JPH0480619B2 - - Google Patents

Info

Publication number
JPH0480619B2
JPH0480619B2 JP59262991A JP26299184A JPH0480619B2 JP H0480619 B2 JPH0480619 B2 JP H0480619B2 JP 59262991 A JP59262991 A JP 59262991A JP 26299184 A JP26299184 A JP 26299184A JP H0480619 B2 JPH0480619 B2 JP H0480619B2
Authority
JP
Japan
Prior art keywords
frequency
shaft generator
drive
drive source
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59262991A
Other languages
Japanese (ja)
Other versions
JPS61142931A (en
Inventor
Hidetoshi Takimoto
Masatoki Utsunomya
Minoru Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP59262991A priority Critical patent/JPS61142931A/en
Publication of JPS61142931A publication Critical patent/JPS61142931A/en
Publication of JPH0480619B2 publication Critical patent/JPH0480619B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は二系統の駆動源から同時に軸駆動され
得る軸発電機の周波数制御方式に係り、特に負荷
を分担して一系統からの駆動によつて運転してい
る軸発電機を、他の系統からも駆動しようとする
とき、他の系統の駆動源のドループ特性カーブを
自動的に平行移動させて軸発電機に周波数変動が
生じないようにしたものに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a frequency control method for a shaft generator that can be driven by two drive sources simultaneously, and particularly relates to a frequency control method for a shaft generator that can be driven from one drive source by sharing the load. When trying to drive a shaft generator that is currently operating from another system, the droop characteristic curve of the drive source of the other system is automatically shifted in parallel to prevent frequency fluctuations in the shaft generator. Concerning what has been done.

[従来の技術] 二系統の駆動源から同時に駆動され得る軸発電
機にあつては、二系統で同時に駆動される前に、
まず一系統で駆動されて運転に入り、その後残り
の系統が加わつて同時駆動される場合がある。こ
の場合、軸発電機は一系統で駆動されているとき
はその駆動源の調速器によつて速度制御が行なわ
れるのであるが、二系統で同時駆動されるときは
周波数制御を統一するため、今まで働いていた一
系統の駆動源の調速器を他のモード(タービン機
関にあつては調圧モード)に切換えて速度制御を
止め、代りに追加系統の駆動源の調速器によつて
周波数制御が行なわれる。
[Prior Art] In the case of a shaft generator that can be driven simultaneously from two drive sources, before being driven simultaneously by the two systems,
First, one system is driven and begins operation, and then the remaining systems are added and may be driven simultaneously. In this case, when the shaft generator is driven by one system, the speed is controlled by the speed governor of the drive source, but when it is driven by two systems simultaneously, the frequency control is unified. , switch the speed governor of one drive source that has been working until now to another mode (pressure regulation mode for turbine engines), stop speed control, and switch to the speed governor of the drive source of the additional system instead. Therefore, frequency control is performed.

したがつて、二系統で同時駆動されるとき軸発
電機の周波数は追加系統の駆動源のドループ特性
に従つて決定される。
Therefore, when the two systems are driven simultaneously, the frequency of the shaft generator is determined according to the droop characteristic of the drive source of the additional system.

[発明が解決しようとする問題点] ところが、一系統で駆動されている軸発電機
は、すでに負荷をもつた状態になつており、その
状態で一系統から二系統駆動に切換えられると、
軸発電機のスピードドループは追加系統のドルー
プによつて制御されるため、負荷に応じた急激な
周波数の落ち込みが生じ、運転が不安定になると
いう問題があつた。
[Problems to be Solved by the Invention] However, the shaft generator that is driven by one system is already in a state where it has a load, and when it is switched from one system to two system drive in that state,
Since the speed droop of the shaft generator is controlled by the droop of the additional system, there is a problem in that the frequency suddenly drops depending on the load, making the operation unstable.

