JPH0479880A - Polypeptide - Google Patents

Polypeptide

Info

Publication number
JPH0479880A
JPH0479880A JP2193935A JP19393590A JPH0479880A JP H0479880 A JPH0479880 A JP H0479880A JP 2193935 A JP2193935 A JP 2193935A JP 19393590 A JP19393590 A JP 19393590A JP H0479880 A JPH0479880 A JP H0479880A
Authority
JP
Japan
Prior art keywords
sequence
amino acid
polypeptide
human tnf
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2193935A
Other languages
Japanese (ja)
Inventor
Shuitsu Yamada
山田 修逸
Masaya Kato
雅也 加藤
Keizo Miyata
敬三 宮田
Yoshiyuki Aoyama
青山 義行
Shunji Yuki
俊次 湯木
Hiroshi Shikama
洋 四釜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2193935A priority Critical patent/JPH0479880A/en
Publication of JPH0479880A publication Critical patent/JPH0479880A/en
Pending legal-status Critical Current

Links

Abstract

NEW MATERIAL:A polypeptide in which 68th proline of human TNF having the an amino acid sequence expressed by the formula is replaced by other amino acid. USE:An antiulcer agent, etc. PREPARATION:A recombinant microorganism cell transformed by a recombinant plasmid containing DNA coding a polypeptide having a sequence in which 68th proline in a human TNF protein is replaced by other amino acid is cultured in a culture medium and the aimed polypeptide having the amino acid sequence is produced and separated.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はヒトTNF変換体として新規なポリペプチドを
提供することに係り、ポリペプチド自身、それを含む医
薬組成物、その製造方法、その遺伝子組換えDNA、プ
ラスミド、微生物細胞などに関する。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to providing a novel polypeptide as a human TNF converter, and relates to the polypeptide itself, a pharmaceutical composition containing it, a method for producing it, and its gene. Concerning recombinant DNA, plasmids, microbial cells, etc.

「従来の技術」 TNF (腫瘍壊死因子)は、1975年にCarsw
e l lらにより、予めBacillus Calm
ette Guerin(BCG)に感染され、エンド
トキシンて処理したマウスの血清中に存在することか見
出された生理活性物質であり(Proc、 Natl、
 Acad、 Sci、 USA 723666(19
75)) 、1984年にPenn1caらにより、ヒ
トTNFのcDNAをクローニングしヒトTNF蛋白質
の全−次構造(アミノ酸配列)か明らかにされた(Na
ture 312.724 (1984)) 。TNF
は腫瘍細胞に対する細胞傷害活性、移植腫瘍に対する出
血性壊死、増殖の抑制なと特異的な抗腫瘍作用を有する
が、最近では高脂血症、血圧低下、発熱なとの副作用も
生じうろことが報告されており、薬効、副作用などでよ
り優れたものを見出すべく研究、開発がなされている。
“Prior art” TNF (tumor necrosis factor) was developed by Carsw in 1975.
Bacillus Calm
It is a physiologically active substance that was found to exist in the serum of mice infected with B. antelope Guerin (BCG) and treated with endotoxin (Proc, Natl.
Acad, Sci, USA 723666 (19
75)) In 1984, Penn1ca et al. cloned the cDNA of human TNF and clarified the entire structure (amino acid sequence) of the human TNF protein (Na
ture 312.724 (1984)). T.N.F.
Although it has specific antitumor effects such as cytotoxic activity against tumor cells, hemorrhagic necrosis against transplanted tumors, and inhibition of growth, it has recently been reported that it may also cause side effects such as hyperlipidemia, decreased blood pressure, and fever. Research and development are being carried out to find better drugs in terms of medicinal efficacy, side effects, etc.

例えば特開昭61−40221、同63−119692
 、特開平1−277488各号公報では遺伝子操作技
術によりヒトTNF蛋白質中の特定のアミノ酸を欠失し
たり、他のアミノ酸に置換したり或は付加したりしてヒ
トTNF変換体を提供している。
For example, JP-A-61-40221, JP-A-63-119692
, Japanese Unexamined Patent Application Publication No. 1-277488 discloses that human TNF transformants are provided by deleting specific amino acids in human TNF protein, substituting with other amino acids, or adding them using genetic engineering techniques. There is.

「発明の開示」 本発明者らはヒトTNF蛋白質のアミノ酸配列において
68番目のプロリンを他のアミノ酸に置換したところ、
抗腫瘍活性が高く、副作用の低い文献未記載のヒ)TN
F変換体ポリペプチドが得られることを見出し、その知
見に基いて発明を完成した。
"Disclosure of the Invention" The present inventors substituted proline at position 68 with another amino acid in the amino acid sequence of human TNF protein, resulting in the following:
H) TN with high antitumor activity and low side effects not described in literature
It was discovered that an F-converted polypeptide could be obtained, and the invention was completed based on this knowledge.

本発明は、配列表配列番号1で示した1番目のSerか
ら155番目のLeuまでで表わされるアミノ酸配列に
おいて68番目のProが他のアミノ酸により置換され
た配列を有するポリペプチドに係る。また当該ポリペプ
チドをコードするDNAを含む組換えプラスミド、この
組換えプラスミドにより形質転換された組換え微生物細
胞、組換え微生物細胞によるポリペプチドの製造方法、
医薬組成物、前記アミノ酸配列のN末端にメチオニンの
結合したポリペプチド並びに配列表配列番号2で示した
1番目のTから465番目のGまでで表わされる塩基配
列において202〜204番目のProをコードするC
CAを他のアミノ酸をコードするコドンにより置換され
た配列を有するDNAにも係る。
The present invention relates to a polypeptide having an amino acid sequence represented by Ser 1 to Leu 155 shown in SEQ ID NO: 1 in the sequence listing, in which Pro at position 68 is replaced with another amino acid. Also, a recombinant plasmid containing DNA encoding the polypeptide, a recombinant microorganism cell transformed with this recombinant plasmid, a method for producing a polypeptide using a recombinant microorganism cell,
A pharmaceutical composition, a polypeptide in which methionine is bonded to the N-terminus of the amino acid sequence, and a base sequence represented by the 1st T to the 465th G shown in Sequence Listing SEQ ID NO: 2, which encodes Pro at positions 202 to 204 C
It also relates to a DNA having a sequence in which CA is replaced by a codon encoding another amino acid.

本明細書全般を通じてアミノ酸、ポリペプチド、塩基、
それらの配列を表わすとき下記のリストのものを用いる
Throughout this specification, amino acids, polypeptides, bases,
The following list is used to represent these arrays.

アミノ酸: 塩基: また本明細書で使用した略号は次のとおり意味する。amino acid: base: Furthermore, the abbreviations used in this specification have the following meanings.

S D S : Sodium dodecyl 5u
lfateDTT ニジチオスレイトール(Dithi
othrei tol)PMS F : Phenyl
methylsulfonyl FluorideED
TA :エチレンジアミン四酢酸 (Ethylene diamine tetraac
etate)CPG樹脂: Controlled−P
ore Glass樹脂本発明において68番目のPr
oを置換する他のアミノ酸としてはAj7a、 Cys
、 Asp、 Gnu、pHe、GI!y、  His
、  Iffe、  Lys、  Leu、  Met
、  Asn、 Gln。
SDS: Sodium dodecyl 5u
lfateDTT Nidithiothreitol (Dithi)
PMS F: Phenyl
Methylsulfonyl FluorideED
TA: Ethylene diamine tetraac
etate) CPG resin: Controlled-P
ore Glass resin The 68th Pr in the present invention
Other amino acids to replace o include Aj7a, Cys
, Asp, Gnu, pHe, GI! y, His
, Iffe, Lys, Leu, Met
, Asn, Gln.

Arg、 Ser、 Thr、 Van、 Trp又は
Tyrが挙げられるか、Asp、  Met又はTyr
か望ましい。
Arg, Ser, Thr, Van, Trp or Tyr, or Asp, Met or Tyr
or desirable.

次に本発明についてその実施態様を詳しく記載するか、
本発明に係る遺伝子操作技術については下に列挙する。
Next, the embodiments of the present invention will be described in detail, or
Genetic manipulation techniques according to the present invention are listed below.

T、Maniatis  et  al、(1982)
:  Mo1ecular  Cloning。
T., Maniatis et al. (1982)
: Molecular Cloning.

Co1d  Spring  Harbor  Lab
oratory、  R,WLI  et  al(1
983): Methods in Enzymolo
gy、 100及び101゜R,Wu et al、 
(1987): Methods in Enzymo
logy。
Co1d Spring Harbor Lab
oratory, R, WLI et al (1
983): Methods in Enzymolo
gy, 100 and 101°R, Wu et al.
(1987): Methods in Enzymo
Logy.

153、 154及び155 本発明のポリペプチドは種々の方法、手段、機械を用い
て製造することかできるか、代表的な製造方法を下記す
る。
153, 154, and 155 The polypeptides of the present invention can be produced using various methods, means, and machines, and representative production methods are described below.

(1)  ヒトTNF遺伝子の取得 ヒトTNF遺伝子の塩基配列及びアミノ酸配列は前述の
とおり、Penn1caらにより明らかにされており、
その塩基配列を適宜変更してヒトTNF遺伝子を配列表
配列番号3のようにデザインする。
(1) Obtaining the human TNF gene As mentioned above, the nucleotide sequence and amino acid sequence of the human TNF gene have been revealed by Pennca et al.
The human TNF gene is designed as shown in SEQ ID NO: 3 in the sequence listing by appropriately changing the base sequence.

その際、宿主細胞(大腸菌など)に適したコドンを選択
するのか望ましく、また後述のDNA断片の連結による
クローン化並びに変換体作製のための遺伝子改変か容易
に実施できるように適当な位置に適当な制限酵素切断部
位を配置するのが望ましい。勿論ヒトTNF遺伝子の上
流には翻訳開始コドン(ATG)を、下流には翻訳終止
コドン(TAA、TGA又はTAG)をそれぞれ読み取
り枠に合致させるように設置する必要があり、また翻訳
開始コドンの上流並びに翻訳終止コドンの下流にそれぞ
れ適当な制限酵素切断部位を設置してベクターへの適用
性、クローン化の簡便性を図るのが好ましい。
At this time, it is desirable to select codons that are suitable for the host cell (E. coli, etc.), and to select codons at appropriate positions so that cloning by ligation of DNA fragments and genetic modification for the production of transformants, which will be described later, can be easily carried out. It is desirable to locate restriction enzyme cleavage sites. Of course, it is necessary to install a translation start codon (ATG) upstream of the human TNF gene and a translation stop codon (TAA, TGA, or TAG) downstream so that they match the reading frame. In addition, it is preferable to install appropriate restriction enzyme cleavage sites downstream of the translation stop codon to improve applicability to vectors and ease of cloning.

ヒトTNF遺伝子は玉鎖・上鎖それぞれについて幾つか
のオリゴヌクレオチドに分けて化学合成し、ブロックご
とに順次適切に連結する方法により作製できる。例えば
配列表配列番号3及び同4においては、ヒトTNF遺伝
子の各鎖を約50塩基程度ずつ10本のオリゴヌクレオ
チドに分け、合計20本化学合成する。その合成方法と
してはジエステル法〔比G、 Khorana、”So
me RecentDevelopments in 
Chemistry of Phosphate Es
tersof Biological □Intere
st”、 John Wiley and 5ons。
The human TNF gene can be produced by chemically synthesizing several oligonucleotides for each of the top and upper chains, and sequentially and appropriately linking each block. For example, in SEQ ID NOs: 3 and 4 of the sequence listing, each chain of the human TNF gene is divided into 10 oligonucleotides of approximately 50 bases each, and a total of 20 oligonucleotides are chemically synthesized. Its synthesis method is the diester method [G, Khorana, “So
me Recent Developments in
Chemistry of Phosphate Es
Tersof Biological □Intere
st”, John Wiley and 5ons.

Inc、、 New York(1961))、トリエ
ステル法(R,L。
Inc., New York (1961)), triester method (R,L.

