at least 4.4 times the molar equivalent, preferably at least 8 times the molar equivalent, per 1 mole of silicon in the silicon alloy. Generally, the larger the amount of acid used, the more silicon hydride The reaction temperature is preferably lower, and is in the range of -90 to 100°C, preferably -50 to 50°C. The reaction between a silicon alloy and an acid is extremely fast, and the reaction is usually completed within a few minutes of contact time. Although the atmospheric gas is not necessarily required, hydrogen, helium, argon, nitrogen, etc., which do not react with the silicon hydride produced, may be used if necessary. Various methods can be employed to maintain the concentration of magnesium salt in the acidic aqueous solution supplied to the reactor below a certain level, particularly below 10%. For example, when using a volatile acid such as hydrochloric acid,
A method in which unreacted acid is recovered and recycled as hydrogen chloride gas by heating and distilling the reaction residual liquid, and a method that utilizes the solubility difference of magnesium salt depending on temperature, that is, a method in which the magnesium salt is removed by cooling the reaction residual liquid. A method in which a part of the reaction residue is separated and removed as a solid substance. A method in which a part of the water in the reaction residue is separated by heating and distillation, and a part of the magnesium salt is precipitated and separated. Examples include a method of discarding a portion as is (that is, so-called purge), and a method of solvent extraction of dissolved magnesium salts. It goes without saying that the present invention is not limited to the above method. Separation and purification of the produced gas can be easily carried out by conventional cryogenic separation, adsorption, etc., respectively. Hereinafter, preferred embodiments of the present invention will be illustrated by Examples. Examples Hereinafter, the present invention will be specifically explained using examples. Examples 1 to 6 Into a separable flask with a capacity of 1 charged with 650 g of an aqueous hydrochloric acid solution with a concentration of 20 wt%, 0 g, 20 g, 50 g, 70 g, and 70 g of anhydrous magnesium chloride were added in advance, respectively.
100g and 140g were dissolved, and then 6.0g of magnesium silicide (Mg 2 Si) (particle size
100 to 200 meshes (78.2 mmol-Si) were continuously added at a constant rate of 0.15 g/min for 40 minutes with stirring. During this time, the reaction temperature was maintained at 0° C. by cooling the reaction solution with a refrigerant. After the reaction was completed (after the addition of the silicon alloy was completed), the temperature of the reaction solution was further increased in a hydrogen gas atmosphere, and the reaction solution was kept under reflux (approximately 106 to 109° C.) for 30 minutes. The gas generated during the reaction and heat treatment is collected in a trap cooled at the temperature of liquid nitrogen, and after the heat treatment is completed, the SiH 4 , Si 2 H 6 , and Si 3 H 8 in the gas are removed. The amount was analyzed and determined by gas chromatography. The results are shown in Table 1 and Figure 1. As described above, it can be seen that when the concentration of magnesium chloride is changed in the range of 0 to 20% by adding the reagent magnesium chloride, the yield decreases rapidly after reaching 10%. Examples 7 to 12 In Examples 1 to 6 above, 710 g of sulfuric acid aqueous solution with a concentration of 20 wt% was used instead of hydrochloric acid, and 0 g, 20 g, and 40 g of magnesium sulfate were added in advance to this, respectively.
Experiments were conducted in the same manner as in Examples 1 to 6, except that magnesium silicide was added after dissolving 100 g, 60 g, 80 g, and 100 g. The results are shown in Table 1 and Figure 2. As described above, it can be seen that when the concentration of magnesium sulfate is varied in the range of 0 to 20% by adding the reagent magnesium sulfate, the yield decreases rapidly after reaching 10%. Example 13 A continuous reaction was actually carried out according to the flow shown in FIG. In FIG. 3, 1 is a reactor, 2 is a distillation device in this case, and 3 is a hydrochloric acid concentration adjustment tank. In a hydrogen gas atmosphere, a hydrochloric acid aqueous solution with a concentration of 25 wt% was added at 13.34 g/min to a reactor with a capacity of 200 ml equipped with a condenser set at -17°C.
g/min and magnesium silicide 0.55g/min
Continuous addition was continued for 8 hours at a constant rate of min. In this case, the ratio of magnesium silicide and acid used was (H + /Mg 2 Si) molar ratio = 12.8. The reaction was carried out while refluxing diethyl ether (approximately 35°C). During the continuous reaction, a portion of the reaction solution was withdrawn in an overflow manner to maintain a nearly constant amount of the reaction solution in the reactor (approximately 70 ml). The reaction residue extracted from the reactor was separated into an aqueous layer and a diethyl ale layer. During the continuous reaction, the concentration of hydrochloric acid in this aqueous layer is approximately 20 wt% (HCl weight / (HCl weight + H 2 O weight) × 100), and the magnesium chloride concentration is approximately 12 wt % (MgCl 2 weight / (MgCl 2 weight + H 2 O Weight) x 100)
