JPH0480757A - Pattern forming method - Google Patents
Pattern forming methodInfo
- Publication number
- JPH0480757A JPH0480757A JP19299890A JP19299890A JPH0480757A JP H0480757 A JPH0480757 A JP H0480757A JP 19299890 A JP19299890 A JP 19299890A JP 19299890 A JP19299890 A JP 19299890A JP H0480757 A JPH0480757 A JP H0480757A
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- line
- phenol resin
- azide
- biphenyl skeleton
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 8
- -1 azido compound Chemical class 0.000 claims abstract description 15
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000005011 phenolic resin Substances 0.000 claims abstract description 13
- 235000010290 biphenyl Nutrition 0.000 claims abstract description 8
- 239000004305 biphenyl Substances 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 3
- 150000002367 halogens Chemical class 0.000 claims abstract description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims abstract description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims abstract 2
- 229910052753 mercury Inorganic materials 0.000 claims abstract 2
- 239000007864 aqueous solution Substances 0.000 claims description 3
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 2
- 125000001424 substituent group Chemical group 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 4
- 239000012670 alkaline solution Substances 0.000 abstract 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 abstract 1
- 229920003986 novolac Polymers 0.000 description 6
- 230000031700 light absorption Effects 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920001568 phenolic resin Polymers 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 230000007261 regionalization Effects 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 150000001540 azides Chemical class 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- UXGJIYZFPDSEBM-UHFFFAOYSA-N phenol;azide Chemical compound [N-]=[N+]=[N-].OC1=CC=CC=C1 UXGJIYZFPDSEBM-UHFFFAOYSA-N 0.000 description 2
- 238000006303 photolysis reaction Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Manufacturing Of Electric Cables (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
[産業上の利用分野]
半導体素子、磁気バブルメモリ等、微細な配線を必要と
する固体素子製作に利用されるパターン形成方法に関す
る。[Industrial Application Field] The present invention relates to a pattern forming method used in manufacturing solid-state devices that require fine wiring, such as semiconductor devices and magnetic bubble memories.
【従来の技術]
半導体デバイスの高集積化に伴って、リソグラフィ技術
向上への要求は益々厳しくなっており、露光装置の短波
長化、レジスト材料開発並びにプロセス技術の改良が検
討されている。プロセス技術の一つとして、露光装置の
露光波長よりも、より微細なパタンを形成できる位相シ
フト露光法が注目を浴びている。この位相シフト露光法
と、i−線縮小露光装置とを組み合わせると、露光波長
よりも微細なパタン形成が可能であることから、デバイ
ス製作への適用の検討が各所で進められている。位相シ
フト露光法のデバイス製作への適用に当たってはパター
ン形状の制約から、高解像性ネガ型レジストが必要であ
る。
現在までに報告されているi−線用ネガ型レジストは、
例えば特願昭57−146094に記載のアジド−フェ
ノール樹脂系レジスト、例えば半導体集積回路技術第3
7回講演論文集P19に記載されている化学増幅系レジ
スト、例えばプロシーデインゲス オン エスピーアイ
イー(Proceedings 、5PIE) 、 6
31. plogに記載のイメージリバーサルレジスト
に分類される。
【発明が解決しようとする課題]
上記i−線用ネガ型レジストの中で化学増幅系レジスト
並びにイメージリバーサルレジストは高解像性を有して
いるが、不溶化反応に寄与する成分(酸、アミン)が基
板と反応するために、基板の種類によっては微細パター
ンが形成できないという問題がある。一方、アジド−フ
ェノール樹脂系レジストは、アルカリ水溶液で膨潤する
ことなく現像されるために高解像性を有し、しかもフェ
ノール樹脂のドライエツチング耐性が高いことから、半
導体製作の微細加工に極めて有用であることが知られて
いる。しかし、このネガ型レジストは露光波長とアジド
の最大吸収波長がほぼ一致しており、露光波長における
光吸収が大きく、レジストを表面から基板表面まで均一
に感光させることが困難である。このため、形成される
微細パタンの断面形状が逆台形になるという問題がある
。
【課題を解決するための手段】
上記従来技術の問題は、露光波長(i−線)にお・いて
、光吸収が小さくしかも高効率で光分解するビフェニル
骨格を有するアジド化合物(下記一般式)とフェノール
樹脂からなる感光性組成物を用いることにより解決され
る。
(ここにR11R21R31R41R1’、 R2’l
R3’tR4′は同一であっても異なっていてもよく
、それぞれ水素、水酸基、メチル基、メトキシ基、アジ
ド基、ハロゲンから選ばれた置換基を表す。)本発明に
用いることのできる、露光波長(i−線)においで光吸
収が/IXさくしかも高効率で光分解するアジド化合物
としは、例えば4,4′−ジアジド−3,3′−ジメト
キシビフェニル、4,4′ジアジド−3,3′−ジメチ
ルビフェニル、4,4′〜ジアジド−2,2’ 、5.