Letsinger et at、  J、  Am、
  Chem、  Soc、、  89. 4801(
1967))及びホスファイト法CM、 D、 Mat
teucciet al、 Tetrabedron 
Lett、、 21.719 (1980))が挙げら
れるか、全自動DNA合成機を用いたホスファイト法が
操作性などから好んで用いられる。
Letsinger et at, J. Am.
Chem, Soc, 89. 4801(
1967)) and phosphite method CM, D, Mat
Teucciet al, Tetrabedron
Lett., 21.719 (1980)), or the phosphite method using a fully automatic DNA synthesizer is preferably used from the viewpoint of operability.

合成されたオリゴヌクレオチドは例えば逆相クロマトカ
ラムを用いた高速液体クロマトグラフィ、ポリアクリル
アミドゲルを用いた電気泳動などの通常の精製方法によ
り精製される。その後、オリゴヌクレオチドは例えばT
4ポリヌクレオチドキナーゼを用いてリン酸化しアニー
リング化した後、T4DNAリガーゼを用いて連結する
。ここではオリゴヌクレオチドを幾つかのブロックに分
け、所望のヒトTNF遺伝子配列が得られるように順次
連結し、制限酵素で切断又はT4DNAポリメラーゼに
よる平滑化後、電気泳動により精製する。得られたDN
A断片について例えばpucs、同9、同18、同19
 (J、 Messing et al、 Gene。
The synthesized oligonucleotide is purified by conventional purification methods such as high performance liquid chromatography using a reversed phase chromatography column and electrophoresis using polyacrylamide gel. Thereafter, the oligonucleotide is e.g.
After phosphorylation and annealing using 4 polynucleotide kinase, ligation is performed using T4 DNA ligase. Here, oligonucleotides are divided into several blocks, sequentially ligated to obtain the desired human TNF gene sequence, cut with restriction enzymes or blunted with T4 DNA polymerase, and purified by electrophoresis. Obtained DN
For A fragments, e.g. pucs, pucs 9, pucs 18, pucs 19
(J, Messing et al., Gene.

19、259 (1982))のようなベクターに組み
込み、常法によりコンピテントセルを形質転換してクロ
−ン化する。得られたクローンより公知の方法に従って
プラスミドDNAを抽出精製し、ベクターに挿入された
DNA断片の塩基配列が目的の遺伝子配列を達成したか
否かを点検する。達成できたヒトTNF遺伝子の各部分
について、それぞれを含むプラスミドベクターより制限
酵素を用いて切り出し、再度前記ベクターに連結後組み
込むことにより目的の完全長のヒトTNF遺伝子を有す
るプラスミドベクターを得る。かくして得られたプラス
ミドベクターを制限酵素で切断後、ゲル電気泳動法によ
って分離精製することにより所望のヒ)TNF遺伝子を
得ることかできる。
19, 259 (1982)), and cloned by transforming competent cells by a conventional method. Plasmid DNA is extracted and purified from the obtained clone according to a known method, and it is checked whether the base sequence of the DNA fragment inserted into the vector has achieved the desired gene sequence. Each part of the human TNF gene that has been achieved is excised from a plasmid vector containing the respective part using a restriction enzyme, and then ligated and integrated into the vector again to obtain a plasmid vector containing the desired full-length human TNF gene. The desired human TNF gene can be obtained by cleaving the thus obtained plasmid vector with a restriction enzyme and then separating and purifying it by gel electrophoresis.

一方、前述の方法に対してはTNFを発現しているヒト
細胞由来のmRNAに対するcDNAを使用する方法を
適宜組合せてもよい。
On the other hand, the above-mentioned method may be appropriately combined with a method using cDNA for mRNA derived from human cells expressing TNF.

(2)  ヒトTNF発現ベクターの構築前記(1)で
得られたヒトTNF遺伝子は適切に発現ベクターに挿入
し、クローン化してヒトTNF発現ベクターを構築する
。発現ベクターは翻訳開始コドン(ATC;)の上流に
転写プロモーター領域並びに翻訳シグナルであるSD(
シャイン・ダルガーノ)配列を有し、翻訳終止コドン(
TAA、TGA又はTAG)の下流に転写ターミネータ
−領域を有する必要かある。また転写プロモーターとし
ては、trpプロモーター、lacプロモーターtac
プロモーター、PLプロモーター、円105プロモータ
ー、ADCIプロモーターなどが使用でき、転写ターミ
ネータ−としてはtrpターミネータ−rr口BTIT
2ターミネータ−1ADClターミネータ−なとか使用
できる。このような発現ベクターは例えば、pKK22
3−3 (ファルマシア) 、pPL−1ambda 
(同左)なとの市販品の中から容易に入手できるがこれ
らを改良して発現性或は取扱性をより高度化したものを
使用してもよい。
(2) Construction of human TNF expression vector The human TNF gene obtained in (1) above is appropriately inserted into an expression vector and cloned to construct a human TNF expression vector. The expression vector contains a transcription promoter region and a translation signal SD (
Shine-Dalgarno) sequence, and a translation stop codon (
It is necessary to have a transcription terminator region downstream of TAA, TGA or TAG). In addition, transcription promoters include trp promoter, lac promoter, tac
Promoters such as PL promoter, circle 105 promoter, ADCI promoter, etc. can be used, and as transcription terminators, trp terminator, rr mouth BTIT, etc. can be used.
You can use 2 terminators and 1 ADCl terminator. Such expression vectors include, for example, pKK22
3-3 (Pharmacia), pPL-1ambda
(Same as on the left) Although these can be easily obtained from commercial products, it is also possible to use products that have been improved to have higher expressivity or handling properties.

(3)ヒ1−TNF変換体発現ベクターの構築ヒトTN
F変換体ポリペプチドをコードするDNAの作製方法と
しては例えば次の方法か挙げられる。
(3) Construction of human 1-TNF transformant expression vector human TN
Examples of methods for producing DNA encoding the F converter polypeptide include the following methods.

(i)前記(1)ヒトTNF遺伝子の取得で記載した方
法に準じて化学的に合成したオリゴヌクレオチドを適切
に連結することにより作製する。この方法によればアミ
ノ酸、ポリペプチドなどの置換、付加又は欠失の改変は
自在である。
(i) Produced by appropriately linking oligonucleotides chemically synthesized according to the method described in (1) Acquisition of human TNF gene. According to this method, modifications such as substitution, addition, or deletion of amino acids, polypeptides, etc. can be made freely.

(ii)前記(1)で作製したヒトTNF遺伝子を適当
な制限酵素で切断し、遺伝子内の特定領域を除去した後
、変異を導入した塩基配列を有する合成オリゴヌクレオ
チド(例:上上鎖をアニーリング化して連結した二本鎖
DNA断片)又は適当な遺伝子を組み込む。この方法に
よれば前記(i)の場合と同様、改変を自在に行なうこ
とができる。
(ii) After cutting the human TNF gene prepared in (1) above with an appropriate restriction enzyme and removing a specific region within the gene, a synthetic oligonucleotide having a mutated base sequence (e.g., the upper strand (double-stranded DNA fragments ligated by annealing) or an appropriate gene. According to this method, as in the case (i) above, modifications can be made freely.

(ii)変異を導入した塩基配列を有する合成オリゴヌ
クレオチドをプライマーとして用いDNA鎖を延長する
ことにより、変換体ポリペプチド遺伝子を作製する(部
位特異的変異法(T、 A、 Kunkel et a
l、 Methods in Enzymology、
 154.367(1987)) )。この方法によっ
ても前記(i)の場合と同様の改変を行なうことかでき
るが、特に任意のアミノ酸を置換することに適している
(ii) A synthetic oligonucleotide having a mutated base sequence is used as a primer to extend the DNA chain to produce a converter polypeptide gene (site-directed mutagenesis method (T, A, Kunkel et al.
l, Methods in Enzymology,
154.367 (1987)). Although the same modification as in (i) above can be made using this method, it is particularly suitable for substituting any amino acid.

本発明では(ii)の部位特異的変異法が好適であるの
で、以下これを中心に説明する。
In the present invention, the site-directed mutagenesis method (ii) is preferred, so the following description will focus on this method.

先ず部位特異的変異法を行なうにあたり、鋳型DNAを
作成する。前記(1)で得られたヒトTNF遺伝子を、
Messingら1(ethods in Enzym
ology。
First, in performing the site-directed mutagenesis method, a template DNA is prepared. The human TNF gene obtained in (1) above,
Messing et al. 1 (methods in Enzym
ology.

153 、3 (1987))によって開発された一重
鎖プラスミドDNA調製用プラスミドベクター(pUc
118、pUcl19なと)に連結し、大腸菌株に導入
する。得られた形質転換体の中より目的のプラスミドを
有するクローンを選択する。
153, 3 (1987)) for the preparation of single-stranded plasmid DNA (pUc
118, pUcl19) and introduced into an E. coli strain. A clone having the desired plasmid is selected from among the transformants obtained.

このプラスミドをdut−及びung−変異大腸菌株(
CJ236株など)に導入し、遺伝子内にウラシルを取
り込ませ、大腸菌株にM13KO7なとの変異型へルバ
ーファージを感染させて目的の一本鎖プラスミドDNA
を取得する。
This plasmid was used in dut- and ung-mutant E. coli strains (
CJ236 strain, etc.), incorporate uracil into the gene, and infect E. coli strain with mutant helverphage such as M13KO7 to obtain the desired single-stranded plasmid DNA.
get.

一方、本発明に係る変換導入部位及びその前後の塩基配
列を有する約15〜50塩基のオリゴヌクレオチド・プ
ライマーを化学合成する。このプライマーと前述の工程
で得られるウラシル導入−木組プラスミドDNAとをア
ニーリング化した後、例えばT4DNAポリメラーゼ及
びT4DNAリガーゼを用いて、二本鎖化する。二本鎖
となったプラスミドをung+の大腸菌株に導入し、得
られた形質転換体中より使用したプライマーをプローブ
として用いコロニー・ハイブリダイゼ゛−ジョンを行な
い、目的の変換体ポリペプチドをコードするDNAを含
むプラスミドを有するクローンを選択する。
On the other hand, an oligonucleotide primer of about 15 to 50 bases having the conversion introduction site according to the present invention and the base sequences before and after the site is chemically synthesized. After this primer and the uracil-introduced-Kigumi plasmid DNA obtained in the above step are annealed, they are made into double strands using, for example, T4 DNA polymerase and T4 DNA ligase. The double-stranded plasmid was introduced into an ung+ E. coli strain, and colony hybridization was performed using the primers used in the resulting transformant as a probe to detect the DNA encoding the desired transformant polypeptide. Select clones with plasmids containing

前述で得られるプラスミドから制限酵素切断処理により
ヒトTNF変換体ポリペプチドのアミノ酸配列をコード
するDNAを切り出し、前記(2)の場合と同様にして
、発現ベクターに挿入し、クローン化することにより、
目的のヒトTNF変換体発現ベクターを構築することか
できる。
By cutting out the DNA encoding the amino acid sequence of the human TNF converter polypeptide from the plasmid obtained above by restriction enzyme cleavage treatment, inserting it into an expression vector and cloning in the same manner as in (2) above,
It is also possible to construct an expression vector for a human TNF converter of interest.

発現ベクターを大腸菌株のような宿主細胞へ導入するこ
とについては例えば塩化カルシウム法により作製した大
腸菌株のコンピテントセルを用いる公知の方法(Mol
ecular Cloning、 T、 Maniat
iset at、 (1982) )に従って行なう。
For introducing an expression vector into a host cell such as an E. coli strain, a known method (Mol.
ecular Cloning, T., Maniat
iset at, (1982)).

宿主細胞としては大腸菌、枯草菌、酵母なとの微生物細
胞か使用できるか、なかでも大腸菌としてはJM83、
JM103などのE、 coli K−12株の変異種
か挙げられる。
As host cells, microbial cells such as Escherichia coli, Bacillus subtilis, and yeast can be used.Among them, E. coli JM83,
Examples include mutants of E. coli K-12 strains such as JM103.