[発明の目的] 本発明は上記問題点を解消し、一系統駆動から
二系統駆動に切換えても、周波数変動を起さず安
定した運転が可能となる軸発電機の周波数制御方
式を得ようとするものである。
[Objective of the invention] The present invention solves the above problems and provides a frequency control method for a shaft generator that allows stable operation without causing frequency fluctuations even when switching from single-system drive to dual-system drive. That is.

[発明の概要] 上記目的を達成するために、本発明は追加系統
の駆動源のドループ特性カーブが、先行系統の駆
動源のドルーブ特性カーブと等しければ周波数変
動が生じないという知見のもとに、一方の駆動源
2に駆動されて運転中に、他方の駆動源4からも
同時駆動するに際して、他方の駆動源4の周波数
fを一方の駆動源2に駆動されて運転中の軸発電
機1の基準周波数Faと一致するように、他方の
駆動源4の検出周波数と基準周波数Faに漸近
する設定周波数Fの偏差に応じて他方の駆動源4
のドルーブ特性カーブを予め平行移動させるよう
に構成したものである。
[Summary of the Invention] In order to achieve the above object, the present invention is based on the knowledge that if the droop characteristic curve of the drive source of the additional system is equal to the droop characteristic curve of the drive source of the preceding system, no frequency fluctuation will occur. , while the shaft generator is being driven by one drive source 2 and is being simultaneously driven by the other drive source 4, the frequency f of the other drive source 4 is changed to the shaft generator being driven by one drive source 2 and being in operation. 1, the other drive source 4 is adjusted according to the deviation between the detection frequency of the other drive source 4 and the set frequency F that asymptotically approaches the reference frequency Fa.
The Dhruv characteristic curve is configured to be translated in advance.

[実施例] 本発明の実施例を第1図〜第3図に基づいて説
明すれば以下の通りである。
[Example] An example of the present invention will be described below based on FIGS. 1 to 3.

第1図に示す如く、1は軸発電機としての同期
発電機で、タービン機関2と主機関3の動力の一
部を利用して主機関3の回転数が変化しても一定
の軸回転数を出力する回転制御装置4との二系統
の駆動源から同時駆動されるようになつている。
軸発電機1と回転制御装置4とはクラツチ5を介
して連結されており、軸発電機1はタービン機関
2単独でも駆動されるようになつている。場合に
よつては、この軸発電機1は他の発電機6が接続
された母線に接続されて他の発電機6と並列運転
できるようになつている。
As shown in Fig. 1, 1 is a synchronous generator as a shaft generator, which uses part of the power of a turbine engine 2 and a main engine 3 to maintain constant shaft rotation even if the rotational speed of the main engine 3 changes. It is designed to be driven simultaneously from two drive sources including a rotation control device 4 that outputs a number.
The shaft generator 1 and the rotation control device 4 are connected via a clutch 5, and the shaft generator 1 can be driven by the turbine engine 2 alone. In some cases, this shaft generator 1 is connected to a bus bar to which another generator 6 is connected, so that it can be operated in parallel with the other generator 6.

ところで、上記回転制御装置4の調速器7には
回転制御装置4の出力の検出周波数と設定周波
数Fの偏差が入力され、この偏差に応じて調速器
7が回転制御装置4の出力を設定周波数Fに制御
するようになつている。
Incidentally, the deviation between the detected frequency of the output of the rotation control device 4 and the set frequency F is input to the speed governor 7 of the rotation control device 4, and the speed governor 7 adjusts the output of the rotation control device 4 according to this deviation. The frequency is controlled to a set frequency F.

上記設定周波数Fは、第2図に示す設定周波数
発生回路によつて形成される。この設定周波数発
生回路は補正周波数発生回路10、基準周波数発
生回路11、比較回路12、変動周波数発生回路
13とから構成されている。
The set frequency F is generated by a set frequency generation circuit shown in FIG. This set frequency generation circuit is composed of a correction frequency generation circuit 10, a reference frequency generation circuit 11, a comparison circuit 12, and a variable frequency generation circuit 13.

