JPH0480337B2 - - Google Patents

Info

Publication number
JPH0480337B2
JPH0480337B2 JP59225537A JP22553784A JPH0480337B2 JP H0480337 B2 JPH0480337 B2 JP H0480337B2 JP 59225537 A JP59225537 A JP 59225537A JP 22553784 A JP22553784 A JP 22553784A JP H0480337 B2 JPH0480337 B2 JP H0480337B2
Authority
JP
Japan
Prior art keywords
light
optical axis
receiving section
light receiving
projector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59225537A
Other languages
Japanese (ja)
Other versions
JPS61104240A (en
Inventor
Shokichi Tokumaru
Hideo Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP22553784A priority Critical patent/JPS61104240A/en
Publication of JPS61104240A publication Critical patent/JPS61104240A/en
Publication of JPH0480337B2 publication Critical patent/JPH0480337B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/538Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke for determining atmospheric attenuation and visibility

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光透過率測定装置において投光器よ
り投光した光束を受光器の適正な部分に位置合わ
せをするための手段に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a means for aligning a light beam projected from a light projector to an appropriate portion of a light receiver in a light transmittance measuring device.

〔従来の技術〕[Conventional technology]

第2図a,bはそれぞれ従来の光透過率測定装
置における光束1と受光部2の相対位置関係を示
したものであるが、投光器より投光した光束を受
光器の受光部2に位置合わせする際、光束1はビ
ーム径が絞られていないため、受光部2より大き
く、光軸調整完了時には光束1内に受光部2が入
るような状態となつている。
Figures 2a and b respectively show the relative positional relationship between the light beam 1 and the light receiving part 2 in a conventional light transmittance measuring device. At this time, since the beam diameter of the light beam 1 is not narrowed down, it is larger than the light receiving section 2, and the light receiving section 2 is in a state in which the light receiving section 2 enters the light beam 1 when the optical axis adjustment is completed.

このため、第2図aのように光束1と受光部2
が内接する位置に光軸調整がなされてしまつた場
合、わずかな振動により両者の位置関係がずれて
しまい、第2図bに示すように光束1から受光部
2がはみ出した状態になつた場合には、受光量が
減少し、この光量の減少が測定個所の透過率の変
化として読取られてしまう問題があつた。しか
も、このずれを検出して補正する手段が特になか
つた。
Therefore, as shown in Fig. 2a, the light beam 1 and the light receiving part 2
If the optical axis is adjusted to a position where is inscribed, the positional relationship between the two will shift due to slight vibration, and the light receiving part 2 will protrude from the light beam 1 as shown in Figure 2b. However, there was a problem in that the amount of light received decreased and this decrease in the amount of light was read as a change in transmittance at the measurement location. Moreover, there was no particular means for detecting and correcting this deviation.

そこで、前記問題を解決するために、第3図及
び第4図に示す如く受光器3の筐体4内部に昇降
可能なL型反射板5と反射光束を監視する監視窓
6を設けることにより、受光器3に入る投光光束
の位置関係を筐体4の外部から容易に知り、光軸
を調整できるようにしたものが考えられた。第3
図及び4図は従来例の断面図で、第3図は光透過
率測定時の状態を、第4図は光軸調整時即ち較正
時の状態を示す。前記筐体4の上部には回転可能
な監視窓6が設けられている。該監視窓6の下部
にはカム状板7が固着されており、その端部は筐
体4に蝶番8で支えられているL型反射板5の端
部と接している。
Therefore, in order to solve the above problem, as shown in FIGS. 3 and 4, an L-shaped reflector 5 that can be raised and lowered and a monitoring window 6 for monitoring the reflected light flux are provided inside the casing 4 of the light receiver 3. , it has been considered that the positional relationship of the projected light flux entering the light receiver 3 can be easily known from outside the housing 4, and the optical axis can be adjusted. Third
3 and 4 are cross-sectional views of the conventional example, FIG. 3 shows the state at the time of light transmittance measurement, and FIG. 4 shows the state at the time of optical axis adjustment, that is, calibration. A rotatable monitoring window 6 is provided at the top of the housing 4. A cam-shaped plate 7 is fixed to the lower part of the monitoring window 6, and its end is in contact with the end of an L-shaped reflector 5 supported by a hinge 8 on the housing 4.