(4)  ヒトTNF変換体ポリペプチドの取得本発明
においては前記(3)で記載の形質転換された微生物細
胞を培養し、目的のヒトTNF変換体ポリペプチドを培
養物中に産生、蓄積させて分離する。微生物細胞、特に
大腸菌の培養方法としては従来から知られている方法、
例えば大腸菌か要求する栄養素を含んだ培養液に大腸菌
を接種し、普通32〜37°Cで約12〜24時間振ど
う又は攪拌することにより短時間に大量に培養する方法
か使用できる。培地は例えばL培地、M9培地なと〔前
記Mo1ecular Cloning参照〕が使用で
き、必要に応じてアンピシリンなどの抗生物質を添加し
たり、培養開始時或は培養中にlacプロモーターta
cプロモーターなとの転写プロモーターの効率を高める
ためにイソプロピル−β−D−チオガラクトピラノシド
を添加することもできる。
(4) Obtaining human TNF converter polypeptide In the present invention, the transformed microbial cell described in (3) above is cultured, and the desired human TNF converter polypeptide is produced and accumulated in the culture. To separate. Conventionally known methods for culturing microbial cells, especially Escherichia coli,
For example, a method can be used in which E. coli is inoculated into a culture solution containing the nutrients required by E. coli and cultured in large quantities in a short period of time, usually by shaking or stirring at 32 to 37°C for about 12 to 24 hours. As a medium, for example, L medium or M9 medium [see above Molecular Cloning] can be used, and if necessary, antibiotics such as ampicillin may be added, and lac promoter ta may be added at the start of culture or during culture.
Isopropyl-β-D-thiogalactopyranoside can also be added to increase the efficiency of transcription promoters such as the c promoter.

本発明のヒトTNF変換体ポリペプチドは培養後、普通
、微生物細胞の集合体をトリスバッファーに懸濁させた
状態で超音波処理することにより破砕処理を施し、遠心
分離操作を行ない菌体残渣を除去することにより得られ
る。更に、かくして得られたものは核酸・エンドトキシ
ン除去剤処理、フィルターによるろ過、陰イオン交換ク
ロマトグラフィーその他従来からの蛋白質の分離精製方
法を組み合わせることにより、−層積製することができ
る。
After culturing the human TNF converter polypeptide of the present invention, the microbial cell aggregate is usually disrupted by ultrasonication while suspended in Tris buffer, and then centrifuged to remove bacterial cell residue. Obtained by removing. Furthermore, the product thus obtained can be layered by combining treatment with a nucleic acid/endotoxin remover, filtration with a filter, anion exchange chromatography, and other conventional protein separation and purification methods.

本発明のヒトTNF変換体ポリペプチドはヒトTNFの
持つ抗腫瘍作用と同様の作用を有し、しかもヒトTNF
に比し優れた抗腫瘍活性を示し、副作用も軽減するので
抗腫瘍剤、医薬の活性成分として有効である。本発明の
ヒトTNF変換体ポリペプチドはなかでも、前記アミノ
酸配列で第68番目のProがAsp、 Met又はT
yrに置換されたものが好ましい。その医薬組成物の製
剤に当っては薬理上許容される担体又は稀釈剤とともに
医薬組成物に製剤することかできる。本発明の医薬組成
物の剤型としては、外用剤、経口投与剤、注射剤などが
あげられ、それぞれの剤型にあった投与方法で投与され
る。
The human TNF converter polypeptide of the present invention has an antitumor effect similar to the antitumor effect of human TNF, and
It exhibits superior antitumor activity compared to other drugs, and has fewer side effects, so it is effective as an antitumor agent and an active ingredient in medicine. In the human TNF converter polypeptide of the present invention, Pro at position 68 in the amino acid sequence is Asp, Met or T.
Those substituted with yr are preferred. When formulating the pharmaceutical composition, it can be formulated into a pharmaceutical composition together with a pharmacologically acceptable carrier or diluent. The dosage form of the pharmaceutical composition of the present invention includes external preparations, oral preparations, injection preparations, etc., and is administered by an administration method suitable for each dosage form.

実施例1 (ヒトTNF遺伝子のデザイン)既に報告さ
れているCPenn1caら、前出〕ヒトTNF構造遺
伝子のアミノ酸配列を基に、ヒトTNF遺伝子の塩基配
列について遺伝子構築および変換体作製の便宜上、配列
表配列番号3のDNA塩基配列をデザインした。ここで
は適当な間隔で制限酵素認識部位を組み込み、またプラ
スミドベクターと容易に連結できるように翻訳開始コド
ン(ATG)の上流に制限酵素EcoRIによる切断部
位を、翻訳終止コドン(TAAおよびTGA)の下流に
は制限酵素HindI[による切断部位をそれぞれ設け
た。
Example 1 (Design of human TNF gene) Based on the amino acid sequence of the human TNF structural gene, which has already been reported by CPennca et al., supra, a sequence list is prepared for the nucleotide sequence of the human TNF gene for convenience of gene construction and conversion generation. A DNA base sequence of SEQ ID NO: 3 was designed. Here, restriction enzyme recognition sites were incorporated at appropriate intervals, and a cleavage site using the restriction enzyme EcoRI was placed upstream of the translation start codon (ATG) and downstream of the translation stop codons (TAA and TGA) for easy ligation with the plasmid vector. A cleavage site using the restriction enzyme HindI was provided in each of the nucleotides.

実施例2(オリゴヌクレオチドの化学合成)前記実施例
1でデザインされたDNAは、自動DNA合成機(アプ
ライド・バイオシステムズ。
Example 2 (Chemical synthesis of oligonucleotides) The DNA designed in Example 1 was synthesized using an automatic DNA synthesizer (Applied Biosystems).

モデル381A)を用いて、ホスファイト法にて化学合
成した。合成は配列表配列番号4で示した塩基配列を有
するU−1−,10及びL−1〜10の20本のオリゴ
ヌクレオチドに分割して行い、合成されたオリゴヌクレ
オチドのCPG樹脂(フナコシ社販売)からの切り出し
及び保護基脱離は、アプライド・バイオシステムズ社の
マニュアルに従った。各オリゴヌクレオチドの分離精製
は逆相クロマトカラムを用いたHPLC(高速液体クロ
マトグラフィー)又は7Mウレアを含むポリアクリルア
ミドゲル電気泳動(ゲル濃度lO〜2096)により行
った。
It was chemically synthesized by the phosphite method using Model 381A). Synthesis was carried out by dividing into 20 oligonucleotides, U-1-, 10 and L-1 to 10, each having the base sequence shown in SEQ ID NO: 4 in the sequence list. ) and removal of the protecting group according to the manual of Applied Biosystems. Separation and purification of each oligonucleotide was performed by HPLC (high performance liquid chromatography) using a reverse phase chromatography column or by polyacrylamide gel electrophoresis (gel concentration 10 to 2096) containing 7M urea.

HPLC法については、ヌクレオジル5C18カラム(
φ4.6 X l 50 +nm ;ケムコ社販売)を
用いた逆相クロマトグラフィーによって、アセトニトリ
ルを含むトリエチルアミノ酢酸(100mM)バッファ
ー(pH7,0)で溶出することにより分離精製した。
For HPLC method, Nucleozil 5C18 column (
It was separated and purified by reverse phase chromatography using a φ4.6 X l 50 +nm (manufactured by Chemco) and eluting with triethylaminoacetic acid (100 mM) buffer (pH 7.0) containing acetonitrile.

上記溶出は、アセトニトリルの直線濃度勾配を5〜35
%(30分)とし、約15分のピークを回収した。
The above elution was performed using a linear concentration gradient of acetonitrile from 5 to 35
% (30 minutes), and the peak at about 15 minutes was collected.

ポリアクリルアミドゲル電気泳動法に関しては、各合成
オリゴヌクレオチド試料を電気泳動により分離し、紫外
線シャドウィング法による泳動パターンの観察結果より
目的の大きさのバンド部分を切り出し、そのポリアクリ
ルアミドゲル断片を約1〜2[[1m3の大きさに切り
きざみ、約2mnの溶出バッフy  (0,5M NH
40AC及び1mM EDTA )を加え、37°Cて
一晩振とうした。各オリゴヌクレオチドを含む溶出バッ
ファーを回収し、フェノール抽出(50%フェノール’
/ 5096クロロホルム溶液使用)、イソブタノール
抽出を行い、エタノール沈殿操作により各オリゴヌクレ
オチドの精製試料とした。
Regarding the polyacrylamide gel electrophoresis method, each synthetic oligonucleotide sample is separated by electrophoresis, a band portion of the desired size is cut out based on the observation results of the migration pattern by ultraviolet shadowing method, and the polyacrylamide gel fragment is divided into approximately 1 ~2 [[Cut into 1 m3 pieces, add approximately 2 mn of elution buffer (0,5M NH
40AC and 1mM EDTA) was added and shaken overnight at 37°C. The elution buffer containing each oligonucleotide was collected and extracted with phenol (50% phenol').
/ 5096 chloroform solution), isobutanol extraction was performed, and purified samples of each oligonucleotide were obtained by ethanol precipitation.

合成・精製したオリゴヌクレオチドの一部について、マ
キサム・ギルバード法(A、M、Maxam et a
lMethods in Enzymology、65
499 (1980) )により、目的の塩基配列を存
していることを確認した。
Some of the synthesized and purified oligonucleotides were subjected to the Maxam-Gilbert method (A, M, Maxam et al.
lMethods in Enzymology, 65
499 (1980)), it was confirmed that the target base sequence existed.

以下(実施例3.4及び5)の遺伝子組換えに係わる操
作において、制限酵素及び他の関連酵素の反応条件等は
、おもにMo1ecular Cloning (前出
)記載の方法に準じた。なお、上記酵素等はおもに宝酒
造より入手しており、宝酒造のマニュアルも参考にした
In the operations related to genetic recombination described below (Examples 3.4 and 5), the reaction conditions for restriction enzymes and other related enzymes were mainly in accordance with the method described in Molecular Cloning (supra). The enzymes mentioned above were mainly obtained from Takara Shuzo, and Takara Shuzo's manual was also used as reference.

実施例3(合成オリゴヌクレオチドの連結によるヒトT
NF遺伝子の構築) (1)  まず第1図に従ってヒトTNF遺伝子の構築
を試みた。
Example 3 (Human T by ligation of synthetic oligonucleotides)
Construction of NF gene) (1) First, an attempt was made to construct a human TNF gene according to Figure 1.