補正周波数発生回路10は補正指令信号の一次
関数回路から成り、指令信号がある間逐次その値
が単調変化する補正周波数ΔHzを発生するように
なつている。すなわち、INC増速指令がある間は
補正周波数ΔHzは逐次増加していき、DEC減速
指令がある間は逐次減少する。このINC指令及び
DEC指令は手動又はAFR(自動周波数安定器)に
よつて形成される外部指令信号Aと、自動的に形
成される内部指令信号Bとの2種類がある。
The correction frequency generating circuit 10 is composed of a linear function circuit of the correction command signal, and is designed to generate a correction frequency ΔHz whose value changes monotonically while the command signal is present. That is, while there is an INC speed increase command, the correction frequency ΔHz increases sequentially, and while there is a DEC deceleration command, it sequentially decreases. This INC directive and
There are two types of DEC commands: an external command signal A that is generated manually or by an AFR (automatic frequency stabilizer), and an internal command signal B that is automatically generated.

比較器12は、この内部指令信号Bを発生する
機能を有し、上記基準周波数発生回路11の基準
周波数Faと設定周波数Fとを比較して、Fa>F
のときはINC指令を、Fa<FのときはDEC指令
をそれぞれ出力するように構成されている。すな
わち、基準周波数Faと設定周波数Fとが一致す
るまでINC指令又はDEC指令が出力されるよう
になつている。なお、これらの指令信号は、軸発
電機1がタービン機関2による単独駆動から回転
制御装置4の駆動も加わる複合駆動に切換わると
きに形成される二系統駆動切換信号Cによつて補
正周波数発生回路10への入力がが禁止されるよ
うになつている。
The comparator 12 has a function of generating this internal command signal B, and compares the reference frequency Fa of the reference frequency generation circuit 11 with the set frequency F to find that Fa>F.
It is configured to output an INC command when Fa<F, and a DEC command when Fa<F. That is, the INC command or DEC command is output until the reference frequency Fa and the set frequency F match. These command signals are generated by a two-system drive switching signal C, which is generated when the shaft generator 1 is switched from independent drive by the turbine engine 2 to composite drive in which the rotation control device 4 is also driven. Input to the circuit 10 is prohibited.

変動周波数発生回路13は複合運転の切換時、
負荷に応じて回転制御装置4に生じる変動周波数
を予め記憶し、負荷信号Dに対応した変動周波数
yを出力するメモリ回路から成つている。
The fluctuating frequency generation circuit 13 operates when switching to combined operation.
It consists of a memory circuit that stores in advance the fluctuating frequency that occurs in the rotation control device 4 depending on the load, and outputs the fluctuating frequency y that corresponds to the load signal D.

そして、設定周波数発生回路の出力である設定
周波数Fは、基準周波数Faと、補正周波数発生
回路10の補正周波数ΔHzとの和に、変動周波数
発生回路13の変動周波数yを差し引いたもの、 すなわち F=Fa+ΔHz−y から得られる。
The set frequency F, which is the output of the set frequency generation circuit, is the sum of the reference frequency Fa and the correction frequency ΔHz of the correction frequency generation circuit 10 minus the fluctuation frequency y of the fluctuation frequency generation circuit 13, that is, F. It is obtained from =Fa+ΔHz−y.