従つて、光軸調整時には監視窓6を回すことに
よりカム状板7を回転し、この回転により第4図
に示す如くL型反射板5は蝶番8を支点にして回
転し、一端が据付台9に接するまで下降する。こ
のとき、L型反射板5と据付台9の上面とが45度
の角度になる。ここで、予めL型反射板5の反射
面には光軸合わせマークが彫つてあり、監視窓6
を覗きながら投光器側に設けた光軸調整機構で投
光光束を前記光軸合わせマーク上で上下及び左右
に動かし、該光軸合わせマークが光束に一致する
ようにして光軸調整を行う。
Therefore, when adjusting the optical axis, the cam-shaped plate 7 is rotated by turning the monitoring window 6, and this rotation causes the L-shaped reflector 5 to rotate about the hinge 8 as shown in FIG. It descends until it touches 9. At this time, the L-shaped reflector 5 and the upper surface of the installation base 9 form an angle of 45 degrees. Here, an optical axis alignment mark is carved in advance on the reflective surface of the L-shaped reflector 5, and the monitoring window 6
The optical axis adjustment is performed by moving the emitted light beam vertically and horizontally on the optical axis alignment mark using an optical axis adjustment mechanism provided on the projector side while looking at the light beam so that the optical axis alignment mark coincides with the light beam.

〔発明が解決しようとする問題〕[Problem that the invention seeks to solve]

しかしながらこのような従来例は、監視窓から
目視により光軸合わせを行うため、投光器からの
投光光束の波長範囲が可視領域にあり、L型反射
板に投影された光束を肉眼で見ることができる場
合は、光軸合わせができるが、投光光束の波長域
が紫外や赤外の光の場合には目視で光軸合わせが
できないと言う問題点がある。
However, in such conventional examples, the optical axis alignment is performed visually from the monitoring window, so the wavelength range of the light beam projected from the projector is in the visible range, and the light beam projected on the L-shaped reflector cannot be seen with the naked eye. If possible, the optical axes can be aligned, but there is a problem in that the optical axes cannot be aligned visually if the wavelength range of the projected light beam is in the ultraviolet or infrared range.

本発明は、前記問題点を解決するためになされ
たものであり、その目的は、投光器、からの投光
光束を受光素子で確認することにより目視によら
ず容易に光軸合わせができるようにすることにあ
る。
The present invention has been made to solve the above-mentioned problems, and its purpose is to make it possible to easily align the optical axis without visual inspection by checking the luminous flux emitted from the projector using a light receiving element. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するため、本発明は、透過率測
定個所の両側に投光器と受光器とを対向配置し、
前記投光器の光源から受光器の受光部へ投光しつ
つ、前記投光器と受光器の光軸を投光器側に設け
た光軸調整機構で光軸合わせする光透過率測定装
置における光軸合わせ方法において、前記投光器
にピンホールと絞りと投光レンズ系を設け、前記
受光器にはスリツトを備えたものである。
In order to achieve this objective, the present invention arranges a light projector and a light receiver facing each other on both sides of the transmittance measurement point,
In an optical axis alignment method in a light transmittance measuring device, the optical axes of the emitter and receiver are aligned using an optical axis adjustment mechanism provided on the emitter side while emitting light from a light source of the emitter to a light receiving part of a light receiver. , the light projector is provided with a pinhole, a diaphragm, and a light projecting lens system, and the light receiver is provided with a slit.