前記実施例2で得られる合成オリゴヌクレオチドを3つ
のグループ(U及びL−1〜4、U及びL−5〜7並び
にU及びL−8〜10)に分けてクローニングを行った
。すなわち、U−2,3,4,6,7,9及びlO並び
にL−1,2,3,5,6,8及び9の各オリゴヌクレ
オチド(1〜2μg)の5′末端を2〜5ユニツトのT
4ポリヌクレオチドキナーゼ(宝酒造)を用いて、それ
ぞれ別々にリン酸化する。リン酸化反応は10μlの水
溶液中(50mM Tris−HCI!pH7,6,1
0mMMgC12,0,1mM Spermidine
、0.1mM EDTA、 lomMDTT及び1mM
 ATP)、37°Cで1時間行い、反応終了後、70
°Cで10分間処理することによりT4ポリヌクレオチ
ドキナーゼを失活させた。新たに、1〜2μgのU−1
,5及び8並びにL−4,7及びlOの各オリゴヌクレ
オチドをそれぞれ別々に含む上記と同組成の水溶液lO
μlを用意し、それぞれU及びLの同じ番号同士で各オ
リゴヌクレオチド(U−1−10及びL−1−10)水
溶液を混合しく20μl)、100°Cで5分間煮沸後
徐冷することによりアニール化した。次に、得られた1
0本のアニーリング体(二本鎖DNA断片)を、各グル
ープごとに連結反応のための水溶液(66mM Tri
s−HCffi pH7,6,6,6mM MgC!!
2.10mM DTT、1mM ATP及び100μg
/m1BSA)に添加しく総液量120〜160μり、
40°C加温後徐冷によるアニール化の後、700ユニ
ツトのT4 DNAリガーゼ(宝酒造)を加えて、16
°Cで15時間連結反応を行った。反応終了後、各反応
液をポリアクリルアミドゲル電気泳動(ゲル濃度696
)によす分離し、エチジウムブロマイド染色法による泳
動パターンの観察結果より目的の大きさ(176bp、
 150 bp及び153 bp)のバンド部分を切り
出し、エレクトロ・エリコーション法により目的とする
3本のDNA断片を回収した。さらに、回収した各試料
に対してフェノール抽出(50%フェノール150%ク
ロロホルム溶液使用)、イソブタノール抽出を行い、エ
タノール沈殿操作により目的のDNAを精製した。上記
方法に準じて、精製した3本の二本鎖DNA断片をそれ
ぞれ別々にその5′末端をT4ポリヌクレオチドキナー
ゼを用いてリン酸化し、連結反応のための水溶液中にて
混合の後、40℃の加温によりアニール化を行い、T4
 DNAリガーゼを加えて連結した。エタノール沈殿操
作によりこの連結DNAを回収し、1mMDTT及びl
 00 u g/ynlBsAを含む50μ1(7)ハ
イー/ルトバッフy  (50mM Tris−HCJ
? pH7,5,100mM NaC1,10mM M
gC12)に溶解させ、15ユニツトの制限酵素Eco
RI (宝酒造)及び15ユニツトの制限酵素Hind
 III (宝酒造)を添加して、37°Cて2時間切
断反応を行った。反応終了後、上記方法に準じて、ポリ
アクリルアミドケル電気泳動(ゲル濃度496)により
目的とするDNA断片(約480bp)を分離精製した
The synthetic oligonucleotides obtained in Example 2 were divided into three groups (U and L-1 to 4, U and L-5 to 7, and U and L-8 to 10) and cloned. That is, the 5' end of each oligonucleotide (1 to 2 μg) of U-2, 3, 4, 6, 7, 9 and IO and L-1, 2, 3, 5, 6, 8 and 9 was Unit T
4 polynucleotide kinase (Takara Shuzo), each is phosphorylated separately. The phosphorylation reaction was performed in 10 μl of an aqueous solution (50 mM Tris-HCI! pH 7, 6, 1
0mM MgC12, 0, 1mM Spermidine
, 0.1mM EDTA, lomMDTT and 1mM
ATP), carried out at 37°C for 1 hour, and after the reaction was completed,
T4 polynucleotide kinase was inactivated by treatment at °C for 10 minutes. Newly added 1 to 2 μg of U-1
, 5 and 8 and L-4, 7 and IO, respectively, an aqueous solution IO having the same composition as above.
Prepare 20 μl of each oligonucleotide (U-1-10 and L-1-10) aqueous solution with the same U and L numbers (20 μl), boil for 5 minutes at 100°C, and then slowly cool. Annealed. Next, the obtained 1
0 annealed bodies (double-stranded DNA fragments) were added to each group in an aqueous solution (66mM Tri
s-HCffi pH7,6,6,6mM MgC! !
2.10mM DTT, 1mM ATP and 100μg
/mlBSA), the total liquid volume is 120-160μ,
After annealing by heating at 40°C and slow cooling, 700 units of T4 DNA ligase (Takara Shuzo) was added and 16
The ligation reaction was carried out for 15 hours at °C. After the reaction, each reaction solution was subjected to polyacrylamide gel electrophoresis (gel concentration 696
), and the desired size (176 bp,
Band portions of 150 bp and 153 bp) were cut out, and three target DNA fragments were recovered by electro-elimination. Furthermore, each collected sample was subjected to phenol extraction (using a 50% phenol-150% chloroform solution) and isobutanol extraction, and the target DNA was purified by ethanol precipitation. According to the above method, three purified double-stranded DNA fragments were separately phosphorylated at their 5' ends using T4 polynucleotide kinase, mixed in an aqueous solution for ligation reaction, and then Annealing is performed by heating to T4
DNA ligase was added for ligation. This ligated DNA was recovered by ethanol precipitation and mixed with 1mM DTT and l
50μ1 (7) Hi/Lutobuffy (50mM Tris-HCJ) containing 00 μg/ynlBsA
? pH7, 5, 100mM NaCl, 10mM M
gC12) and 15 units of the restriction enzyme Eco
RI (Takara Shuzo) and 15 unit restriction enzyme Hind
III (Takara Shuzo) was added, and the cleavage reaction was carried out at 37°C for 2 hours. After the reaction was completed, the desired DNA fragment (approximately 480 bp) was separated and purified by polyacrylamide gel electrophoresis (gel concentration: 496) according to the above method.

一方、プラスミドベクターptJc9  (凡用大学遺
伝情報実験施設より分与)の5μgを、前記の方法に準
じて、制限酵素EcoRI及びHind IIIで切断
し、アガロースゲル電気泳動(ゲル濃度196)により
約2.7 KbpのDNA断片を分離精製した。
On the other hand, 5 μg of plasmid vector ptJc9 (distributed from General University Genetic Information Laboratory) was cut with restriction enzymes EcoRI and Hind III according to the method described above, and subjected to agarose gel electrophoresis (gel concentration 196) to approximately 2 μg. A .7 Kbp DNA fragment was isolated and purified.

先に精製した約480bpのDNA断片(ヒトTNF遺
伝子を含む)とこのpUC9断片を、前記の方法に準じ
て、20μlの連結反応液中にて混合し、350ユニツ
トのT4 DNAリガーゼを添加し、16°Cで3時間
連結反応を行った。塩化カルシウム法(Molecul
ar Cloning参照〕により作製したE、col
i K−12JM83株(凡用大学遺伝情報実験施設に
より分与)のコンピテントセルを、上記連結反応液によ
り常法に従って形質転換した(MolecularC1
oning参照〕・ 得られたアンピシリン耐参照口−ンより、公知の方法を
用いてプラスミドを調製し、前記の方法に準じて、制限
酵素(EcoRI及びHindIII)処理後、アガロ
ースゲル電気泳動によりその泳動パターンを解析するこ
とにより、ヒトTNF遺伝子のρUC9ベクターへの挿
入を調べた。その結果、約250bpの遺伝子の挿入か
確認でき、そのクローンについて挿入された遺伝子の塩
基配列をダイデオキシ法CF、Sanger、 5ci
ence、 214.1205 (1981))により
調べたところ、1EcoRI部位から下流に約130b
pとHindIII部位から上流に約90bpの目的と
するヒトTNF遺伝子の塩基配列を有する遺伝子断片で
あることが確認された。このクローン及びプラスミドを
それぞれptJA41/JM83及びpUA41と命名
した。
The previously purified approximately 480 bp DNA fragment (containing the human TNF gene) and this pUC9 fragment were mixed in a 20 μl ligation reaction solution according to the method described above, and 350 units of T4 DNA ligase was added. The ligation reaction was carried out at 16°C for 3 hours. Calcium chloride method (Molecul
E, col produced by ar Cloning]
i Competent cells of K-12JM83 strain (distributed by General University Genetic Information Laboratory) were transformed with the above ligation reaction solution according to a conventional method (Molecular C1
oning)] A plasmid was prepared from the obtained ampicillin-resistant reference port using a known method, treated with restriction enzymes (EcoRI and HindIII) according to the method described above, and then subjected to agarose gel electrophoresis. Insertion of the human TNF gene into the ρUC9 vector was investigated by pattern analysis. As a result, it was confirmed that a gene of approximately 250 bp had been inserted, and the nucleotide sequence of the inserted gene for that clone was determined using the dideoxy method CF, Sanger, 5ci.
ence, 214.1205 (1981)), approximately 130 b downstream from the 1EcoRI site.
It was confirmed that this gene fragment had the target human TNF gene nucleotide sequence of about 90 bp upstream from the p and HindIII sites. This clone and plasmid were named ptJA41/JM83 and pUA41, respectively.

(2)引き続き、第2図に従ってヒトTNF遺伝子の構
築を試みた。
(2) Subsequently, an attempt was made to construct a human TNF gene according to FIG.

前記(1)工程でのクローニングでヒトTNF遺伝子の
塩基配列において未達成な領域周辺を2つのグループ(
U及びL−3〜6並びにU及びL−6〜9)に分け、前
記(1)工程と同様にして、各オリゴヌクレオチドをリ
ン酸化し、アニーリング化した後、T4 DNAリガー
ゼにより連結した。前記方法に準じて、ポリアクリルア
ミドゲル電気泳動(ゲル濃度696)により分離精製し
、得られた2本のDNA断片(201bp及び200b
p)をそれぞれ別々に100μlの67rnM Tri
s−HCl(pH8,8)、6、7mM MgC12,
16,6mM (NH4)2SO4,6,7μM ED
TA。
Two groups (
U and L-3 to 6 and U and L-6 to 9), each oligonucleotide was phosphorylated and annealed in the same manner as in step (1) above, and then ligated using T4 DNA ligase. According to the above method, two DNA fragments (201 bp and 200 bp) were separated and purified by polyacrylamide gel electrophoresis (gel concentration 696).
p) separately with 100 μl of 67rnM Tri
s-HCl (pH 8,8), 6, 7mM MgCl2,
16,6mM (NH4)2SO4,6,7μM ED
T.A.

ImM DTT、200μg/m1BSA及び各330
μMデオキシリボヌクレオチド三リン酸(dATP、 
dGTP、 dcTP及びTTP)水溶液にて溶解し、
2〜5ユニットのT4 DNAポリメラーゼ(宝酒造)
を添加し、37°Cで30分間反応することによりDN
A断片の両末端を平滑化した。反応終了後、68°Cで
100分間処理することによりT4 DNAポリメラー
ゼを失活させ、エタノール沈殿により目的の2本のDN
A断片を回収した。
ImM DTT, 200 μg/ml BSA and 330 each
μM deoxyribonucleotide triphosphate (dATP,
dGTP, dcTP and TTP) dissolved in an aqueous solution,
2-5 units of T4 DNA polymerase (Takara Shuzo)
DN by adding and reacting at 37°C for 30 minutes.
Both ends of the A fragment were blunted. After the reaction, T4 DNA polymerase was inactivated by treatment at 68°C for 100 minutes, and the two target DNAs were separated by ethanol precipitation.
Fragment A was recovered.

一方、5μgのptJc9ベクターを1mMDTT及び
100μg/mff1 BSAを含む50μlのミデイ
アム・ソルトバッフ7− (lomM Tris−HC
J’、 pH7,5,50mMNaC!及び10mM 
MgC12)に溶解させ、15ユニツトの制限酵素Hi
ncI[(宝酒造)を添加し、37°Cで2時間の反応
後、エタノール沈殿により回収した。得られた切断・開
環したpUc9ベクターに、先に平滑化後回収した2本
のDNA断片をそれぞれ別々に、前記方法に準じて、T
4 DNAリガーゼを用いて組み込み、E、coli 
K−12JM83株を形質転換した。得られたそれぞれ
のクローンについて、前記(1)工程と同様にして、挿
入されたDNAの塩基配列を調べ、目的の塩基配列であ
ることを確認した。これらのクローンをそれぞれpUA
42/JM83及びpUA43/JM83と命名し、プ
ラスミドをpUA42及びptJA43と命名した。
Meanwhile, 5 μg of ptJc9 vector was added to 50 μl of medium salt buff 7-(lomM Tris-HC) containing 1 mM DTT and 100 μg/mff1 BSA.
J', pH 7, 5, 50mM NaC! and 10mM
MgC12) and 15 units of restriction enzyme Hi
After adding ncI (Takara Shuzo) and reacting at 37°C for 2 hours, the mixture was recovered by ethanol precipitation. The two DNA fragments previously recovered after blunting were added to the resulting cut and opened pUc9 vector separately according to the method described above.
4 Integrate using DNA ligase and incubate with E. coli
K-12JM83 strain was transformed. For each clone obtained, the nucleotide sequence of the inserted DNA was examined in the same manner as in step (1) above, and it was confirmed that it was the desired nucleotide sequence. These clones were each pUA
42/JM83 and pUA43/JM83, and the plasmids were named pUA42 and ptJA43.