It was hot. Next, this water layer is distilled into distillation device 2 with approximately 105
After heating and distilling at ℃ to recover hydrochloric acid as hydrogen chloride gas (hydrochloric acid recovery rate approximately 90%), and absorbing the gas with water,
The hydrochloric acid concentration was adjusted to 25wt% by adding a predetermined amount of hydrochloric acid and water in the hydrochloric acid concentration adjustment tank, and the reactor 1 was
supplied. In addition, when hydrogen chloride was recovered, the entire amount of magnesium chloride was deposited as a residue in the can and discarded. That is, the salt concentration in the acid aqueous solution supplied to the reactor was 0. The gas generated during the reaction was first collected in a trap containing diethyl ether cooled to -70°C (Trap ()) and then in a trap (Trap ()) cooled at the temperature of liquid nitrogen. After the reaction was completed, the amounts of SiH 4 , Si 2 H 6 and Si 3 H 8 in the diethyl ether layer, trap () and trap () were analyzed and quantified by gas chromatography. The results are shown in Table 1. Example 14 In Example 1, after layer separation of the reaction residual liquid,
Discard 2/3 of the aqueous layer, and add approximately 7.2 g/h of agricultural hydrochloric acid to the remaining 1/3 reaction residue in hydrochloric acid concentration adjustment tank 3.
The experiment was conducted in the same manner as in Example 1, except that water was added at a rate of about 2.1 g/min, and the hydrochloric acid concentration was 25 wt% and fed to the reactor at a constant rate of 14.02 g/min. Concentration of magnesium chloride in the acidic aqueous solution supplied to the reactor in this case (MgCl 2 weight/(MgCl 2 weight + H 2
O weight x 100) was approximately 6.4 wt%. The results are shown in Table 1. Comparative Example 1 In Example 13, the magnesium chloride concentration was 12wt.
% of the aqueous layer of the reaction residual liquid was directly transferred to the hydrochloric acid concentration adjustment tank 3.
At the same time, concentrated hydrochloric acid and water were added to make the hydrochloric acid concentration 25 wt%, and the solution was supplied to the reactor at a constant rate of 15.77 g/min. Magnesium chloride precipitated during the reaction was taken out of the system as a solid, neutralized with alkali, and then discarded. In this case, the concentration of magnesium chloride in the acidic aqueous solution supplied to the reactor is
It was 20wt%. The results are shown in Table 1. Example 15 In Example 13, a 30 wt% sulfuric acid aqueous solution was supplied instead of a 25 wt% aqueous hydrochloric acid solution. A portion of the water was distilled off by heating and distilling the aqueous layer of the reaction residual liquid in distillation device 2. At the same time, the precipitated magnesium sulfate is separated and removed as a solid, and the remaining sulfuric acid aqueous solution containing magnesium sulfate is further added with a predetermined amount of concentrated sulfuric acid and water in the sulfuric acid concentration adjustment tank 3, so that the sulfuric acid concentration in the sulfuric acid aqueous solution is reduced to 30wt%. and supplied to the reactor at a constant rate of 15.14 g/min. In this case, the concentration of magnesium sulfate in the sulfuric acid aqueous solution was 7.8 wt%. The results are shown in Table 1. Example 16 In Example 15, the aqueous layer of the reaction residue was cooled to -5°C, the precipitated magnesium sulfate was separated and removed as a solid, and the remaining sulfuric acid aqueous solution containing magnesium sulfate was further added to the sulfuric acid concentration adjustment tank 3. By adding a predetermined amount of concentrated sulfuric acid and water, the sulfuric acid concentration in the sulfuric acid aqueous solution was adjusted to 30 wt%, and the solution was supplied to the reactor at a constant rate of 15.21 g/min. In this case, the concentration of magnesium sulfate in the sulfuric acid aqueous solution is 8.5wt%
It was hot. The results are shown in Table 1. Comparative Example 2 In Example 15, the aqueous layer of the reaction residue was directly placed in the sulfuric acid concentration adjustment tank 3, and the sulfuric acid concentration was adjusted to 30 wt% by adding concentrated sulfuric acid and water, and the sulfuric acid concentration was adjusted to 15.67 g/min.
was fed into the reactor at a constant rate of . In this case, the concentration of magnesium sulfate in the sulfuric acid aqueous solution is
It was 12.7wt%. The results are shown in Table 1. Comparative Examples 3 and 4 In Examples 13 and 15, the supply rates of hydrochloric acid and sulfuric acid were 4.29 g/min and 4.80 g/min, respectively.
The experiment was conducted in the same manner as in Example 1, except that the reaction residual liquid was discarded without being reused. In this case, the ratio of magnesium silicide and acid used was (H + /Mg 2 Si) molar ratio = 4.1. The results are shown in Table 1.