さて、上記のような構成において、今軸発電機
1はタービン機関2によつて単独駆動されてい
て、x%の負荷をもつて他の発電機6と並列運転
状態にあるとする。この状態から回転制御装置4
からの駆動も加えて軸発電機1を複合駆動しよう
とする場合に、クラツチ5をONするに先立つて
第1図の設定周波数発生回路の電源を投入する。
すると、電源投入時はΔHz=0であるため、回転
制御装置4の調速器7の設定周波数Fは、 F=Fa−y となる。すなわち、回転制御装置4の設定周波
数Fは当初、基準周波数Fa(実施例では60Hz)よ
りも変動周波数yだけ落ちたところから出発す
る。これは現在回転している回転制御装置4の周
波数は、もともと或る変動幅を有しているため、
その動作点がどこにあるかを把握できず、したが
つて上記変動幅を脱した点から始めることによつ
て適正な制御をするためである。この意味から必
ずしもx負荷に対応した変動周波数yに決定する
必要はないが、本実施例では便宜上yを選択して
いる。
Now, in the above configuration, it is assumed that the shaft generator 1 is independently driven by the turbine engine 2 and is operated in parallel with another generator 6 with a load of x%. From this state, the rotation control device 4
When attempting to drive the shaft generator 1 in a combined manner by adding the drive from the oscilloscope, the power to the set frequency generating circuit shown in FIG. 1 is turned on before turning on the clutch 5.
Then, since ΔHz=0 when the power is turned on, the set frequency F of the speed governor 7 of the rotation control device 4 becomes F=Fa−y. That is, the set frequency F of the rotation control device 4 initially starts from a point lower than the reference frequency Fa (60 Hz in the embodiment) by the fluctuation frequency y. This is because the frequency of the currently rotating rotation control device 4 originally has a certain fluctuation range.
This is because it is not possible to know where the operating point is, and therefore proper control is performed by starting from a point outside the above fluctuation range. In this sense, it is not necessarily necessary to determine the variable frequency y corresponding to the x load, but in this embodiment, y is selected for convenience.

このように設定周波数がF=Fa−yとなるの
で、これと基準周波数Faとを比較判別する比較
回路12からはINC指令が出され、このINC指令
が補正周波数発生回路10へ入力される。INC指
令入力されている間、補正周波数発生回路10か
らの補正周波数ΔHzは、 ΔHz=ΔHz(t0) =ΔHz(t0)+ΔHz(t1) 〓 =ΔHz(t0)+ΔHz(t1) ……+ΔHz(tn) と変化する。すなわち補正周波数ΔHzは急にでは
なく逐次的に増加していくのである。このように
補正周波数ΔHzを逐次的に増加していくのは、急
激に増加した場合に発生するハンテイングや共振
を防止するためである。
Since the set frequency becomes F=Fa-y in this way, an INC command is issued from the comparator circuit 12 that compares and determines this with the reference frequency Fa, and this INC command is input to the correction frequency generation circuit 10. While the INC command is input, the correction frequency ΔHz from the correction frequency generation circuit 10 is as follows: ΔHz = ΔHz (t 0 ) = ΔHz (t 0 ) + ΔHz (t 1 ) = ΔHz (t 0 ) + ΔHz (t 1 ) ...+ΔHz(tn). In other words, the correction frequency ΔHz increases not suddenly but sequentially. The reason why the correction frequency ΔHz is increased sequentially in this way is to prevent hunting and resonance that occur when the correction frequency increases rapidly.

したがつて回転制御装置4の周波数はF=Fa
−yから徐々に増加していく。そして、ΔHz=y
となつたとき、F=FaとなつてINC指令は無く
なり、設定周波数Fは、 F=Fa となるる。これにより回転数制御装置4の調速
器7への設定周波数Fはその最終値である基準周
波数Faに固定され、したがつて回転数制御装置
4の出力周波数はFaとなる。すなわち、第3図
に示す如く、回転数制御装置4のドループ特性カ
ーブAは、自動的に平行移動してx%負荷で平行
運転している単独駆動の軸発電機1のドループ特
性カーブBと一致するに至る。
Therefore, the frequency of the rotation control device 4 is F=Fa
- It gradually increases from y. And ΔHz=y
When this happens, F=Fa, the INC command disappears, and the set frequency F becomes F=Fa. As a result, the set frequency F of the rotation speed control device 4 to the speed governor 7 is fixed to its final value, which is the reference frequency Fa, and therefore, the output frequency of the rotation speed control device 4 becomes Fa. That is, as shown in FIG. 3, the droop characteristic curve A of the rotation speed control device 4 automatically moves parallel to the droop characteristic curve B of the independently driven shaft generator 1 operating in parallel at x% load. come to a consensus.