上記(1)及び(2)工程で得られたpUA41を制限
酵素EcoRI (ハイ・ソルトバッファ−)及びSa
c I(宝酒造:ロウ・ソルトバッファ−)、制限酵素
Hae I[(宝酒造)及びHindIII(ミデイア
ム・ソルトバッファー)で、pUA42を制限酵素5a
cI(ロウ・ソルトバッファー)及び■paI(宝酒造
: KClバッファー)で並びにpUA43を制限酵素
Hpa I及びHaeI[(KClバッファー)で、前
記方法に準じて、それぞれ切断した。ロウ・ソルトバツ
ファ−(10mM Tris−HCJ’ pt(7,5
及び10mM MgCj’ 2)とハイ・ソルトバツフ
ア−又はKCl<ツノァー(20mM Tris−HC
jl’ pH8,5,100mM KCn及びlomM
Mg(J’2)の組み合わせについては、切断反応を2
回に分け、反応の間にエタノール沈殿操作を行うことに
より対応した。pUA41からのEcoRI −3ac
 lDNA断片(127bp)及びHaeII−Hin
dII[DNA断片(80bp)、pUA42からのS
ac I −Hpa I  DNA断片(147bp)
並びにpUA43からのHpa I −HaeII D
NA断片(126bp)を、前記方法に準じて、それぞ
れポリアクリルアミドゲル電気泳動(ゲル濃度6%)に
より分離精製した。
The pUA41 obtained in steps (1) and (2) above was treated with the restriction enzyme EcoRI (high salt buffer) and Sa
c I (Takara Shuzo: raw salt buffer), restriction enzyme Hae I [(Takara Shuzo) and HindIII (medium salt buffer) to convert pUA42 to restriction enzyme 5a.
pUA43 was digested with cI (raw salt buffer) and paI (Takara Shuzo KCl buffer), and pUA43 was digested with the restriction enzymes Hpa I and HaeI (KCl buffer), respectively, according to the method described above. Raw salt buffer (10mM Tris-HCJ'pt(7,5
and 10mM MgCj'2) and high salt buffer or KCl<Tsnor (20mM Tris-HC
jl' pH 8,5,100mM KCn and lomM
For the Mg(J'2) combination, the cleavage reaction is
This was handled by dividing the reaction into batches and performing ethanol precipitation between the reactions. EcoRI-3ac from pUA41
lDNA fragment (127bp) and HaeII-Hin
dII [DNA fragment (80 bp), S from pUA42
ac I-Hpa I DNA fragment (147bp)
and Hpa I-HaeII D from pUA43
The NA fragments (126 bp) were separated and purified by polyacrylamide gel electrophoresis (gel concentration 6%) according to the method described above.

一方、5μgのpUc19プラスミドベクター(凡用大
学遺伝情報実験施設より分与)を、前記の方法に準じて
、制限酵素EcoRI及びHindIIIて切断し、約
2.7 kbpのDNA断片をアガロースゲル電気泳動
(ゲル濃度196)により分離精製した。先に精製した
4本のDNA断片を図示(第2図)したように順次添加
し、前記方法に準じて、T4 DNAリガーゼを用いて
連結して行き、最後に上記の精製ptJc19ベクター
(約2.7 Kbll断片)に組み込み、JM83株を
形質転換した。この形質転換体に含まれるプラスミドD
NAについて、前記方法に準じて、挿入されたDNAの
塩基配列を調べたところ、目的とする完全長(約480
bp)のヒトTNF遺伝子を含むプラスミドベクター(
約3.2 Kbp)を有するクローンであることが確認
できた。このクローンを pUA44/JM83と命名
し、プラスミドをpUA44と命名した。
On the other hand, 5 μg of pUc19 plasmid vector (distributed from General University Genetic Information Laboratory) was cut with restriction enzymes EcoRI and HindIII according to the method described above, and the approximately 2.7 kbp DNA fragment was subjected to agarose gel electrophoresis. (gel concentration 196). The four previously purified DNA fragments were sequentially added as shown in the diagram (Figure 2), and ligated using T4 DNA ligase according to the method described above.Finally, the purified ptJc19 vector (approximately 2 .7 Kbll fragment) and transformed the JM83 strain. Plasmid D contained in this transformant
Regarding NA, when the base sequence of the inserted DNA was examined according to the above method, it was found that the desired full length (approximately 480
A plasmid vector (bp) containing the human TNF gene (
It was confirmed that the clone had a length of approximately 3.2 Kbp). This clone was named pUA44/JM83, and the plasmid was named pUA44.

実施例4(ヒトTNF発現ベクターの構築)(1)  
大腸菌tacプロモーターを有する発現ベクターpKK
 223−3 (ファルマシア社より入手)をより扱い
やすくする目的で以下の改良を試みた。
Example 4 (Construction of human TNF expression vector) (1)
Expression vector pKK with E. coli tac promoter
The following improvements were attempted to make 223-3 (obtained from Pharmacia) easier to handle.

i)発現ベクターを低分子量化する。i) Reduce the molecular weight of the expression vector.

i)制限酵素BamHの認識部位を唯一とする。i) The recognition site for the restriction enzyme BamH is unique.

1ii) tacプロモーターの方向をアンピシリン耐
性遺伝子の方向と逆向きにする。
1ii) The direction of the tac promoter is opposite to that of the ampicillin resistance gene.

第3図にその方法を図示した。The method is illustrated in FIG.

プラスミドベクターpBR322(凡用大学遺伝情報実
験施設より分与)の5μgを、実施例3の方法に準じて
、制限酵素EcoRI及びHindI[で切断後、その
両末端をT4 DNAポリメラ上ゼを用いて平滑化した
。実施例3の方法に準じて、アガロースゲル電気泳動(
ゲル濃度1%)により約4.4 KbpのDNA断片を
分離精製し、その開環部位にBgl■リンカ−(制限酵
素BglII認識部位を含む1Obpの二本鎖DNA断
片:宝酒造より入手)をT4 DNAリガーゼを用いて
挿入連結した。前記実施例3の方法に準じて得た形質転
換体の中より、そのプラスミドについて制限酵素による
切断の可否を調べることにより、目的の制限酵素Eco
RI及びHind■認識部位を欠き、制限酵素BglI
I認織部位を新生したプラスミドpBR9333(約4
.4 Kbp)を有するクローンを得た。
Following the method of Example 3, 5 μg of plasmid vector pBR322 (distributed from Genetic Information Experimental Facility, General University of Japan) was cut with restriction enzymes EcoRI and HindI, and both ends thereof were digested using T4 DNA polymerase. Smoothed. According to the method of Example 3, agarose gel electrophoresis (
A DNA fragment of approximately 4.4 Kbp was separated and purified using a gel concentration of 1%), and a Bgl■ linker (a 1Obp double-stranded DNA fragment containing a restriction enzyme BglII recognition site: obtained from Takara Shuzo) was added to the open ring site using T4. Insertion ligation was performed using DNA ligase. Among the transformants obtained according to the method of Example 3, the target restriction enzyme Eco
Lacks RI and Hind■ recognition sites and uses the restriction enzyme BglI
Plasmid pBR9333 (approximately 4
.. 4 Kbp) was obtained.

上記で得たプラスミドpBR9333の5μgを、実施
例3の方法に準じて、ハイ・ソルトバツフア−に溶解し
、制限酵素BglII(宝酒造)及びPvu II(宝
酒造)で切断し、複製起点を含む約2.3KbpのDN
A断片をアガロースゲル電気泳動(ゲル濃度1%)によ
り分離精製した。一方、発現ベクターpKK223−3
(約4.6 kbp)の5μgを上記同様ハイ・ソルト
バッファーに溶解し、制限酵素BamHI (宝酒造)
及び5cal(宝酒造)で切断した。制限酵素Bam旧
による切断反応は、添加酵素量を通常の約1/2とし、
反応時間を5〜30分間とする部分切断により行った。
5 μg of the plasmid pBR9333 obtained above was dissolved in high salt buffer according to the method of Example 3, and cut with restriction enzymes BglII (Takara Shuzo) and Pvu II (Takara Shuzo) to obtain approximately 2 μg containing the origin of replication. 3Kbp DN
The A fragment was separated and purified by agarose gel electrophoresis (gel concentration 1%). On the other hand, expression vector pKK223-3
(approximately 4.6 kbp) was dissolved in the same high salt buffer as above, and added with the restriction enzyme BamHI (Takara Shuzo).
and 5cal (Takara Shuzo). For the cleavage reaction using the restriction enzyme Bam, the amount of added enzyme is approximately 1/2 of the usual amount.
Partial cutting was performed with a reaction time of 5 to 30 minutes.

切断処理後、tacプロモーター及びrrnBT+T+
ターミネータ−等を含む約1.lKbpのDNA断片を
上記同様アガロースケル電気泳動により分離精製した。
After cutting, tac promoter and rrnBT+T+
Approximately 1. including terminator etc. A 1 Kbp DNA fragment was separated and purified by agarose gel electrophoresis in the same manner as above.

先に精製した複製起点を含む約2.3 kbpのDNA
断片に上記の約1. l KbpのDNA断片を前記に
準じてT4 DNAリガーゼを用いて挿入連結し、実施
例3の方法に準じて、塩化カルシウム法により作製した
E、coli K−12JM103株(冗句大学遺伝情
報実験施設)のコンピテントセルに導入した。得られた
形質転換体の中より、目的とするtacプロモーター等
を含む発現ベクター(約3.1(bp)を有するクロー
ンを選択し、この発現ベクターをIIKKIOI と命
名した。
Approximately 2.3 kbp DNA containing the previously purified origin of replication
Approximately 1. E. coli K-12JM103 strain (Joku University Genetic Information Laboratory) was prepared by inserting and ligating 1 Kbp DNA fragments using T4 DNA ligase as described above, and using the calcium chloride method as in Example 3. were introduced into competent cells. Among the transformants obtained, a clone having an expression vector (approximately 3.1 (bp)) containing the desired tac promoter etc. was selected, and this expression vector was named IIKKIOI.

(2)第4図に従って、次の工程を説明する。(2) The next step will be explained according to FIG.

前記(1)工程で得た発現ベクターpKKlo1の5μ
gを、前記方法に準じて、制限酵素EcoRIおよびH
indI[で切断し、複製起点および転写調節領域等を
含む約3.4 kbpのDNA断片をアガロースケル電
気泳動(ゲル濃度1%)により分離精製した。
5μ of the expression vector pKKlo1 obtained in step (1) above
g was treated with restriction enzymes EcoRI and H according to the above method.
After cutting with indI, a DNA fragment of about 3.4 kbp containing the replication origin, transcriptional regulatory region, etc. was separated and purified by agarose gel electrophoresis (gel concentration 1%).

また、前記実施例3で得られたヒトTNF遺伝子を含む
プラスミドpUA44 (約3.2 kbp)を、同様
にして、制限酵素EcoRIおよびHindlI[で切
断し、ヒ1− TNF遺伝子全域を含む約480bl)
のDNA断片をアガロースゲル電気泳動により分離精製
した。
In addition, the plasmid pUA44 (approximately 3.2 kbp) containing the human TNF gene obtained in Example 3 was similarly digested with the restriction enzymes EcoRI and HindlI to obtain approximately 480 bl containing the entire human 1-TNF gene. )
The DNA fragments were separated and purified by agarose gel electrophoresis.

このヒトTNF遺伝子全域を含むDNA断片を、先に発
現ベクターpKK101より精製した約3.4kbpの
DNA断片に、前記方法に準じて、T4 DNAリガー
ゼを用いて挿入連結し、前記の方法に準じてE、 co
li K−12JM103株に導入した。得られた形質
転換の中より目的のヒトTNF発現ベクタ(約3.9K
bp)を有するクローンを選択し、この発現ベクターを
pKF4102と命名した。
This DNA fragment containing the entire human TNF gene was inserted and ligated into the approximately 3.4 kbp DNA fragment previously purified from the expression vector pKK101 using T4 DNA ligase according to the method described above. E,co
li K-12JM103 strain. The desired human TNF expression vector (approximately 3.9K
bp) was selected, and this expression vector was named pKF4102.

実施例5(ヒトTNF変換体発現ベクターの構築)(1
)第5図に従って説明する。
Example 5 (Construction of human TNF transformant expression vector) (1
) This will be explained according to FIG.

前記実施例3て得られたプラスミドpUA44を、前記
方法に準じ、制限酵素EcoRIおよびHindIII
で切断し、ヒトTNF遺伝子(全域を含む約480bp
)のDNA断片をアガロースゲル電気泳動により分離精
製した。一方、Messingら(Methods i
nEnzymology、 153 、3 (1987
))によって開発された一木組プラスミドDNA調製用
プラスミドベクターpUcl19  (宝酒造より人手
)を、同様にして、制限酵素EcoRIおよびHind
llIで切断し、IC領域を含む約3.2KbpのDN
A断片をアガロースケル電気泳動により分離精製した。
The plasmid pUA44 obtained in Example 3 was treated with restriction enzymes EcoRI and HindIII according to the method described above.
The human TNF gene (approximately 480 bp including the entire region) was cut with
) DNA fragments were separated and purified by agarose gel electrophoresis. On the other hand, Messing et al.
nEnzymology, 153, 3 (1987
)) The plasmid vector pUcl19 for Ichikigumi plasmid DNA preparation (manual from Takara Shuzo) was treated with the restriction enzymes EcoRI and Hind.
Cut with llI to create approximately 3.2 Kbp DNA including IC region.
The A fragment was separated and purified by agarose gel electrophoresis.

