JPH0480112B2 - - Google Patents
Info
- Publication number
- JPH0480112B2 JPH0480112B2 JP8812288A JP8812288A JPH0480112B2 JP H0480112 B2 JPH0480112 B2 JP H0480112B2 JP 8812288 A JP8812288 A JP 8812288A JP 8812288 A JP8812288 A JP 8812288A JP H0480112 B2 JPH0480112 B2 JP H0480112B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- concrete
- salt
- corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 48
- 239000010959 steel Substances 0.000 claims description 48
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 16
- 239000013535 sea water Substances 0.000 claims description 16
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 10
- 229910052684 Cerium Inorganic materials 0.000 claims description 9
- 229910052746 lanthanum Inorganic materials 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 235000002639 sodium chloride Nutrition 0.000 description 34
- 150000003839 salts Chemical class 0.000 description 23
- 230000007797 corrosion Effects 0.000 description 21
- 238000005260 corrosion Methods 0.000 description 21
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 20
- 230000006866 deterioration Effects 0.000 description 18
- 230000003014 reinforcing effect Effects 0.000 description 16
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 12
- 239000011780 sodium chloride Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 229910052727 yttrium Inorganic materials 0.000 description 5
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- -1 One or two of Co Inorganic materials 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000002528 anti-freeze Effects 0.000 description 2
- 239000007798 antifreeze agent Substances 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 229910018626 Al(OH) Inorganic materials 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000008261 resistance mechanism Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Description
(産業上の利用分野)
本発明は鋼構造、コンクリート構造物の中で
も、とくに海洋環境、海浜地帯に設置されたり、
道路凍結防止剤が散布される環境に設置された
り、さらにはこれらの環境を走行する交通機器、
例えば自動車、車両等、苛酷な塩分環境で使用さ
れる鋼に関するものである。
すなわち、本発明は前述のような用途に適する
鋼を提供することを目的とするもので鋼自身の耐
海水性が良好なことから、海洋、海浜地帯に設置
される構造物の劣化防止及び之等の環境や、
NaCl,CaCl等道路凍結防止剤を散布する高速道
路を走行する自動車等交通機器の劣化防止に役立
つ耐海水鋼に係るものである。
(従来の技術)
最近、海洋、海浜地帯に設置された鋼構造建造
物、コンクリート構造物の劣化防止のために種々
の防止法が提案されたり、実施に移されている。
鋼構造物の劣化の最大の原因は海水自身による腐
食や、海塩粒子等による腐食によるものである
が、コンクリート劣化の最大の原因はコンクリー
ト壁を浸透してくる塩分によつてコンクリート中
に埋設された鉄筋が腐食し、その体積が鉄の約
2.2倍になるため、その膨張力に耐え切れなくな
つて埋設鉄筋に沿つたコンクリートに亀裂が発生
する。その亀裂が0.2mm以上になると外部の腐食
因子たる酸素や塩分、空気中の炭酸ガスがこの亀
裂を通してより容易に内部の埋設鉄筋付近に浸透
し、さらに一層鉄の腐食を助長したり、コンクリ
ートの中性化を促進してコンクリートの劣化を早
めることになる。
また、冬季、道路凍結防止剤を散布した高速道
路においては、その濃厚な塩分によつて、道路は
勿論、この道路を走行する自動車が腐食によつて
急速に劣化し、この劣化防止のために種々の防止
法が実施されているが、劣化を完全に停止するに
は至つていない。
さて、これらの中でもコンクリートの塩害劣化
に関しては最近特に大きくクローズアツプされて
いるのでその劣化防止に関する従来技術を以下に
記す。
本発明者らはこのようなコンクリートの劣化を
防止するために鉄筋自体の化学組成を制御し、鉄
筋自体の耐塩性を向上する研究を実施し、その成
果として耐塩性を著しく向上したコンクリート用
鉄筋(特開昭57−48054号公報、特開昭59−44457
号公報)を開発し、これらの内容は既に他の各方
面でも公表されている。(例えば“OFFSHORE
GOTEBORG'81”Paper No.42Goteborg
SWEDEN1981年、“セメントコンクリート”No.