この回転数制御装置4の周波数を最終的に基準
周波数Faに固定する作用は、Fa<Fのときに発
生するDEC指令の場合でも全く同様に働く。
The effect of finally fixing the frequency of the rotation speed control device 4 to the reference frequency Fa works in exactly the same way even in the case of a DEC command that occurs when Fa<F.

そして、回転制御装置4のドループ特性カーブ
Aが軸発電機1のそれと一致したとき、クラツチ
5をONして軸発電機1を複合駆動に切換える。
When the droop characteristic curve A of the rotation control device 4 matches that of the shaft generator 1, the clutch 5 is turned on to switch the shaft generator 1 to composite drive.

なお、複合駆動に入ると比較回路12からの内
部指令信号は禁止され、代わつて外部からの
INC/DEC指令によつて設定周波数が変えられ
る。
Note that when entering composite drive, the internal command signal from the comparator circuit 12 is prohibited, and instead, the internal command signal from the outside is used.
The set frequency can be changed by INC/DEC command.

このように、x%負荷で軸発電機1が単独駆動
中、従来のドループ特性カーブAを用いて複合駆
動に切換えると、このカーブAによつて制御され
るため軸発電機1にyHzの急激な落ち込みが生じ
るが、本実施例では複合駆動に切換える直前まで
設定周波数Fを変化して回転制御装置4のドルー
プ特性カーブを自動的に平行移動させるので、常
に設定周波数Fは基準周波数Faを確保できる。
したがつて、単独駆動から複合駆動に切換えても
軸発電機1は周波数変動を起さず、安定した運転
ができる。
In this way, when the shaft generator 1 is being driven independently at x% load, when switching to combined drive using the conventional droop characteristic curve A, the shaft generator 1 is controlled by this curve A, so that the shaft generator 1 has a sudden increase of yHz. However, in this embodiment, the droop characteristic curve of the rotation control device 4 is automatically moved in parallel by changing the set frequency F until just before switching to compound drive, so the set frequency F always maintains the reference frequency Fa. can.
Therefore, even when switching from single drive to combined drive, the shaft generator 1 does not cause frequency fluctuations and can operate stably.

また、複合駆動切換直後はBカーブにしたがつ
てドループが効き、以降は外部指令によつてBの
カーブを上下方向に平行移動できる。
Immediately after switching the composite drive, the droop is activated according to the B curve, and thereafter the B curve can be moved in parallel in the vertical direction by an external command.

[発明の効果] 以上、要するに本発明によれば、同時駆動に切
換える直前まで、追加する駆動源のドループ特性
カーブを自動的に平行移動させて先行する駆動源
のドループ特性カーブと一致させるようにしたこ
とにより、追加駆動源の設定周波数を常に基準周
波数に確保することができ、同時駆動に切換えて
も周波数変動を起さず、軸発電機を常に安定に運
転することができる。
[Effects of the Invention] In short, according to the present invention, the droop characteristic curve of the additional drive source is automatically translated in parallel until immediately before switching to simultaneous drive, so that it matches the droop characteristic curve of the preceding drive source. As a result, the set frequency of the additional drive source can always be maintained at the reference frequency, and even when switching to simultaneous drive, no frequency fluctuation occurs, and the shaft generator can always be operated stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方式を実施するための発電シス
テムの全体構成図、第2図は同じく本発明方式に
使用する設定周波数発生回路の好適一実施例を示
すブロツク図、第3図は本発明方式により得られ
る負荷・周波数特性図である。 図中、1は軸発電機、2は一方の駆動源たるタ
ービン機関、4は他方の駆動源たる回転制御装
置、は検出周波数、Fは設定周波数である。
Fig. 1 is an overall configuration diagram of a power generation system for carrying out the method of the present invention, Fig. 2 is a block diagram showing a preferred embodiment of a set frequency generation circuit similarly used in the method of the present invention, and Fig. 3 is a diagram of the present invention. It is a load/frequency characteristic diagram obtained by the method. In the figure, 1 is a shaft generator, 2 is a turbine engine that is one drive source, 4 is a rotation control device that is the other drive source, is a detection frequency, and F is a set frequency.