このIC領域(M13ファージDNAのinterge
nic region)の存在により、プラスミドpU
cl19は、ヘルパーファージM13KO7感染後優先
的に一本鎖DNAとなりファージ粒子に包み込まれ菌体
外に放出される。上記で精製したヒトTNF遺伝子全域
を含む約480bpのDNA断片とIC領域を含む約3
.2KbpのptJc119断片を前記に準じてT4 
DNAリガーゼを用いて連結し、前記実施例3の方法に
準じてE、 coli K−12JM83株に導入した
。得られた形質転換体の中より、目的のプラスミド(約
3.7Kbp)を有するクローンを選択し、このクロー
ンをpuct 19−hTNF/JM83と命名し、プ
ラスミドをpUcl 19−hTNFと命名した。
This IC region (interg of M13 phage DNA)
nic region), plasmid pU
After infection with helper phage M13KO7, cl19 preferentially becomes a single-stranded DNA, is encapsulated in phage particles, and is released outside the bacterial cell. The approximately 480 bp DNA fragment containing the entire human TNF gene purified above and the approximately 3 bp DNA fragment containing the IC region.
.. The 2Kbp ptJc119 fragment was inserted into T4 as described above.
The resultant was ligated using DNA ligase, and introduced into E. coli K-12JM83 strain according to the method of Example 3 above. A clone having the desired plasmid (approximately 3.7 Kbp) was selected from among the obtained transformants, and this clone was named puct 19-hTNF/JM83, and the plasmid was named pUcl 19-hTNF.

上記で得たプラスミドpeel 19−hTNFを、そ
のDNA内にウラシルを取り込ませ保持するために、前
記実施例3の方法に準じて、塩化カルシウム法により作
製した大腸菌CJ236株(dut−、ung−)のコ
ンピテントセルに導入した。CJ236株はチミジン合
成酵素遺伝子に変異(duじ)を持つため、チミンの替
わりにウラシルを取り込んだDNAを作ることかでき、
さらにung−変異によりそのウラシルをDNA中に保
持しておくことかできる。このCJ236株はバイオ・
ラドより入手した。上記導入により得られたクローン(
pUcl19−hTNF/CJ236)をヘルパーファ
ージM13KO7(宝酒造社より入手)の感染後、l 
00 tt g/ml!アンピシリン、70μg/ml
カナマイシンおよび30μg / m I!シクロムフ
ェニコールを含む2XYTブロース(1,6%トリプト
ン、l 96酵母エキス、0.5%NaCl及びp17
.6)にて培養することにより、目的のウラシルを導入
した一重鎖プラスミドDNA (約3.7Kbases
)をファージ粒子に包み込んだ形で菌体外に放出させた
。放出させたファージ粒子を培養下漬より回収し、−木
組ファージDNAの調製方法に準じて、目的の一重鎖プ
ラスミドDNAを調製した。
In order to incorporate and retain uracil into the DNA of the plasmid peel 19-hTNF obtained above, Escherichia coli strain CJ236 (dut-, ung-) was prepared by the calcium chloride method according to the method of Example 3 above. were introduced into competent cells. Because the CJ236 strain has a mutation (duji) in the thymidine synthase gene, it can create DNA that incorporates uracil instead of thymine.
Furthermore, the uracil can be retained in the DNA by the ung mutation. This CJ236 strain is bio-
Obtained from Rad. Clones obtained by the above introduction (
pUcl19-hTNF/CJ236) was infected with helper phage M13KO7 (obtained from Takara Shuzo Co., Ltd.).
00tt g/ml! Ampicillin, 70μg/ml
Kanamycin and 30 μg/m I! 2XYT broth containing cyclophenicol (1,6% tryptone, l96 yeast extract, 0.5% NaCl and p17
.. 6), single-stranded plasmid DNA (approximately 3.7 Kbases) containing the desired uracil
) was encapsulated in phage particles and released outside the bacterial cells. The released phage particles were collected from the culture medium, and the desired single-stranded plasmid DNA was prepared according to the method for preparing Kigumi phage DNA.

(2)次に第6図に従って説明する。(2) Next, explanation will be given according to FIG.

プラス鎖オリゴヌクレオチドを用いて、ヒトTNF遺伝
子に対し変異導入を行うために、配列表記列番号5で示
したプライマー4291、同4292及び同4293を
デザインした。このオリゴヌクレオチドの化学合成及び
精製は、前記実施例2の方法に準じて行った。
Primers 4291, 4292, and 4293 shown in sequence number 5 were designed to introduce mutations into the human TNF gene using a positive-strand oligonucleotide. Chemical synthesis and purification of this oligonucleotide were performed according to the method of Example 2 above.

ヒトTNF遺伝子への部位特異的変異導入は、バイオ・
ラドのシステム(Muta−GeneoMin vit
r。
Site-specific mutation introduction into the human TNF gene is a biotechnology
Rad's system (Muta-GeneoMin vit
r.

mutagenesis kit)に準じて行った。す
なわち、上記で作製した約0.5μgのプライマーの5
′末端を、前記方法に準じて、T4ポリヌクレオチドキ
ナーゼによりリン酸化した一部と、先に調製したウラシ
ル導入−重鎖プラスミドDNA (pUc 119hT
NF)の約2000gとの間で、I Oμlのアニーリ
ング・バッファ −(20mM Tris−H(J’ 
p)17.4゜2 mM MgCA 2及び50 mM
 NaCJ’ )中にてアニーリング(約70°Cに加
温後徐冷)を行った。アニリング終了後、10倍シンセ
シス・バッファー(5mM各デオキシリボヌクレオチド
三リン酸(dATP、dGTP、 dcTP及びTTP
) 、10mM ATP、 100mM TrisHC
ffpH7,4,50mM MgC12及び20mM 
DTT)を1/10容量加え、■ユニットのT4 DN
Aポリメラーゼおよび2〜4ユニツトのT4 DNAリ
ガーゼを用いて二本鎖化反応(37°C及び90分間)
を行った。TEバッツノ −(lomM Tris−H
CJ’ pH7,5及び1mM EDTA)を約8容量
加え、凍結することにより反応を停止した。前記実施例
3の方法に準じて、塩化カルシウム法により作製したE
、coli K−12TGI株(ung” :アマシャ
ム社)のコンピテントセルに、上記反応液を処理し二本
鎖DNAを導入した。
mutagenesis kit). That is, about 0.5 μg of the primer prepared above
' end was phosphorylated with T4 polynucleotide kinase according to the method described above, and the previously prepared uracil-introduced heavy chain plasmid DNA (pUc 119hT
NF) and approximately 2000 g of I Oμl annealing buffer (20 mM Tris-H (J'
p) 17.4゜2mM MgCA 2 and 50mM
Annealing (heating to about 70°C and then slow cooling) was performed in NaCJ'. After annealing, add 10x synthesis buffer (5mM each deoxyribonucleotide triphosphate (dATP, dGTP, dcTP, and TTP)
), 10mM ATP, 100mM TrisHC
ffpH7, 4, 50mM MgC12 and 20mM
Add 1/10 volume of DTT) and T4 DN of the unit.
Double stranding reaction using A polymerase and 2-4 units of T4 DNA ligase (37°C and 90 minutes)
I did it. TE Batsuno-(lomM Tris-H
The reaction was stopped by adding approximately 8 volumes of CJ' (pH 7.5 and 1 mM EDTA) and freezing. E produced by the calcium chloride method according to the method of Example 3 above.
The above reaction solution was treated with the double-stranded DNA into competent cells of E. coli K-12TGI strain (ung'': Amersham).

uB+株にヘテロ二本鎖DNAを導入することにより、
鋳型であるウラシルを含むDNA鎖は不活性化され複製
の対象とならない。そのため変異の導入頻度は50%を
上回る効率なものとなる。得られた形質転換体の中より
、変異導入のために使用したプライマーをプローブとし
たコロニー・ノーイブリダイゼーション法を用いて、目
的の変換体DNAを含むプラスミド(約3.7Kbp)
を有するクローンを選択した。選択されたクローンにつ
いて、そのプラスミドの変異導入部位周辺の塩基配列を
ダイデオキシ法CF、 Sanger :前出〕により
調べ、デザイン通りの変換体DNAに変異していること
を確認した。これらのプラスミドをそれぞれpUC11
9−F4291 、 pUcl19−F4292及びp
Ucl 19−F4293と命名した。
By introducing hetero double-stranded DNA into the uB+ strain,
The DNA strand containing uracil, which is a template, is inactivated and is not a target for replication. Therefore, the mutation introduction frequency becomes more than 50% efficient. From among the obtained transformants, a plasmid (approximately 3.7 Kbp) containing the desired transformant DNA was extracted using the colony hybridization method using the primer used for mutation introduction as a probe.
A clone with the following was selected. For the selected clones, the nucleotide sequence around the mutation introduction site of the plasmid was examined by the dideoxy method CF (Sanger, supra), and it was confirmed that the transformant DNA had been mutated as designed. These plasmids were each called pUC11.
9-F4291, pUcl19-F4292 and p
It was named Ucl 19-F4293.

変異導入により得られた目的のヒトTNF変換体遺伝子
を、実施例4のヒトTNF発現ベクターの構築方法に準
じて、tacプロモーターを有する発現ベクターPK!
(101に組み込みヒトTNF変換体発現ベクターを構
築した。ヒトTNF変換体遺伝子(約480bp)は、
上記で得られた約3.7KbpのプラスミドpUc11
9−F4291 、 pUc119−F4292および
pUcl 19−F4293より、前記方法に準じて、
それぞれ、制限酵素EcoRIおよびHindIIIに
よる切断後分離精製した。目的とするそれぞれのヒトT
NF変換体発現ベクター(pKF4291 、 pKF
4292及びpKF4293)は、ヒトTNF発現ベク
ター(pKF4102)と同様、宿主としてE、col
i I(−12JM103株を用いて取得した。
The target human TNF converter gene obtained by mutagenesis was transformed into an expression vector PK! having a tac promoter according to the method for constructing a human TNF expression vector in Example 4.
(A human TNF converter expression vector was constructed by integrating into 101.The human TNF converter gene (approximately 480 bp) was
Approximately 3.7 Kbp plasmid pUc11 obtained above
9-F4291, pUc119-F4292 and pUcl 19-F4293 according to the above method,
They were separated and purified after cleavage with restriction enzymes EcoRI and HindIII, respectively. Each target human T
NF converter expression vector (pKF4291, pKF
4292 and pKF4293), similar to the human TNF expression vector (pKF4102), use E. col as a host.
i I (obtained using -12JM103 strain.

上記3種類の変換体発現ベクターは、発現誘導により、
以下に示す変換を有する新規生理活性ポリペプチドを大
腸菌内に生産する。
The above three types of transformant expression vectors can induce the following:
A novel bioactive polypeptide with the transformations shown below is produced in E. coli.

ベクターpKF4291 :ポリペプチドF4291(
ヒトTNFの68番目のProをAspに変換)をコー
ドする。
Vector pKF4291: Polypeptide F4291 (
The 68th Pro of human TNF is converted to Asp).

ベクターpKF4292 :ポリペプチドF4292(
ヒトTNFの68番目のProをMetに変換)をコー
ドする。
Vector pKF4292: Polypeptide F4292 (
The 68th Pro of human TNF is converted to Met).

ベクターI]KF4293 :ポリペプチドF4293
(ヒトTNFの68番目のProをTyrに変換)をコ
ードする。
Vector I] KF4293: Polypeptide F4293
(Conversion of Pro at position 68 of human TNF to Tyr).