〔作用〕[Effect]

このような構成を有する本発明は、受光器の受
光部の有効面積をその前面に配置したスリツトに
よつて規制しておき、投光器の光源からの投光光
束をその中心部の光を含む所定の径にピンホール
により制限して投光レンズ系に導き、この投光レ
ンズ系から前記投光光束を受光した受光部の出力
を前記投光器側で監視しながら光軸調整機構で前
記ピンホールにより制限した投光光束の径内に前
記受光部の有効面積が入るように調整した後、前
記ピンホールにより制限された投光光束をその中
心部の光のみを通す絞りで更に前記受光部の有効
面積と略等しい径に制限して前記投光レンズ系に
導き、この投光レンズ系から前記投光光束を受光
した受光部の出力を前記投光器側で監視しながら
前記光軸調整機構で前記絞りにより制限された投
光光束を前記受光部の有効面積に一致させること
により、投光器と受光器の光軸合わせを行う。
In the present invention having such a configuration, the effective area of the light receiving part of the light receiver is regulated by a slit placed in the front surface of the light receiver, and the projected light flux from the light source of the projector is divided into a predetermined area including the light from the center of the light receiver. The diameter of the projected light is limited by a pinhole and guided to the projecting lens system, and while the output of the light receiving section that receives the projected light flux from the projecting lens system is monitored on the projector side, the optical axis adjustment mechanism is used to guide the projecting light flux through the pinhole. After adjusting the effective area of the light-receiving part to be within the diameter of the limited emitted light beam, the effective area of the light-receiving part is further adjusted by using an aperture that passes only the light from the center of the emitted light beam limited by the pinhole. The light beam is guided to the projecting lens system with a diameter approximately equal to the area, and the optical axis adjustment mechanism adjusts the aperture while monitoring the output of the light receiving section that receives the projecting light beam from the projecting lens system. The optical axes of the projector and receiver are aligned by matching the projected light flux limited by the effective area of the light receiving section.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第5図〜
第7図に基づいて説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 5.
This will be explained based on FIG.

第1図は光軸調整時即ち較正時の状態を示す本
発明の一実施例の構成図、第5図は光軸調整前ま
たは光透過
Figure 1 is a configuration diagram of an embodiment of the present invention showing the state during optical axis adjustment, that is, during calibration, and Figure 5 is before optical axis adjustment or light transmission.

Claims (1)

【特許請求の範囲】 1 透過率測定個所の両側の投光器と受光器とを
対向配置し、前記投光器の光源から受光器の受光
部へ投光しつつ、前記投入器と受光器の光軸を投
光器側に設けた光軸調整機構で光軸合わせする光
透過率測定装置における光軸合わせ方法におい
て、 前記受光部の有効面積をその前面に配置したス
リツトによつて規制しておき、 前記光源からの投光光束をその中心部の光を含
む所定の径にピンホールにより制限して投光レン
ズ系に導き、この投光レンズ系から前記投光光束
を受光した受光部の出力を前記投光器側で監視し
ながら前記光軸調整機構で前記ピンホールにより
制限した投光光束の径内に前記受光部の有効面積
が入るように調整した後、 前記ピンホールにより制限された投光光束をそ
の中心部の光のみを通す絞りで更に前記受光部の
有効面積と略等しい径に制限して前記投光レンズ
系に導き、この投光レンズ系から前記投光光束を
受光した受光部の出力を前記投光器側で監視しな
がら前記光軸調整機構で前記絞りにより制限され
た投光光束を前記受光部の有効面積に一致させる
ことを特徴とする光透過率測定装置における光軸
合わせ方法。
[Scope of Claims] 1. A light projector and a light receiver on both sides of a transmittance measurement point are placed facing each other, and while light is emitted from the light source of the light projector to the light receiving part of the light receiver, the optical axis of the light projector and the light receiver is aligned. In an optical axis alignment method for a light transmittance measurement device in which the optical axis is aligned using an optical axis adjustment mechanism provided on the projector side, the effective area of the light receiving section is regulated by a slit arranged in front of the light receiving section, and the effective area of the light receiving section is regulated by a slit arranged in front of the light receiving section, The projected light flux is restricted by a pinhole to a predetermined diameter including the light at the center and guided to a light projecting lens system, and the output of the light receiving section that receives the projected light flux from this projecting lens system is transmitted to the projector side. After adjusting the effective area of the light-receiving section using the optical axis adjustment mechanism while monitoring with the diameter of the emitted light beam limited by the pinhole, A diaphragm that allows only the light to pass through is further limited to a diameter approximately equal to the effective area of the light receiving section, and guides it to the light projecting lens system, and the output of the light receiving section that has received the projected light flux from the light projecting lens system is An optical axis alignment method in a light transmittance measuring device, characterized in that the optical axis adjustment mechanism adjusts the emitted light flux limited by the aperture to match the effective area of the light receiving section while monitoring on the projector side.
JP22553784A 1984-10-26 1984-10-26 Alignment of optical axis in light transmissivity measuring apparatus Granted JPS61104240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22553784A JPS61104240A (en) 1984-10-26 1984-10-26 Alignment of optical axis in light transmissivity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22553784A JPS61104240A (en) 1984-10-26 1984-10-26 Alignment of optical axis in light transmissivity measuring apparatus