【表】 発明の効果 以上のごとく、本発明は、ケイ素とマグネシウ
ムを含む合金と酸性水溶液との反応により水素化
ケイ素を製造する方法において、反応残液中に残
存する酸成分の一部又は全部を循環使用し、かつ
反応器に供給する酸性水溶液中のマグネシウム塩
の濃度を10wt%以下に保つことに特徴を有する。
本発明によるプロセスにおいては、大過剰の酸性
水溶液中でのケイ素合金と酸との反応が可能であ
り、また循環させる反応残液中のマグネシウム塩
の濃度を一定以下に抑えることにより水素化ケイ
素の収率が向上し、プロセスの経済性が大幅に改
良される。
[Table] Effects of the Invention As described above, the present invention provides a method for producing silicon hydride by reacting an alloy containing silicon and magnesium with an acidic aqueous solution, in which part or all of the acid component remaining in the reaction residue is removed. It is characterized by recycling magnesium salt and maintaining the concentration of magnesium salt in the acidic aqueous solution supplied to the reactor at 10 wt% or less.
In the process according to the present invention, it is possible to react a silicon alloy with an acid in a large excess of acidic aqueous solution, and it is also possible to react silicon hydride by suppressing the concentration of magnesium salt in the circulating reaction residue below a certain level. Yields are increased and process economics are significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は実施例の結果を示すグラ
フであり、第3図は本発明を実施するためのフロ
ーシート図である。
1 and 2 are graphs showing the results of Examples, and FIG. 3 is a flow sheet diagram for implementing the present invention.