実施例6(ヒトTNF及びヒトTNF変換体の大腸菌に
よる発現及び精製) 実施例4で得られたヒトTNF発現ベクター(pl(F
4102)及び実施例5で得られたヒトTNF変換体発
現ベクター(pKF4291. pKF4292 、p
KF4293)を有するE、 coli K−12JM
103株を、25〜50μg/mlアンピシリンおよび
o、 oot%ビタミンBlを含むM9培地(0,69
6Na2HPO<、0.3%に82PO,,0,05%
NaCi’、0.1%NH4Cl 、 2mM MgS
O4,0,2%グルコース及び0.1mM CaCl 
2) 20 m lに接種し、37°C,18時時間上
う培養を行った。この培養液20m1を上記培地lリッ
トル中に加え、37°C12〜3時間振どう培養を行っ
た。次いで、イソプロピル−β−D−チオガラクトピラ
ノシド(IPTG)を最終濃度1mMとなるように添加
し、さらに37°C,18時間振どう培養を続けた。
Example 6 (Expression and purification of human TNF and human TNF transformants by E. coli) The human TNF expression vector (pl(F) obtained in Example 4)
4102) and the human TNF transformant expression vector (pKF4291. pKF4292, pKF4292, pKF4292) obtained in Example 5.
E. coli K-12JM with KF4293)
103 strain was cultured in M9 medium (0,69
6Na2HPO<,0.3% to 82PO,,0,05%
NaCi', 0.1% NH4Cl, 2mM MgS
O4, 0.2% glucose and 0.1mM CaCl
2) It was inoculated into 20 ml and cultured at 37°C for 18 hours. 20 ml of this culture solution was added to 1 liter of the above medium, and cultured with shaking at 37°C for 12 to 3 hours. Next, isopropyl-β-D-thiogalactopyranoside (IPTG) was added to a final concentration of 1 mM, and culture with shaking was continued at 37°C for 18 hours.

遠心分離操作による大腸菌菌体の回収後、TPバッファ
ー(10mM Tris−H(J’ pH8,0及び1
00 μM PMSF)を用いて菌体の洗浄を行った。
After collecting E. coli cells by centrifugation, TP buffer (10mM Tris-H (J' pH 8, 0 and 1)
The bacterial cells were washed using 00 μM PMSF).

洗浄後、菌体ダラム当たりlO容量(rrl)のTPバ
ッファーに菌体を懸濁させ、超音波発生装置(ヒート・
システムズ;モデルW−225)を用いて菌体を超音波
破砕処理した。得られた懸濁液を遠心分離することによ
り、菌体残渣を除去し上清画分を回収した。この超音波
破砕処理以降の精製工程は、おもに低温下(0°C〜4
°C)で行った。
After washing, the bacterial cells were suspended in TP buffer with a volume of 10 (rrl) per bacterial duram, and the cells were placed in an ultrasonic generator (heat generator).
The bacterial cells were subjected to ultrasonic disruption using a Microbial System, Model W-225). The resulting suspension was centrifuged to remove bacterial cell residue and collect the supernatant fraction. The purification process after this ultrasonic crushing treatment is mainly carried out at low temperatures (0°C to 4°C).
°C).

この上清を0.45μmフィルターにてろ過した後、セ
パビーズFP−DA13 (三菱化成工業)を用いた陰
イオン交換クロマトグラフィー(カラムサイズ:φ2.
5 X 1.5 cm及び流速:0.5mA/分)で分
画し、後記5DS−ポリアクリルアミドゲル電気泳動及
びL929細胞を用いた実施例7の方法に準じて活性の
有無を検定することによって活性画分を得た。溶出には
NaClを含むTPバッファーを用い、NaCi7濃度
を0.05Mから0.1M、0.2M、0.5Mへと段
階的に上げ、ヒトTNFはO,1MNa(J’で、ヒト
TNF変換体(F429L F4292及びF4293
)は0.5 M Na(J’でそれぞれ溶出した。
After filtering this supernatant with a 0.45 μm filter, anion exchange chromatography (column size: φ2.
5 x 1.5 cm and flow rate: 0.5 mA/min) and assayed for the presence or absence of activity according to the 5DS-polyacrylamide gel electrophoresis described below and the method of Example 7 using L929 cells. An active fraction was obtained. A TP buffer containing NaCl was used for elution, and the NaCi7 concentration was increased stepwise from 0.05M to 0.1M, 0.2M, and 0.5M. Body (F429L F4292 and F4293
) eluted with 0.5 M Na (J'), respectively.

さらに大腸菌菌体由来のエンドトキシン等を除去するた
めに、核酸・エンドトキシン除去剤C−9(栗田工業製
造、大日本製薬販売)処理を添付マニュアルに準じて行
った。かくして、ヒトTNF及びヒトTNF変換体の1
段階精製試料を得た。
Furthermore, in order to remove endotoxin and the like derived from E. coli cells, treatment with a nucleic acid/endotoxin removal agent C-9 (manufactured by Kurita Kogyo, sold by Dainippon Pharmaceutical) was performed according to the attached manual. Thus, one of human TNF and human TNF converters.
Step-purified samples were obtained.

この試料を使用して、後記実施例7及び8の抗腫瘍活性
の評価を行った。
Using this sample, the antitumor activity of Examples 7 and 8 described later was evaluated.

上記試料を0.20μmフィルターにてろ過した後、F
PLCシステムによる制御下のモノQ■(HR10/1
0及びHR515)プレパックカラム(ファルマシアL
KBバイオテクノロジー社製)を用いた陰イオン交換ク
ロマトグラフィーで、NaClを含むTPQバッファ 
−(20mM Tris−HCi7 pH8,0及び1
0MM PMSF)によって溶出し、分画を後記5DS
−ポリアクリルアミドゲル電気泳動及びL929細胞を
用いた実施例7の方法に準じて活性の有無を検定するこ
とによって活性画分を得た。溶出方法は、FPLCシス
テムの制御下で下記プログラムに従って行った。第3ス
テツプは、精製純度を上げるために5DS−ポリアクリ
ルアミドゲル電気泳動において単一バンドとなるまで数
回繰り返した。
After filtering the above sample with a 0.20 μm filter, F
Things Q■ (HR10/1) under control by PLC system
0 and HR515) prepacked column (Pharmacia L
TPQ buffer containing NaCl was analyzed by anion exchange chromatography using KB Biotechnology Co., Ltd.
-(20mM Tris-HCi7 pH8,0 and 1
0MM PMSF) and fractionated with 5DS as described below.
- An active fraction was obtained by assaying for the presence or absence of activity according to the method of Example 7 using polyacrylamide gel electrophoresis and L929 cells. The elution method was performed according to the following program under the control of the FPLC system. The third step was repeated several times until a single band was obtained in 5DS-polyacrylamide gel electrophoresis to increase purification purity.

第1ステップ:モノQ■(HR10/lo)カラム使用
(流速:4m11分) 0〜5分; 0−0.2M NaC1直線濃度勾配5〜
16分; 0.2 M NaC178〜IO分; 0.
2−0.5 M NaC]直線濃度勾配20〜24分;
 0.5 M NaCf上記方法に従った活性画分の分
画結果(NaC1濃度及び保持時間)は、ヒトTNFが
0.2M、5.3分、ヒトTNF変換体F4291が0
.2M、5.6分、同F 4292が0.2M、5.3
分及び同F 4293か0.2M。
1st step: Use MonoQ■ (HR10/lo) column (flow rate: 4ml 11min) 0-5min; 0-0.2M NaCl linear concentration gradient 5-
16 min; 0.2 M NaC178~IO min; 0.
2-0.5 M NaC] linear concentration gradient 20-24 minutes;
0.5 M NaCf The fractionation results (NaC1 concentration and retention time) of the active fraction according to the above method were as follows: human TNF was 0.2 M, 5.3 minutes, and human TNF converter F4291 was 0.5 M NaCf.
.. 2M, 5.6 minutes, same F 4292 is 0.2M, 5.3
Minutes and the same F 4293 or 0.2M.

5.8分であった。It was 5.8 minutes.

第2ステップ:モノQ■(HR515)カラム使用(流
速:Lml/分) θ〜2.5分; O−0,2M NaCl!直線濃度勾
配2.5〜8分; 0.2 M NaC178〜IO分
; 0.2−0.5 M Na(J’直線濃度勾配lO
〜12分−〇。5MNaCn 上記方法に従った活性画分の分画結果(NaCJ’濃度
及び保持時間)は、ヒトTNFが0.2M、3.7分、
ヒトTNF変換体F 4292が0.2M、4.7分及
び同F 4293か0.2M、3.7分であった。
2nd step: Use MonoQ■ (HR515) column (flow rate: Lml/min) θ~2.5 min; O-0,2M NaCl! Linear concentration gradient 2.5-8 min; 0.2 M NaC178-IO min; 0.2-0.5 M Na (J' linear concentration gradient lO
~12 minutes-〇. 5M NaCn The fractionation results (NaCJ' concentration and retention time) of the active fraction according to the above method are as follows: human TNF was 0.2M, 3.7 minutes,
Human TNF converter F 4292 was 0.2M, 4.7 minutes, and human TNF converter F 4293 was 0.2M, 3.7 minutes.

第3ステップ:モノQ@(HR515)カラム使用(流
速:1ml/分) θ〜6分; O−0,15M NaC/直線濃度勾配6
〜11分; O,l 5−0.2M Na(J’直線濃
度勾配置1−13分; 0.2−0.5 M NaC#
直線濃度勾配置3〜15分; 0.5 M NaCn上
記方法に従った活性画分の分画結果(NaCn濃度及び
保持時間)は、ヒトTNFがO,16M、6.5分、ヒ
トTNF変換体F 4291が0.18M、7.1分、
同F 4292が0.16M、7.3分及び同F 42
93かO,16M、6.9分であった。
3rd step: Use MonoQ@(HR515) column (flow rate: 1 ml/min) θ~6 min; O-0,15M NaC/linear concentration gradient 6
~11 min; O,l 5-0.2 M Na (J' linear concentration gradient position 1-13 min; 0.2-0.5 M NaC#
Linear concentration gradient for 3 to 15 minutes; 0.5 M NaCn The fractionation results (NaCn concentration and retention time) of the active fraction according to the above method are as follows: Body F 4291 is 0.18M, 7.1 minutes,
The same F 4292 is 0.16M, 7.3 minutes and the same F 42
It was 93 O, 16M, 6.9 minutes.

かくしてヒトTNF及びヒトTNF変換体の精製試料を
得た。この試料を使用して後記実施例7の抗腫瘍活性の
評価を行った。
Purified samples of human TNF and human TNF converters were thus obtained. This sample was used to evaluate the antitumor activity in Example 7 described below.

上記精製の過程および精製試料についてSDSポリアク
リルアミドケル電気泳動を行い、ヒI・TNF及び変換
体ポリペプチドの発現および精製の確認をした。各試料
を10+y+M DTTを含有するLaemml i’
 sサンプル6バツフ7− (62,5mM Tris
H(J? pt(6,8,2%SDS 、0.01%B
PB及び10%グリセロール)に加え、Laemmli
  (Nature、 227630 (1970))
の方法に準じ、15%の分離用ゲルを用いて泳動を行っ
た。電気泳動終了後、分離用ゲル中の蛋白質をクマシー
・ブリリアント・ブルーで染色することにより確認をし
た。第7図にその結果の一部を示した。それぞれの発現
ベクタによるヒトTNF及び変換体ポリペプチドの発現
量はほぼ同程度であり、得られた染色ゲルをクロマト・
スキャナー(島原、C5−920型)にかけてその発現
効率を算出したところ、大腸菌総菌体蛋白質の約20%
であった。また、最終精製試料は、得られた染色ケルに
おいて単一バンドであった。
The above purification process and the purified sample were subjected to SDS polyacrylamide gel electrophoresis to confirm the expression and purification of human I TNF and the converter polypeptide. Each sample was treated with Laemml i' containing 10+y+M DTT.
s sample 6 buffer 7- (62,5mM Tris
H(J?pt(6,8,2%SDS, 0.01%B
PB and 10% glycerol) plus Laemmli
(Nature, 227630 (1970))
Electrophoresis was performed using a 15% separation gel according to the method of . After the electrophoresis was completed, the proteins in the separation gel were confirmed by staining with Coomassie Brilliant Blue. Figure 7 shows some of the results. The expression levels of human TNF and converter polypeptide by each expression vector were approximately the same, and the resulting stained gel was chromatographed.
When the expression efficiency was calculated using a scanner (Shimabara, C5-920 type), it was approximately 20% of the total E. coli cell protein.
Met. Also, the final purified sample had a single band in the resulting staining cell.