434(1983)P.23/31、“コロージヨン オブ ラ
インフオースメント インコンクリート コンス
トラクシヨン(Corrosionof Reinforcement in
Concrete Construction)”P419 1983年、“建築
の技術執行”1985年、No.229号1月号P155/164、
彰国社)。
又、鉄筋自体の耐塩性向上に寄与する鉄筋の鋼
成分の初期の段階で耐塩機構についても、これら
の公表論文の中に詳細に記載されている。
(発明が解決しようとする課題)
本発明は従来の本発明者等の開発を軸にして、
最近、とくに問題となつてきた海洋環境、海浜地
帯、道路凍結防止剤散布の高速道路における鋼構
造物、自動車等交通機器の腐食劣化と、鋼材を埋
設したコンクリート構造物の劣化を完全に停止す
ることにある。この中でもとくに最近問題となつ
ているコンクリートの塩害劣化防止について記す
ことにする。
本発明は従来の耐塩性コンクリート鉄筋の開発
を軸にして最近、とくに問題となつてきたコンク
リート壁を浸透してくる海塩粒子や海水飛沫等の
フリーなCl-の状態で存在する塩分による鉄筋の
腐食とそれに伴うコンクリートの亀裂発生及び劣
化を防止することを目的とするものである。
現在、各方面で問題となつている10年以上経過
したコンクリート構造物の埋設鉄筋近傍のフリー
塩分は厳しい海洋環境ではNaCl換算で1.0%にも
達して鉄筋の著しい腐食とそれに伴うコンクリー
トの亀裂発生、生長をひき起こしている。したが
つてこのような高濃度の塩分でも埋設鉄筋棒鋼の
腐食が完全に停止し、コンクリートの亀裂発生を
停止することが望ましい。
(課題を解決するための手段)
本発明の前記の目的は下記のとおりの構成の鋼
を提供することによつて達成される。
(1) C;1.0%以下、Si;0.25%以下、Mn;2.0%
以下、Al;7.0〜20.0%、P;0.015%以下、
S;0.005%以下、Cr;0.1〜5.5%およびCe,
La,Y等の希土類元素を単独ないし複合して
0.01〜0.5%含有し、残部鉄および不可避的不
純物からなる耐海水鋼。
(2) C;1.0%以下、Si;0.25%以下、Mn;2.0%
以下、Al;7.0〜20.0%、P;0.015%以下、
S;0.005%以下、Cr;0.1〜5.5%およびCe,
La,Y等の希土類元素を単独ないし複合して
0.01〜0.5%含有し、さらにTi,V,Nb,W,
Co,Mo,Bの1種又は2種を、B以外の元素
では合計で0.01〜0.5%、Bは0.0001〜0.005%
含有し、残部鉄および不可避的不純物からなる
耐海水鋼。
(3) C;1.0%以下、Si;0.25%以下、Mn;2.0%
以下、Al;7.0〜20.0%、P;0.015%以下、
S;0.005%以下、Cr;0.1〜5.5%およびCe,
La,Y等の希土類元素を単独ないし複合して
0.01〜0.5%含有し、さらにCu,Niの1種又は
2種を0.1〜5.5%含有し、残部鉄および不可避
的不純物からなる耐海水鋼。
(4) C;1.0%以下、Si;0.25%以下、Mn;2.0%
以下、Al;7.0〜20.0%、P;0.015%以下、
S;0.005%以下、Cr;0.1〜5.5%およびCe,
La,Y等の希土類元素を単独ないし複合して
0.01〜0.5%含有し、さらにTi,V,Nb,W,
Co,Mo,Bの1種又は2種を、B以外の元素
では合計で0.01〜0.5%、Bは0.0001〜0.005%
含有し、さらにCu,Niの1種又は2種を0.1〜
5.5%含有し、残部鉄および不可避的不純物か
らなる耐海水鋼。
本発明の最大の特徴は、鋼中にAlを7.0〜20.0
%と多量に含有させ、さらにCrを0.1〜5.5%と多
量に含有させて高濃度の塩分に曝される環境で強
力な不働態被膜を生成させ、発錆を殆んど皆無に
し、鋼の腐食を完全に停止することにある。さら
に、これらの鋼を埋設したコンクリートが高濃度
の塩分に曝されてもコンクリート中の埋設鉄筋に
強力な不働態被膜を生成させ、発錆を殆んど皆無
にし、コンクリートの劣化を完全に防止させるこ
とにある。すなわち、従来の発明の如く錆の生長
を抑制するという思想ではなく、上記のような高
濃度の塩分でも錆の発生を皆無とするかないしは
抑制するようにしたものである。この原因につい
ては現在、検討中であり、明瞭なことは判明しな
いが、本発明による合金から溶け出したAl3+が
Cl-と反応して生成したAlCl3が水中のOH-と反
応して直ちに極めて安定なAl(OH)3に変化し、
これが生長し腐食因子を遮断することにあると推
定される。
以下に本発明における各成分の限定理由を説明
する。
C量を1.0%以下に限定した理由はC量が1.0%
を超えると脆化を惹き起こすためである。又、
Mn量を2.0%以下に限定した理由は2.0%を超え
ると脆化を惹き起こすためで、好ましい範囲は
0.8%以下である。Si量を0.25%以下とした理由は
Si量が0.25%を超えると鋼中のセメンタイトのグ
ラフアイト化を著るしく促進し加工性が劣化する
ためである。一般にSi量を下げれば下げるほと錆
発生を低減させるのでSi量の低い方が望ましい。
最も望ましい範囲はSi量0.05%未満である。
Alは本発明のカギを握る重要な元素で、とく
に極めて高濃度の塩分でも錆発生を抑制する効果
がある。この効果はAl量7.0%未満では期待でき
ず、20.0%超では経済的に不利になるのみならず
金属間化合物の制御困難のため脆化する場合があ
る。最も好ましい範囲はAl量8.0%以上18%以下
の範囲である。
Pを0.015%以下とした理由は、P0.015%超で
はコンクリートのようなアルカリ性雰囲気で錆生
成を抑制する効果がなく、むしろ助長する傾向が
あるためである。
Cr量を0.1%以上とした理由は、Al量が7.0%以
上の場合、耐海水性が飛躍的に向上するためであ
るが、5.5%を超えると逆に脆化する場合が認め
られたのでCr量を0.1〜5.5%とした。最も好まし
い範囲は2.0〜3.0%の範囲である。又S量を0.005