5’−テトラクロロビフェニル、4,4′−ジアジド−
3,3’ 、5.5’−テトラメチルビフエニル、3.
3’ 、4.4’テトラアジドビフエニル、があり、ま
た二種以上のアジド化合物を同時に用いることもできる
。
アジド化合物の量は、フェノール樹脂に対し5〜40重
量%程度の範囲にあることが好ましく、15〜30重量
%程度の範囲であることがより好ましい。
本発明に用いるフェノール樹脂としては9例えばポリ(
4−ビニルフェノール)、メタ・パラ−クレゾールノボ
ラック樹脂、ノボラック樹脂、ブロム化ポリ(4−ビニ
ルフェノール)、オルトクレゾールノボラック樹脂のな
かから選ばれた樹脂を用いることができる。[Prior Art] As semiconductor devices become more highly integrated, demands for improved lithography technology are becoming increasingly severe, and efforts are being made to shorten the wavelength of exposure equipment, develop resist materials, and improve process technology. As a process technology, a phase shift exposure method that can form a finer pattern than the exposure wavelength of an exposure device is attracting attention. When this phase shift exposure method is combined with an i-line reduction exposure apparatus, it is possible to form a pattern finer than the exposure wavelength, and therefore, studies are underway in various places to apply it to device manufacturing. When applying phase shift exposure to device fabrication, a high-resolution negative resist is required due to restrictions on pattern shape. The i-line negative resists reported to date are:
For example, the azide-phenol resin resist described in Japanese Patent Application No. 57-146094, for example, Semiconductor Integrated Circuit Technology No. 3
Chemically amplified resists described in the 7th Lecture Proceedings P19, such as Procedures on SPIE (Proceedings, 5PIE), 6
31. It is classified as an image reversal resist described in plog. [Problems to be Solved by the Invention] Among the negative resists for i-rays mentioned above, chemically amplified resists and image reversal resists have high resolution, but they suffer from components that contribute to the insolubilization reaction (acids, amines, etc.). ) reacts with the substrate, so there is a problem that fine patterns cannot be formed depending on the type of substrate. On the other hand, azide-phenol resin resists have high resolution because they can be developed with alkaline aqueous solutions without swelling, and the phenol resin has high dry etching resistance, making them extremely useful for microfabrication in semiconductor manufacturing. It is known that However, in this negative resist, the exposure wavelength and the maximum absorption wavelength of azide almost match, and the light absorption at the exposure wavelength is large, making it difficult to expose the resist uniformly from the surface to the substrate surface. Therefore, there is a problem that the cross-sectional shape of the fine pattern formed becomes an inverted trapezoid. [Means for Solving the Problems] The problem with the prior art described above is that the azide compound (the following general formula) has a biphenyl skeleton that has low light absorption and photodecomposition with high efficiency at the exposure wavelength (i-ray). This problem can be solved by using a photosensitive composition made of a phenolic resin. (Here R11R21R31R41R1', R2'l
R3'tR4' may be the same or different and each represents a substituent selected from hydrogen, hydroxyl group, methyl group, methoxy group, azide group, and halogen. ) Examples of azide compounds that can be used in the present invention and which have high light absorption at the exposure wavelength (i-line) and photodecomposition with high efficiency include 4,4'-diazide-3,3'-dimethoxy. biphenyl, 4,4'diazide-3,3'-dimethylbiphenyl, 4,4'-diazide-2,2',5.
5'-tetrachlorobiphenyl, 4,4'-diazide-
3,3',5,5'-tetramethylbiphenyl, 3.
There are 3' and 4,4' tetraazido biphenyls, and two or more azide compounds can be used simultaneously. The amount of the azide compound is preferably in the range of about 5 to 40% by weight, and more preferably in the range of about 15 to 30% by weight, based on the phenol resin. Examples of the phenolic resin used in the present invention include 9, for example, poly(
4-vinylphenol), meta-para-cresol novolac resins, novolak resins, brominated poly(4-vinylphenol), and ortho-cresol novolac resins.