Claims (1)

【特許請求の範囲】[Claims] 1 二系統の駆動源から同時に軸駆動され得る軸
発電機を、一方の駆動源により駆動中に、他方の
駆動源からも同時駆動するに際して、該他方の駆
動源の設定周波数を一方の駆動源により駆動され
ている軸発電機の基準周波数と一致するように他
方の駆動源のドループ特性カーブを予め平行移動
させるようにしたことを特徴とする軸発電機の周
波数制御方式。
1 When a shaft generator that can be shaft-driven by two drive sources simultaneously is driven by one drive source and simultaneously driven by the other drive source, the setting frequency of the other drive source is set to one drive source. A frequency control method for a shaft generator, characterized in that the droop characteristic curve of the other drive source is moved in parallel in advance so as to match the reference frequency of the shaft generator being driven by the shaft generator.
JP59262991A 1984-12-14 1984-12-14 Frequency cotnrol system for axial generator Granted JPS61142931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59262991A JPS61142931A (en) 1984-12-14 1984-12-14 Frequency cotnrol system for axial generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59262991A JPS61142931A (en) 1984-12-14 1984-12-14 Frequency cotnrol system for axial generator

Publications (2)

Publication Number Publication Date
JPS61142931A JPS61142931A (en) 1986-06-30
JPH0480619B2 true JPH0480619B2 (en) 1992-12-21

Family

ID=17383378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59262991A Granted JPS61142931A (en) 1984-12-14 1984-12-14 Frequency cotnrol system for axial generator

Country Status (1)

Country Link
JP (1) JPS61142931A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9391458B2 (en) 2011-06-22 2016-07-12 Kawasaki Jukogyo Kabushiki Kaisha Control method and control system for parallel operation of different types of power generation apparatuses
JP6131274B2 (en) 2012-12-21 2017-05-17 川崎重工業株式会社 Parallel operation control method and control system between different types of power generators

Also Published As

Publication number Publication date
JPS61142931A (en) 1986-06-30

Similar Documents

Publication Publication Date Title
US5553589A (en) Variable droop engine speed control system
JPS6045295B2 (en) Gas turbine engine fuel control device
US4605885A (en) Method of controlling rotation speed of motor
JP2008231939A (en) Electronic governor for engine
US5134845A (en) Control for a gas turbine engine
JP4580952B2 (en) Engine electronic governor
JPH0480619B2 (en)
JP3235428B2 (en) Motor control device
JPH03934A (en) Propeller speed governor control device
JP2004052768A (en) Control method and device for vehicle drive unit
JPS6355343A (en) Fuel quantity controller for engine
JP3211307B2 (en) Automatic synchronous feeding device
KR940001011B1 (en) Revolution controlling apparatus for ship-engine
JPH0246782B2 (en)
JP2601926B2 (en) Multiplexed excitation controller
JPH11103598A (en) Controller for non-utility generator
JPS6245800B2 (en)
SU1234945A1 (en) Independent electric power supply system
JPS63178797A (en) Control device for variable-speed waterwheel generation system
JPS63283490A (en) Speed controller for servomotor
SU562667A1 (en) Unit load control system
JPH03245790A (en) Motor controller
JPS60180499A (en) Output controller of engine generator
JPS6357802A (en) Control device for expansion turbine
JPH0357891A (en) Fixed quantity pump control circuit