%以下と限定した理由は、錆の発生起源である
MnS量を減らすことにあり、このS量低下のた
めに脱硫剤として使用されるCaもしくはCa化合
物によりMnSが(Mn,Ca)S等に変化すること
による耐食性向上効果も期待できる。また鋼中の
S量を低下するために上記のような操業を行なう
ことは常識となつている。
Ce,La,Y等の希土類元素の単独ないし複合
添加の最大の狙いは鋼中の脱硫によりS量を著し
く低減させることにあるが同時にMn量が高い場
合でも残存する硫化物が完全なαMnSになること
を避け希土類元素を含む硫化物、オキシ硫化物に
変化させてその化学的性状を変化させ耐塩性が向
上することも期待して添加したものである。下限
は必要最小限の含有量であり、上限はこれらの化
合物の性状を著しく変化させるために規定したも
ので0.01〜0.5%の範囲とした。なおこの際脱硫
を促進するため、予め、ないし同時にCa化合物
を溶鋼に添加するため、Caが0.0002%以下程度共
存することが多い。
又、本発明においては必要に応じてTi,V,
Nb,W,Co,Mo,Bなどを添加するが、鉄筋
の強度、靱性向上のための公知の元素として添加
するもので、1種又は2種を選択して添加し、B
以外の元素では合計で0.01〜0.5%の添加量、B
は0.0001〜0.005%の添加量とするが、上記の目
的としてはすでに一般によく知られているもので
ある。これらの添加元素は類似の添加効果を示す
ことが多いので単独添加あるいは通常2種を併せ
て添加することで目的を達することができる。
又、必要に応じてコンクリートに埋設されるま
での耐候性向上のためにCu,Niの1種又は2種
を0.1〜5.5%添加する。
なお必要に応じて例えばネジ付き鉄筋などで快
削性が要求される場合には、Pbを0.01〜0.5%添
加することもできる。
本発明に従い前記の化学成分で構成された鋼
は、転炉、電気炉等で溶製され、次いで造塊、分
塊の工程を経るか、あるいは連続鋳造後、圧延さ
れた後に、必要に応じて焼入れ、焼戻し、或いは
焼準等の熱処理が施されたり、パテンテイング等
の熱処理が施され、線引きされて使用に供され
る。最終製品としては鋼管、H型鋼、鋼矢板、鉄
筋棒鋼、ワイヤー、鋼板等の形状で供給され、必
要に応じて亜鉛メツキ、有機被覆を施すこともで
きる。
(実施例)
実施例 1
表1に記載した成分の鋼を真空溶解炉で溶製
し、造塊、分塊後、熱間圧延した鋼と従来鋼から
なる鋼との成分及び腐食試験結果を示した。
準備した鋼板の中央部より幅25mm×長さ60mm×
厚さ2mmの試片を採取し、機械研削して表面を研
磨した。
他方、海浜地帯、海水中での鋼の腐食を実験室
で促進ないし再現する環境として人工海水を準備
した。
しかる後、前記のように表面研削し、側面と裏
面をシリコンレジンで被覆した試片を脱脂後、乾
燥し、第1図に示すようにエナメル線を接続し、
炭素繊維束と共に上記人工海水中に浸漬した。す
なわち、このように炭素繊維束と鉄筋試片をエナ
メル線で接続し、両材料の間に電池を形成させて
3日間保持し、鋼表面の発錆状況を観察した。そ
の結果を表1に示す。なお、試片表面の裏面、側
面、液にふれるエナメル線はすべてシリコンレジ
ンでシールした。第1図は上述の腐食試験の説明
図で容器1に入つた人工海水3中に炭素繊維束と
試片を浸漬し、両者をエナメル線4で接続した。
図中の5は比較例である従来鋼の3日間試験後の
表面状態を表すもので、斜線部分が発錆したこと
を示している。
つぎに又、コンクリート中の埋設鉄筋の塩分に
よる腐食を促進ないし再現するために、コンクリ
ートの主成分であるCaOを3.6%NaCl水溶液中に
溶解させてPH12のCa(OH)2+NaCl水溶液を準備
した。
しかる後、前記のように表面研削し、側面と裏
面をシリコンレジンで被覆した試片を脱脂後、乾
燥し、直ちに上記のCa(OH)2+3.6%NaCl水溶液
中に浸漬した。なお試験中は液の表面を流動パラ
フインでシールし、3日毎に液を置換して20日間
連続浸漬し、錆の発生状況を観察した。これらの
結果を表1に示す。
実施例 2
表1の成分からなる熱延鋼板の表面を研削後、
海浜地帯に1年間曝露し、曝露後酸洗し、腐食減
量を求め腐食速度を算出した。
又、NaClを1.0%含んだ砂、ポルトランドセメ
ント、水、砂利からなるコンクリートモルタルに
表1の成分からなる熱延鉄筋(9mmφ)を埋め込
み、28日間常温養生した後、海浜地帯に1年間曝
露した。
なお、コンクリートの水セメント比は0.60、カ
ブリ厚さは2cmとした。
1年間曝露後コンクリートを破砕して鉄筋の発
錆状況を調べた。これらの調査結果を表1に示す
表1の結果から本発明の鋼はコンクリート中の
塩分が砂中NaCl換算で1.0%の高濃度、水中で3.6
%NaClの高濃度でも錆発生が皆無であることが
明瞭に認められ、錆発生、錆生長に伴なうコンク
リートの劣化を完全に停止できることが判つた。
(Industrial Application Field) The present invention is applicable to steel structures and concrete structures, particularly those installed in marine environments and coastal areas.
Transportation equipment that is installed in environments where road antifreeze is sprayed, or that travels in these environments,
For example, it relates to steel used in harsh salt environments such as automobiles and vehicles. That is, the purpose of the present invention is to provide a steel suitable for the above-mentioned uses, and since the steel itself has good seawater resistance, it can be used to prevent deterioration of structures installed in oceans and coastal areas. environment such as