本発明に用いるビフェニル骨格を有するアジド化合物は
、j−線照射で効率よく光分解し、生成したナイトレン
がフェノール樹脂を効率よく不溶化するので、高感度ネ
ガ型レジストとして作用する。
またビフェニル骨格を有するアジド化合物は、五−線に
おいて光吸収が小さいため(分子吸光係数は30001
/mol・cm以下)、このアジド化合物を感光剤とす
るレジスト(透過率70%/μm)を用いると、従来の
アジド系レジスト(透過率1%/μm)のような光吸収
によるパターンの断面形状の逆台形化は全く見られず、
矩形断面形状の微細パターン形成が可能である。
また本発明に用いるフェノール樹脂はアルカリ性水溶液
に膨潤することなく溶解し、且つドライエツチング耐性
にすぐれており、微細パターン形成用高分子化合物とし
ては最適の材料である。フェノール樹脂のなかでも、l
l+P−クレゾールノボラック樹脂を用いたレジストが
、露光前後での溶解速度差が最も大きくできる。このこ
とから本発明に用いるフェノール樹脂としては−111
+P−クレゾールノボラック樹脂が最適である。The azide compound having a biphenyl skeleton used in the present invention is efficiently photodecomposed by J-ray irradiation, and the generated nitrene efficiently insolubilizes the phenol resin, so that it acts as a highly sensitive negative resist. In addition, azide compounds with a biphenyl skeleton have low light absorption in the five-line (molecular extinction coefficient is 30001
/mol・cm or less), and when a resist using this azide compound as a photosensitizer (transmittance 70%/μm) is used, the cross section of the pattern due to light absorption is reduced like that of conventional azide resists (transmittance 1%/μm). No inverted trapezoidal shape was observed,
It is possible to form a fine pattern with a rectangular cross section. Furthermore, the phenol resin used in the present invention dissolves in an alkaline aqueous solution without swelling, and has excellent dry etching resistance, making it an optimal material as a polymer compound for forming fine patterns. Among phenolic resins, l
A resist using l+P-cresol novolak resin can have the largest difference in dissolution rate before and after exposure. From this, the phenolic resin used in the present invention is -111
+P-cresol novolak resin is optimal.
実施例1
nl+P−クレゾールノボラック樹脂と4,4′−ジア
ジド−3,3′−ジメトキシビフェニルを10=3の重
量比でエチルセロソルブアセテートに溶解させて、レジ
スト溶液を作成した。次に、シリコンウェハ上に反射防
止膜(日立化成製BLOC2−16−40)を形成した
基板上に上記レジスト溶液を塗布し、80℃で10分間
ベークし、膜厚0.5μmの塗膜を形成したものを露光
試料とした。この露光試料にj−線縮小投影露光装置を
用いてパターン露光した。露光後試料を2.38%水酸
化テトラメチルアンモニウム水溶液に浸漬し現像した。
現像後、パターンを電子顕微鏡で観察したところ矩形断
面形状を有する0、4μmのライン&スペースパターン
が形成されていることが確認された。
実施例2
実施例1において用いたアジド化合物の代わりに4,4
′−ジアジド−3,3′−ジメチルビフェニルを用いた
ことを除いて、実施例1と同じ方法でパターン形成を行
ったところ、0.4μmのライン&スペースパターンが
形成された。
実施例3
実施例1において用いたアジド化合物の代わりに、4,
4′−ジアジド−2,2’ 5.5’−テトラクロロ
ビフェニルを用いたことを除いて、実施例1と同じ方法
でパターン形成を行ったところ、0.4μmのライン&
スペースパターンが形成された。
実施例4
実施例1において用いたアジド化合物の代わりに4,4
′−ジアジド−3,3’ 、5.5’−テトラメチルビ
フェニルを用いたことを除いて、実施例1と同じ方法で
パターン形成を行ったところ、0.4μmのライン&ス
ペースパターンが形成された。Example 1 A resist solution was prepared by dissolving nl+P-cresol novolac resin and 4,4'-diazide-3,3'-dimethoxybiphenyl in ethyl cellosolve acetate at a weight ratio of 10=3. Next, the above resist solution was applied onto a substrate on which an antireflection film (BLOC2-16-40 manufactured by Hitachi Chemical Co., Ltd.) was formed on a silicon wafer, and baked at 80°C for 10 minutes to form a coating film with a thickness of 0.5 μm. The formed material was used as an exposed sample. This exposed sample was subjected to pattern exposure using a J-line reduction projection exposure apparatus. After exposure, the sample was immersed in a 2.38% aqueous tetramethylammonium hydroxide solution and developed. After development, the pattern was observed with an electron microscope, and it was confirmed that a 0.4 μm line and space pattern with a rectangular cross section was formed. Example 2 Instead of the azide compound used in Example 1, 4,4
Pattern formation was performed in the same manner as in Example 1 except that '-diazide-3,3'-dimethylbiphenyl was used, and a 0.4 μm line and space pattern was formed. Example 3 Instead of the azide compound used in Example 1, 4,
Pattern formation was performed in the same manner as in Example 1, except that 4'-diazide-2,2'5,5'-tetrachlorobiphenyl was used, and a 0.4 μm line &
A space pattern was formed. Example 4 Instead of the azide compound used in Example 1, 4,4
When pattern formation was performed in the same manner as in Example 1 except that '-diazide-3,3',5,5'-tetramethylbiphenyl was used, a 0.4 μm line and space pattern was formed. Ta.