Claims (1)

【特許請求の範囲】 1 ケイ素とマグネシウムを含む合金と、塩酸、
硫酸、リン酸、硝酸あるいはこれらの混酸の酸水
溶液とを反応せしめて一般式SioH2o+2(nは正の
整数)で表わされる水素化ケイ素を製造する方法
において、生成水素化ケイ素を分離後の反応残液
中に残存する酸成分を上記酸水溶液の少くとも一
部として反応器に循環して再使用し、かつ上記反
応器に供給する上記酸水溶液中の同伴マグネシウ
ム塩の濃度を10wt%以下に保つことを特徴とす
る水素化ケイ素の製造方法。 2 ケイ素とマグネシウムを含む合金が、ケイ化
マグネシウムである特許請求の範囲第1項に記載
の方法。 3 反応残液中に溶存しているマグネシウム塩の
全部、またはその一部を分離除去した後、反応残
液中の酸成分を循環、再使用することを特徴とす
る特許請求の範囲第1項に記載の方法。
[Claims] 1. An alloy containing silicon and magnesium, hydrochloric acid,
In a method for producing silicon hydride represented by the general formula Si o H 2o+2 (n is a positive integer) by reacting with an acid aqueous solution of sulfuric acid, phosphoric acid, nitric acid, or a mixed acid thereof, the produced silicon hydride is The acid component remaining in the reaction residue after separation is recycled to the reactor as at least a part of the acid aqueous solution, and the concentration of the entrained magnesium salt in the acid aqueous solution supplied to the reactor is controlled. A method for producing silicon hydride, characterized in that the content is maintained at 10wt% or less. 2. The method according to claim 1, wherein the alloy containing silicon and magnesium is magnesium silicide. 3. Claim 1, characterized in that after all or a part of the magnesium salt dissolved in the reaction residual liquid is separated and removed, the acid component in the reaction residual liquid is recycled and reused. The method described in.
JP24337284A 1984-11-20 1984-11-20 Production of silicon hydride Granted JPS61122112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24337284A JPS61122112A (en) 1984-11-20 1984-11-20 Production of silicon hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24337284A JPS61122112A (en) 1984-11-20 1984-11-20 Production of silicon hydride

Publications (2)

Publication Number Publication Date
JPS61122112A JPS61122112A (en) 1986-06-10
JPH0480852B2 true JPH0480852B2 (en) 1992-12-21

Family

ID=17102864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24337284A Granted JPS61122112A (en) 1984-11-20 1984-11-20 Production of silicon hydride

Country Status (1)

Country Link
JP (1) JPS61122112A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2931472B1 (en) * 2008-05-22 2010-06-11 Air Liquide SILAN PRODUCTION BY ACIDIC HYDROLYSIS OF SILICON ALLOYS AND ALKALINE EARTH METALS OR SILICIDES OF ALKALINE-EARTH METALS

Also Published As

Publication number Publication date
JPS61122112A (en) 1986-06-10

Similar Documents

Publication Publication Date Title
JP5535679B2 (en) Method for producing trichlorosilane
TWI474976B (en) Production of polycrystalline silicon in substantially closed-loop processes that involve disproportionation operations
US4610859A (en) Process for producing silicon hydrides
JPS63367B2 (en)
JP5040717B2 (en) Manufacturing method of high purity silicon
WO2006123802A1 (en) Method for producing silicon
JP4778504B2 (en) Method for producing silicon
US9527752B2 (en) Methods for producing aluminum trifluoride
JPS6228083B2 (en)
JP2004002138A (en) Method for manufacturing silicon
WO2008062204A9 (en) Purification method
US20180280874A1 (en) Purification method and purification apparatus for off-gas
US10953469B2 (en) Method of producing metal powder
CA2741023A1 (en) Method for the production of polycrystalline silicon
US8529860B2 (en) Methods for producing silicon tetrafluoride
JPH0480852B2 (en)
WO2008034578A1 (en) Process for the production of germanium-bearing silicon alloys
KR101580171B1 (en) Method for modifying surface of metal siliside, method for producing trichlorosilane using surface modified metal siliside and apparatus for producing the same
US20040147781A1 (en) Process for producing organic amine borane compounds
JPS61155213A (en) Preparation of silicon hydride
JPS64327B2 (en)
JPH0480850B2 (en)
US20090304568A1 (en) Process for Producing Silane
JP4542209B2 (en) Method for producing polycrystalline silicon and method for producing high-purity silica
JPH0352407B2 (en)