This relates to seawater-resistant steel that is useful for preventing deterioration of transportation equipment such as automobiles that run on expressways that are sprayed with road antifreeze agents such as NaCl and CaCl. (Prior Art) Recently, various prevention methods have been proposed and put into practice to prevent deterioration of steel structures and concrete structures installed in oceans and coastal areas.
The biggest cause of deterioration in steel structures is corrosion caused by seawater itself and corrosion by sea salt particles, but the biggest cause of concrete deterioration is corrosion caused by salt penetrating through concrete walls. The reinforced steel corrodes, and its volume is approximately the same as that of steel.
Since the expansion force increases by 2.2 times, the concrete along the buried reinforcing bars can no longer withstand the expansion force and cracks occur. If the crack is 0.2 mm or more, external corrosion factors such as oxygen, salt, and carbon dioxide in the air will more easily penetrate through the crack to the area around the buried reinforcing steel, further promoting corrosion of the steel or damaging the concrete. This will promote carbonation and accelerate the deterioration of concrete. In addition, in winter, on expressways where road antifreeze has been sprayed, the rich salt causes rapid deterioration of not only the roads but also the cars traveling on these roads due to corrosion, and measures are taken to prevent this deterioration. Although various prevention methods have been implemented, it has not yet been possible to completely stop the deterioration. Now, among these, the deterioration of concrete due to salt damage has recently received a lot of attention, so the conventional techniques for preventing this deterioration will be described below. In order to prevent such deterioration of concrete, the present inventors conducted research to improve the salt resistance of the reinforcing bars themselves by controlling the chemical composition of the reinforcing bars themselves, and as a result of their research, they developed reinforcing bars for concrete with significantly improved salt resistance. (Unexamined Japanese Patent Publication No. 57-48054, Unexamined Japanese Patent Publication No. 59-44457
The contents have already been published in various other areas. (For example, “OFFSHORE
GOTEBORG'81”Paper No.42Goteborg
SWEDEN1981, “Cement Concrete” No.