本発明によれば、 i−線縮小投影露光装置を用 いて、 According to the invention, Using an i-line reduction projection exposure system There,
Claims (1)
と下記一般式で表されるビフェニル骨格を有するアジド
化合物を含む感光性組成物層を形成する工程、該感光性
組成物層にフォトマスクを介して水銀灯の輝線のひとつ
であるi−線を照射してパターンを転写する工程、パタ
ン転写後に、アルカリ性水溶液を用いて現像する工程か
らなることを特徴とするパタン形成方法。 ▲数式、化学式、表等があります▼ (ここに、R_1、R_2、R_3、R_4、R_1’
、R_2’、R_3’、R_4’は同一であっても異な
っていてもよく、それぞれ水素、水酸基、メチル基、メ
トキシ基、アジド基、ハロゲンから選ばれた置換基を表
す。)[Claims] 1. A step of forming a photosensitive composition layer containing an alkali-soluble phenol resin and an azide compound having a biphenyl skeleton represented by the following general formula on a substrate to be processed, the photosensitive composition layer A pattern forming method comprising the steps of: transferring the pattern by irradiating it with i-line, which is one of the bright lines of a mercury lamp, through a photomask; and developing the pattern using an alkaline aqueous solution after transferring the pattern. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (Here, R_1, R_2, R_3, R_4, R_1'
, R_2', R_3', and R_4' may be the same or different, and each represents a substituent selected from hydrogen, hydroxyl group, methyl group, methoxy group, azide group, and halogen. )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19299890A JPH0480757A (en) | 1990-07-23 | 1990-07-23 | Pattern forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19299890A JPH0480757A (en) | 1990-07-23 | 1990-07-23 | Pattern forming method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0480757A true JPH0480757A (en) | 1992-03-13 |
Family
ID=16300517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19299890A Pending JPH0480757A (en) | 1990-07-23 | 1990-07-23 | Pattern forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0480757A (en) |
-
1990
- 1990-07-23 JP JP19299890A patent/JPH0480757A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI416255B (en) | Photoresist compositions and method for multiple exposures with multiple layer resist systems | |
TWI417682B (en) | Method for producing a miniaturised pattern and treatment liquid for resist substrate using therewith | |
WO2005098545A1 (en) | Water-soluble resin composition and method of forming pattern therewith | |
WO2004051379A1 (en) | Rinse liquid for lithography and method for forming resist pattern using same | |
WO2001025854A1 (en) | Method for forming pattern | |
JPS5817112A (en) | Positive novolak photoresist composition and blend | |
KR20010015280A (en) | A method of forming a photoresist pattern | |
TW200304582A (en) | Negative deep ultraviolet photoresist | |
JPH0436755A (en) | Resist composition | |
JPS6313035A (en) | Pattern forming method | |
JPH0650396B2 (en) | Positive photoresist composition | |
CN103930828A (en) | Hybrid photoresist composition and pattern forming method using thereof | |
WO2008018749A1 (en) | Resin composition for forming fine patterns, method for fabricating semiconductor device using the composition and semiconductor device fabricated by the method | |
JPH02217855A (en) | Negative type electron beam resist composition | |
TW201543165A (en) | Method of fabricating semiconductor device and photosensitive material | |
JP2594112B2 (en) | Positive photosensitive resin composition | |
JPH0210348A (en) | Formation of positive type photosensitive composition and resist pattern | |
JPH0480757A (en) | Pattern forming method | |
JPH05158235A (en) | Resist composition and resist pattern forming method | |
JPH04249509A (en) | Patterning material | |
TW581931B (en) | Composition for positive type photoresist | |
JPS60107644A (en) | Developable water negative resist composition | |
EP0852341B1 (en) | Method for the pattern-processing of photosensitive resin composition | |
JP3079195B2 (en) | Developer for positive-type radiation-sensitive resist | |
JP2618947B2 (en) | Positive photoresist composition |