Publications (2)

Publication Number Publication Date
JPS61104240A JPS61104240A (en) 1986-05-22
JPH0480337B2 true JPH0480337B2 (en) 1992-12-18

Family

ID=16830844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22553784A Granted JPS61104240A (en) 1984-10-26 1984-10-26 Alignment of optical axis in light transmissivity measuring apparatus

Country Status (1)

Country Link
JP (1) JPS61104240A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4823020B2 (en) * 2006-11-01 2011-11-24 三菱重工業株式会社 Gas concentration monitoring system, fixed station and mobile station, and gas concentration measuring method
JP2012028621A (en) * 2010-07-26 2012-02-09 Tokuyama Corp Measurement device for measuring variation in transmittance of sample due to repeated laser irradiation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151551A (en) * 1981-03-10 1982-09-18 Merubo Shinshifuku Kk Automatic winder for stripe material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132846U (en) * 1982-03-01 1983-09-07 沖電気工業株式会社 Optical axis deviation detection mechanism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151551A (en) * 1981-03-10 1982-09-18 Merubo Shinshifuku Kk Automatic winder for stripe material

Also Published As

Publication number Publication date
JPS61104240A (en) 1986-05-22

Similar Documents

Publication Publication Date Title
US4282430A (en) Reflection-type photoelectric switching apparatus
EP0768542B1 (en) Optical distance measuring apparatus
US3915575A (en) Reflector arrangement
US4348108A (en) Automatic lens meter
JPH06168652A (en) Distance setting type photoelectric switch
JPH0480337B2 (en)
US6088623A (en) System and method for leveling an apparatus
JPS628520Y2 (en)
JPS6287830A (en) Apparatus for automatically calibrating sensitivity of optical measuring device
JP2560471B2 (en) Encoder with safety mechanism
JPS63145929A (en) Infrared temperature measuring apparatus
JPS57199909A (en) Distance measuring device
JP2004198244A (en) Transmissivity measuring instrument and absolute reflectivity measuring instrument
JPH0531616Y2 (en)
SU511520A1 (en) Opto-electronic device to control the angular rotation of the object
JPH03115915A (en) Laser beam displacement gauge
JP2783252B2 (en) Angle difference measuring device between two surfaces
JPH03137588A (en) Reflection type photoelectric sensor
JPH03115911A (en) Thickness measuring instrument for transparent body
JPH0355945Y2 (en)
SU1634998A1 (en) Method and device for calibration of pentagonal reflector
JPH06843Y2 (en) Reflective optical sensor
JPS6247525A (en) Radiation thermometer for fiber
SU377611A1 (en) OPTICAL CENTERING DEVICE
SU1483248A1 (en) Method for monitoring linear dimensions of part

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term