434 (1983) P.23/31, “Corrosion of Reinforcement in Concrete Construction”
Concrete Construction)” P419 1983, “Architectural Technical Execution” 1985, No. 229, January issue P155/164,
Shokokusha). In addition, the salt resistance mechanism of the steel components of reinforcing bars at an early stage, which contributes to improving the salt resistance of reinforcing bars themselves, is also described in detail in these published papers. (Problem to be solved by the invention) The present invention is based on the conventional development by the inventors,
Completely stop the corrosion deterioration of steel structures, automobiles, and other transportation equipment in the marine environment, coastal areas, and highways sprayed with antifreeze agents, which have recently become a particular problem, as well as the deterioration of concrete structures with buried steel materials. There is a particular thing. Among these, I would like to focus on prevention of salt damage deterioration of concrete, which has recently become a problem. The present invention focuses on the development of conventional salt-resistant concrete reinforcing bars, and the present invention focuses on reinforcing bars made of salt that exists in a free Cl - state such as sea salt particles and seawater splashes that penetrate concrete walls, which has recently become a particular problem. The purpose is to prevent corrosion of concrete and the accompanying cracking and deterioration of concrete. Currently, free salt near the buried reinforcing bars of concrete structures that are more than 10 years old, which is a problem in various fields, can reach up to 1.0% in terms of NaCl in the harsh marine environment, leading to severe corrosion of the reinforcing bars and resulting cracks in the concrete. , causing growth. Therefore, it is desirable to completely stop the corrosion of the buried reinforcing steel bars even with such high concentrations of salt, and to stop the occurrence of cracks in the concrete. (Means for Solving the Problems) The above objects of the present invention are achieved by providing a steel having the following structure. (1) C: 1.0% or less, Si: 0.25% or less, Mn: 2.0%
Below, Al: 7.0 to 20.0%, P: 0.015% or less,
S; 0.005% or less, Cr; 0.1 to 5.5% and Ce,
Rare earth elements such as La and Y are used singly or in combination.
Seawater resistant steel containing 0.01-0.5%, with the balance consisting of iron and unavoidable impurities. (2) C: 1.0% or less, Si: 0.25% or less, Mn: 2.0%
Below, Al: 7.0 to 20.0%, P: 0.015% or less,
S; 0.005% or less, Cr; 0.1 to 5.5% and Ce,
Rare earth elements such as La and Y are used singly or in combination.
Contains 0.01 to 0.5%, and further contains Ti, V, Nb, W,
One or two of Co, Mo, and B, with a total of 0.01 to 0.5% for elements other than B, and 0.0001 to 0.005% for B.
Seawater-resistant steel with the remainder iron and unavoidable impurities. (3) C: 1.0% or less, Si: 0.25% or less, Mn: 2.0%
Below, Al: 7.0 to 20.0%, P: 0.015% or less,
S; 0.005% or less, Cr; 0.1 to 5.5% and Ce,
Rare earth elements such as La and Y are used singly or in combination.
A seawater-resistant steel containing 0.01 to 0.5%, and further containing 0.1 to 5.5% of one or both of Cu and Ni, with the balance being iron and inevitable impurities. (4) C: 1.0% or less, Si: 0.25% or less, Mn: 2.0%
Below, Al: 7.0 to 20.0%, P: 0.015% or less,
S; 0.005% or less, Cr; 0.1 to 5.5% and Ce,
Rare earth elements such as La and Y are used singly or in combination.
Contains 0.01 to 0.5%, and further contains Ti, V, Nb, W,
One or two of Co, Mo, and B, with a total of 0.01 to 0.5% for elements other than B, and 0.0001 to 0.005% for B.
Contains 0.1 to 0.1 or more of one or both of Cu and Ni.
Seawater resistant steel containing 5.5%, with the remainder consisting of iron and unavoidable impurities. The greatest feature of the present invention is that Al content in the steel is 7.0 to 20.0.
%, and further contains a large amount of Cr (0.1 to 5.5%) to form a strong passive film in environments exposed to high concentrations of salt, almost eliminating rusting, and improving the quality of steel. The goal is to completely stop corrosion. Furthermore, even if the concrete in which these steels are buried is exposed to high concentrations of salt, the buried reinforcing steel in the concrete forms a strong passive film, which almost eliminates rusting and completely prevents concrete deterioration. It's about letting people know. That is, the idea is not to suppress the growth of rust as in conventional inventions, but to eliminate or suppress the generation of rust even in the presence of high concentrations of salt as described above. The cause of this is currently under investigation and is not clear, but it is believed that Al 3+ melted from the alloy of the present invention.
AlCl 3 produced by reacting with Cl - reacts with OH - in water and immediately changes to extremely stable Al(OH) 3 .
It is presumed that this is due to growth and blocking of corrosion factors. The reasons for limiting each component in the present invention will be explained below. The reason for limiting the C content to 1.0% or less is that the C content is 1.0%.
This is because exceeding this value causes embrittlement. or,
The reason why the Mn content is limited to 2.0% or less is that exceeding 2.0% causes embrittlement, so the preferred range is
It is 0.8% or less. The reason why the amount of Si was set to 0.25% or less is
This is because if the amount of Si exceeds 0.25%, graphitization of cementite in the steel is significantly promoted and workability deteriorates. In general, the lower the amount of Si, the less rust occurs, so a lower amount of Si is desirable.
The most desirable range is a Si content of less than 0.05%. Al is an important element that holds the key to the present invention, and is particularly effective in suppressing rust formation even at extremely high concentrations of salt. This effect cannot be expected if the Al content is less than 7.0%, and if it exceeds 20.0%, it may not only be economically disadvantageous but also cause embrittlement due to difficulty in controlling intermetallic compounds. The most preferable range is an Al content of 8.0% or more and 18% or less. The reason why P is set to be 0.015% or less is that P exceeding 0.015% has no effect of suppressing rust formation in an alkaline atmosphere such as concrete, but rather tends to accelerate it. The reason for setting the Cr content to 0.1% or more is that when the Al content is 7.0% or more, the seawater resistance improves dramatically, but when it exceeds 5.5%, it has been observed that embrittlement may occur. The amount of Cr was set to 0.1 to 5.5%. The most preferred range is 2.0-3.0%. Also, the amount of S is 0.005
The reason for limiting it to % or less is the origin of rust.
The aim is to reduce the amount of MnS, and to reduce the amount of S, it is expected that the corrosion resistance will be improved by converting MnS into (Mn, Ca)S etc. using Ca or a Ca compound used as a desulfurizing agent. Moreover, it is common knowledge to carry out the above-mentioned operation in order to reduce the amount of S in steel. The main aim of adding rare earth elements such as Ce, La, Y, etc. singly or in combination is to significantly reduce the amount of S through desulfurization in the steel, but at the same time, even when the amount of Mn is high, remaining sulfides are converted to complete αMnS. It was added in the hope that it would avoid this and change its chemical properties into sulfides and oxysulfides containing rare earth elements, thereby improving salt resistance. The lower limit is the minimum necessary content, and the upper limit is defined to significantly change the properties of these compounds, and is in the range of 0.01 to 0.5%. At this time, in order to promote desulfurization, a Ca compound is added to the molten steel in advance or at the same time, so Ca often coexists at about 0.0002% or less. In addition, in the present invention, Ti, V,
Nb, W, Co, Mo, B, etc. are added as well-known elements to improve the strength and toughness of reinforcing bars, and one or two types are selected and added.
Addition amount of 0.01 to 0.5% in total for other elements, B
is added in an amount of 0.0001 to 0.005%, which is already generally well known for the above purpose. Since these additive elements often exhibit similar addition effects, the purpose can be achieved by adding them singly or usually in combination. Further, if necessary, 0.1 to 5.5% of one or both of Cu and Ni may be added to improve weather resistance before being buried in concrete. If necessary, for example, when free machinability is required for threaded reinforcing bars, 0.01 to 0.5% of Pb can be added. According to the present invention, the steel composed of the above chemical components is melted in a converter, electric furnace, etc., and then subjected to the steps of ingot making and blooming, or after continuous casting and rolling, as required. The wire is then subjected to heat treatment such as quenching, tempering, or normalizing, or heat treatment such as patenting, and is then drawn into wire and used. The final products are supplied in the form of steel pipes, H-shaped steel, steel sheet piles, reinforced steel bars, wires, steel plates, etc., and can be galvanized or coated with organic coatings as required. (Example) Example 1 Steel with the components listed in Table 1 was melted in a vacuum melting furnace, and after ingot formation and blooming, the composition and corrosion test results of hot-rolled steel and conventional steel were compared. Indicated. Width 25mm x length 60mm x from the center of the prepared steel plate
A specimen with a thickness of 2 mm was taken, and the surface was polished by mechanical grinding. On the other hand, artificial seawater was prepared as an environment to promote or reproduce the corrosion of steel in seashore areas and seawater in the laboratory. After that, the surface of the sample was ground as described above, the side and back surfaces were coated with silicone resin, and after degreasing and drying, an enameled wire was connected as shown in Fig. 1.
It was immersed together with the carbon fiber bundle in the above artificial seawater. That is, a carbon fiber bundle and a reinforcing bar specimen were connected with an enameled wire in this way, a battery was formed between the two materials, and the battery was maintained for 3 days to observe the state of rust on the steel surface. The results are shown in Table 1. The back and side surfaces of the specimen surface and the enameled wires that came into contact with the liquid were all sealed with silicone resin. FIG. 1 is an explanatory diagram of the above-mentioned corrosion test, in which a carbon fiber bundle and a specimen were immersed in artificial seawater 3 in a container 1, and both were connected with an enameled wire 4.
5 in the figure represents the surface condition of the conventional steel as a comparative example after the 3-day test, and the shaded area indicates that rust has developed. Next, in order to promote or reproduce the salt-induced corrosion of buried reinforcing bars in concrete, CaO, the main component of concrete, was dissolved in a 3.6% NaCl aqueous solution to prepare a Ca(OH) 2 +NaCl aqueous solution with a pH of 12. . Thereafter, the surface of the specimen was ground as described above, and the side and back surfaces were coated with silicone resin. The specimen was degreased, dried, and immediately immersed in the above Ca(OH) 2 +3.6% NaCl aqueous solution. During the test, the surface of the liquid was sealed with liquid paraffin, the liquid was replaced every 3 days, and the samples were immersed continuously for 20 days to observe the occurrence of rust. These results are shown in Table 1. Example 2 After grinding the surface of a hot rolled steel plate consisting of the ingredients shown in Table 1,
It was exposed to a seashore area for one year, and after exposure, it was pickled and the corrosion loss was determined to calculate the corrosion rate. In addition, hot-rolled reinforcing bars (9 mmφ) made of the ingredients shown in Table 1 were embedded in a concrete mortar made of sand containing 1.0% NaCl, Portland cement, water, and gravel, and after curing at room temperature for 28 days, they were exposed to a seashore area for 1 year. . The water-cement ratio of the concrete was 0.60, and the fog thickness was 2 cm. After one year of exposure, the concrete was crushed and the rusting status of the reinforcing bars was investigated. The results of these investigations are shown in Table 1. The results of Table 1 show that the steel of the present invention has a high concentration of salt in concrete of 1.0% in terms of NaCl in sand, and 3.6% in water.
It was clearly observed that no rust occurred even at high concentrations of %NaCl, and it was found that the deterioration of concrete caused by rust occurrence and rust growth could be completely stopped.
【表】【table】
【表】【table】
【表】
(発明の効果)
本発明は塩害に曝される鋼材並びに鋼材埋設の
コンクリート構造物の耐久性を維持するのに飛躍
的に有効な鋼材、コンクリート用鋼材として役立
つものであり、海洋環境、道路凍結防止剤散布の
環境等、厳しい塩害に曝される環境で広範囲の用
途に使用できる。[Table] (Effects of the invention) The present invention is useful as a steel material and concrete steel material that is extremely effective in maintaining the durability of steel materials exposed to salt damage and concrete structures buried in steel materials, and is useful in the marine environment. It can be used in a wide range of applications in environments exposed to severe salt damage, such as road deicing agent spraying environments.
第1図a,bは本発明における腐食試験の説明
図である。
1……容器、2……炭素繊維束、3……0.1%
NaClを含有したPH12のCa(OH)2水溶液、4……
エナメル線、5……従来の普通鋼試片、6……本
発明実施例試片。
FIGS. 1a and 1b are explanatory diagrams of a corrosion test in the present invention. 1... Container, 2... Carbon fiber bundle, 3... 0.1%
Ca(OH) 2 aqueous solution of PH12 containing NaCl, 4...
Enameled wire, 5...Conventional ordinary steel specimen, 6...Example specimen of the present invention.
Claims (1)
以下、Al;7.0〜20.0%、P;0.015%以下、S;
0.005%以下、Cr;0.1〜5.5%およびCe,La,Y
等の希土類元素を単独ないし複合して0.01〜0.5
%含有し、残部鉄および不可避的不純物からなる
耐海水鋼。 2 C;1.0%以下、Si;0.25%以下、Mn;2.0%
以下、Al;7.0〜20.0%、P;0.015%以下、S;
0.005%以下、Cr;0.1〜5.5%およびCe,La,Y
等の希土類元素を単独ないし複合して0.01〜0.5
%含有し、さらにTi,V,Nb,W,Co,Mo,
Bの1種又は2種を、B以外の元素では合計で
0.01〜0.5%、Bは0.0001〜0.005%含有し、残部
鉄および不可避的不純物からなる耐海水鋼。 3 C;1.0%以下、Si;0.25%以下、Mn;2.0%
以下、Al;7.0〜20.0%、P;0.015%以下、S;
0.005%以下、Cr;0.1〜5.5%およびCe,La,Y
等の希土類元素を単独ないし複合して0.01〜0.5
%含有し、さらにCu,Niの1種又は2種を0.1〜
5.5%含有し、残部鉄および不可避的不純物から
なる耐海水鋼。 4 C;1.0%以下、Si;0.25%以下、Mn;2.0%
以下、Al;7.0〜20.0%、P;0.015%以下、S;
0.005%以下、Cr;0.1〜5.5%およびCe,La,Y
等の希土類元素を単独ないし複合して0.01〜0.5
%含有し、さらにTi,V,Nb,W,Co,Mo,
Bの1種又は2種を、B以外の元素では合計で
0.01〜0.5%、Bは0.0001〜0.005%含有し、さら
にCu,Niの1種又は2種を0.1〜5.5%含有し、残
部鉄および不可避的不純物からなる耐海水鋼。[Claims] 1 C: 1.0% or less, Si: 0.25% or less, Mn: 2.0%
Below, Al; 7.0 to 20.0%, P; 0.015% or less, S;
0.005% or less, Cr; 0.1-5.5% and Ce, La, Y
Rare earth elements such as 0.01 to 0.5 alone or in combination
%, with the remainder consisting of iron and unavoidable impurities. 2 C: 1.0% or less, Si: 0.25% or less, Mn: 2.0%
Below, Al; 7.0 to 20.0%, P; 0.015% or less, S;
0.005% or less, Cr; 0.1-5.5% and Ce, La, Y
Rare earth elements such as 0.01 to 0.5 alone or in combination
%, and further contains Ti, V, Nb, W, Co, Mo,
One or two types of B, in total for elements other than B
Seawater-resistant steel containing 0.01 to 0.5%, B 0.0001 to 0.005%, and the balance consisting of iron and inevitable impurities. 3 C: 1.0% or less, Si: 0.25% or less, Mn: 2.0%
Below, Al; 7.0 to 20.0%, P; 0.015% or less, S;
0.005% or less, Cr; 0.1-5.5% and Ce, La, Y
Rare earth elements such as 0.01 to 0.5 alone or in combination
%, and further contains one or two of Cu and Ni from 0.1 to
Seawater resistant steel containing 5.5%, with the remainder consisting of iron and unavoidable impurities. 4 C: 1.0% or less, Si: 0.25% or less, Mn: 2.0%
Below, Al; 7.0 to 20.0%, P; 0.015% or less, S;
0.005% or less, Cr; 0.1-5.5% and Ce, La, Y
Rare earth elements such as 0.01 to 0.5 alone or in combination
%, and further contains Ti, V, Nb, W, Co, Mo,
One or two types of B, in total for elements other than B
A seawater-resistant steel containing 0.01 to 0.5% of B, 0.0001 to 0.005% of B, and 0.1 to 5.5% of one or both of Cu and Ni, with the balance being iron and inevitable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8812288A JPS6479346A (en) | 1987-06-11 | 1988-04-12 | Sea-water-resisting steel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14570787 | 1987-06-11 | ||
JP8812288A JPS6479346A (en) | 1987-06-11 | 1988-04-12 | Sea-water-resisting steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6479346A JPS6479346A (en) | 1989-03-24 |
JPH0480112B2 true JPH0480112B2 (en) | 1992-12-17 |
Family
ID=26429565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8812288A Granted JPS6479346A (en) | 1987-06-11 | 1988-04-12 | Sea-water-resisting steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6479346A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105603307A (en) * | 2016-02-01 | 2016-05-25 | 东莞品派实业投资有限公司 | Aluminum alloy for automobile outer cover part and preparation method thereof |
CN105734435A (en) * | 2016-04-20 | 2016-07-06 | 苏州市相城区明达复合材料厂 | Durable alloy steel for milling machine |
-
1988
- 1988-04-12 JP JP8812288A patent/JPS6479346A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6479346A (en) | 1989-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4844197B2 (en) | Manufacturing method of steel material with excellent weather resistance and paint peeling resistance | |
JP5163310B2 (en) | Method for producing steel material excellent in corrosion resistance and toughness in Z direction | |
JP2006118011A (en) | Steel having excellent seaside weather resistance and structure | |
JP2009179882A (en) | Steel having excellent seaside weather resistance and structure | |
US4836981A (en) | Concrete reinforcing steel bar or wire | |
JP2004068098A (en) | Steel showing excellent machinability and wet corrosion resistance | |
JPH0480112B2 (en) | ||
US4844865A (en) | Seawater-corrosion-resistant non-magnetic steel materials | |
US4861548A (en) | Seawater-corrosion-resistant non-magnetic steel materials | |
JPH02138440A (en) | Seawater corrosion resisting steel excellent in rust resistance | |
JPH09263886A (en) | Concrete reinforcing steel product | |
JP3367608B2 (en) | Weather resistant steel | |
JPH02138441A (en) | Seawater corrosion resisting steel improved in rust resistance | |
JPS6311422B2 (en) | ||
JPS63149355A (en) | Seawater resistant steel material | |
JPH0430464B2 (en) | ||
JPS62199748A (en) | Steel bar for reinforcing bar seawater resistant | |
JPH06100991A (en) | Seawater corrosion resisting reinforcing bar | |
JP2745066B2 (en) | Salt rebar for concrete deterioration prevention | |
JPH0372149B2 (en) | ||
JPH06100992A (en) | Seawater corrosion resisting non-magnetic material | |
JPS6017060A (en) | Steel fiber for reinforcing concrete or mortar | |
JPH01201440A (en) | Seawater corrosion-resistant nonmagnetic steel material | |
JPS62297434A (en) | Nonmagnetic steel having resistance to sea-water corrosion | |
JPS62214156A (en) | Nonmagnetic steel stock for preventing concrete deterioration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 16 |