その泳動位置より、ヒトTNF及び変換体ポリペプチド
の分子量を算出し第1表に示した。
The molecular weights of human TNF and converter polypeptide were calculated from the electrophoresis positions and are shown in Table 1.

なお、蛋白質の物性の一つとして、ヒトTNF及び変換
体ポリペプチドの等電点をアンフオライン(L K B
社製)を用いた等電点ゲル電気泳動法により測定し、得
られた結果を第1表に示した。
In addition, as one of the physical properties of proteins, the isoelectric points of human TNF and converter polypeptides are determined by ampholine (LKB
The results are shown in Table 1.

第1表 ヒトTNF及び変換体ポリペプチドの等電点及
び分子量 変換体ポリペプチド (変換部位/アミノ酸) ヒトTNF F 4291(” ”Pro+Asp)F 4292(
’ ”Pro−+Met)F 4293(6”Pro→
Tyr) 等電点 5.6 5.4 5.6 5.6 分子量 (Kd) 17、O 17,0 17、O I7.0 実施例? (in vitro抗腫瘍活性の評価)実施
例6で得られたヒトTNF及びヒトTNF変換体ポリペ
プチドの一段階精製試料及び精製試料について、マウス
由来結合組繊細胞L 929(ATCCCCLI)に対
する細胞傷害活性をAggarwalら(J。
Table 1 Isoelectric points and molecular weights of human TNF and converter polypeptides (conversion sites/amino acids) Human TNF F 4291 (""Pro+Asp) F 4292 (
' ”Pro-+Met)F 4293(6”Pro→
Tyr) Isoelectric point 5.6 5.4 5.6 5.6 Molecular weight (Kd) 17, O 17,0 17, O I7.0 Example? (Evaluation of in vitro antitumor activity) Cytotoxic activity against mouse-derived connective tissue cell L 929 (ATCCCCLI) of the one-step purified sample and purified sample of human TNF and human TNF converter polypeptide obtained in Example 6. Aggarwal et al. (J.

Biol、 Chem、、 260.2345 (19
85) )の方法に準じて求めた。すなわち、96ウエ
ルの組織培養用のマイクロプレート(コーニング社製)
に3XIO’細胞10.1ml/ウェルでL929細胞
を植え、5%炭酸ガス存在下37°Cで一晩培養した。
Biol, Chem, 260.2345 (19
85)). That is, a 96-well tissue culture microplate (manufactured by Corning)
L929 cells were seeded at 10.1 ml/well of 3XIO' cells and cultured overnight at 37°C in the presence of 5% carbon dioxide gas.

培地としては、10%のウシ胎児血清を含むDulbe
ccoによって修飾されたイーグルのミニマム・エッセ
ンシャル培地(シグマ社製)を用いた。翌日、最終濃度
lμg/mlのアクチノマイシンDを添加した上記培地
に培地を交換し、この培地にて段階希釈した試料を各ウ
ェルに処理した。さらに20時間の培養後、0.5%ク
リスタル・バイオレット溶液(0,5%クリスタル・バ
イオレット/20%メタノール)にてプレートに付着し
た生細胞を染色(室温、15分間)した。l mM C
aCl2及び1mMMgCl!2を含むリン酸バッフy
 −PBS (lomM Na ・K phospha
te 、 0.8%Na(J’及び0.02%KCj7
)で充分洗浄した後、30%エタノールを含む0.01
N塩酸溶液0.1mnを用いてプレートに残ったクリス
タル・バイオレットを抽出し、その吸光度(A492)
をEIAリーダー(バイオ・ラド社製、モデル2550
)で測定した。この吸光度は生存細胞数に比例する。そ
こで、試料無処理ウェルの吸光度の50%の値に相当す
る吸光度を示すウェルにおける試料の最終希釈率を求め
、この試料希釈率の逆数をその試料の1rrl当たりの
ユニット数〔ユニット/m17)と定義する。
As a medium, Dulbe containing 10% fetal bovine serum was used.
Eagle's Minimum Essential Medium modified by cco (manufactured by Sigma) was used. The next day, the medium was replaced with the above medium supplemented with actinomycin D at a final concentration of 1 μg/ml, and samples serially diluted with this medium were treated in each well. After further culturing for 20 hours, the living cells attached to the plate were stained with a 0.5% crystal violet solution (0.5% crystal violet/20% methanol) (room temperature, 15 minutes). lmM C
aCl2 and 1mM MgCl! Phosphate buffer containing 2
-PBS (lomM Na ・K phospha
te, 0.8% Na (J' and 0.02% KCj7
), and then 0.01 containing 30% ethanol.
The crystal violet remaining on the plate was extracted using 0.1 mN of N hydrochloric acid solution, and its absorbance (A492) was measured.
using an EIA reader (Bio-Rad, model 2550)
) was measured. This absorbance is proportional to the number of viable cells. Therefore, the final dilution rate of the sample in the well showing the absorbance corresponding to 50% of the absorbance of the sample-untreated well is determined, and the reciprocal of this sample dilution rate is calculated as the number of units per rrl of the sample [units/m17]. Define.

上記方法に準じて求めたL929細胞傷害活性(ユニッ
ト/mA)から各試料の比活性(ユニット/ mg−p
rotein)を算出するために、各試料の蛋白定量を
行った。定量はBradford法(Anal。
The specific activity (unit/mg-p) of each sample was determined from the L929 cytotoxic activity (unit/mA) determined according to the above method.
In order to calculate protein protein (rotein), protein quantification of each sample was performed. Quantification was performed using the Bradford method (Anal.

Biochem、、 72.248 (1976))に
準じ、標準試料としてウシ血清アルブミンを用いて蛋白
濃度(mg/mn)を求めた。これらの結果より、ヒト
TNF及びヒトTNF変換体試料について算出した比活
性を第2表に示した。
Biochem, 72.248 (1976)), protein concentration (mg/mn) was determined using bovine serum albumin as a standard sample. Based on these results, the specific activities calculated for human TNF and human TNF converter samples are shown in Table 2.

第2表 ヒトTNF及び変換体ポリペプチドのL929
細胞傷害活性 ヒトTNF        2.7xlO78,0xl
O7F4291(”Pro−+Asp)  6.2xl
O62,4xlO7F4292(”Pro−+Met)
   6.2XlO’    3.8x107F429
3(”Pro−+Tyr)  3.8xlO63,9x
107上記第2表からヒトTNF変換体ポリペプチドは
ヒトTNFと同様マウス由来結合組繊細胞L929に対
する細胞傷害活性作用を有することかわかる。
Table 2 Human TNF and converter polypeptide L929
Cytotoxic active human TNF 2.7xlO78,0xl
O7F4291 (“Pro-+Asp) 6.2xl
O62,4xlO7F4292(”Pro-+Met)
6.2XlO' 3.8x107F429
3(”Pro-+Tyr) 3.8xlO63,9x
107 From Table 2 above, it can be seen that the human TNF converter polypeptide has the same cytotoxic activity against mouse-derived connective tissue cell L929 as human TNF.

実施例8 (in vivo抗腫瘍活性の評価)実施例
6て得られたヒトTNF及びヒトTNF変換体の一段階
精製試料について、マウス可移植線維芽肉腫MethA
腫瘍に対する抗腫瘍治療活性を求めた。試験は、生理食
塩水に懸濁したlXl06細胞/ 0.2 m I!の
MethA腫瘍細胞をBALB/c 7ウス(雄、5週
令、チャールズ・リバー)の背中部皮下に移植し、8日
後腫瘍径か6〜lou+mに達したのを確認し、生理食
塩水にて段階希釈した試料(0,2rrl/マウス)を
尾静脈より投与することにより行なった。致死量を最高
投与量とし、数段階の希釈により各投与試料を作製した
Example 8 (Evaluation of in vivo antitumor activity) Regarding the one-step purified samples of human TNF and human TNF converters obtained in Example 6, mouse transplantable fibrosarcoma MethA
Antitumor therapeutic activity against tumors was determined. The test consisted of lXl06 cells suspended in saline/0.2 m I! MethA tumor cells were subcutaneously transplanted into the back of a BALB/c 7 mouse (male, 5 weeks old, Charles River), and after 8 days, it was confirmed that the tumor had reached a diameter of 6 to lou+m, and then treated with physiological saline. The test was carried out by administering serially diluted samples (0.2 rrl/mouse) through the tail vein. The lethal dose was taken as the highest dose, and each dose sample was prepared by dilution in several stages.

投与装置2週間、腫瘍増殖等の観察を続けた。Observation of tumor growth, etc. was continued for 2 weeks using the administration device.

腫瘍増殖については、腫瘍容積(腫瘍塊の長径×短径2
/2)を計測し、試料投与日(0日)の腫瘍容積に対す
る腫瘍容積率を求め、この値か2または5となる試料投
与日からの日数(D2またはD5)を算定する。そして
、コントロール群(生理食塩水投与)に対する比率を算
出し、D2%コントロール値及びD596コントロール
値を求めた。
Regarding tumor growth, the tumor volume (major axis x minor axis of tumor mass 2)
/2), determine the tumor volume ratio to the tumor volume on the day of sample administration (day 0), and calculate the number of days from the day of sample administration (D2 or D5) at which this value becomes 2 or 5. Then, the ratio to the control group (physiological saline administration) was calculated, and the D2% control value and D596 control value were determined.

その値が大きい程、腫瘍増殖能か低下しており高い抗腫
瘍活性を示すことを意味する。
The larger the value, the lower the tumor growth ability and the higher the antitumor activity.

上記に準じて得られた結果を第3表に掲載した。The results obtained according to the above are listed in Table 3.

第3表からヒトTNF変換体ポリペプチドはヒトTNF
に比し、死亡率が096のときの最大投与量では腫瘍容
積率か高いので、抗腫瘍治療効果か高いことかわかる。
From Table 3, the human TNF converter polypeptide is human TNF
Compared to this, the tumor volume rate was high at the maximum dose when the mortality rate was 096, which indicates that the antitumor therapeutic effect is high.

配列番号 :2 翫1りの長さ:465 配列の型 ・核酸 鎖の数  ニー重鎖 トポロジー;直鎖状 配列の種類:他の核酸合成りNA 配列 (イ) TCATCTrCTCGAACCCCGAG TGAC
AAGCCT GTAGCCCATG ■訂AGCAA
A CCCTCAAGCTGMGGGCAGCTCCA
GTGGCT GMCCGCCGG GCCMTGCC
CTCCTGGCTM TGGAGT部AG耐ソリ番号
 :3 酊jりの長さ:474 配列の型 :核 酸 鎖の数  、二本鎖 トポロジー:直鎖状 fJりの種類:他の核酸合成りNA kνクリ B 1 )番号  :開始コドン(’ATG)からの番
号叶2〕マ又はム:オリゴヌクレオチド作製のための切
断位置(m3)1i111(ff酵素:ヒトTNF遺伝
子構築のために設けた制限酵巽穏忍−−田立 註4〕英小文字:ヒトTNF遺伝子のプラスミドベクタ
ーへの連結のために設けた制限酵鳩腹鉦基九jす配列番
号 =4 翫ツリの長さ:27(U−1)、 50(U−4)、 48(U−7)、 53(U−1の、 50(L−3)、 49(L−6)、 51(L−9)、 飯jりの型 :核酸 鎖の数  ニー重鎖 トポロジー:直鎖状 翫ソリの種類:他の核酸合成りNA 30(U〜2)、49(U−3)、 50(U〜5)、52(U−6)、 49(U−8)、51(U−9)、 29(L−1)、52(L−2)、 50 (L−4)、49(L−5)、 51(L−7)、49(L−8)、 49 (L−10) (発明の効果) 本発明によれば、ヒトTNFのアミノ酸配列において6
8番目のアミノ酸を他のアミノ酸に変換することにより
、ヒトTNFに比し、抗腫瘍活性が高く副作用の低い新
規なヒトTNF変換体か提供される。
Sequence number: 2 Length per strand: 465 Sequence type - Number of nucleic acid strands Knee heavy chain topology; linear Sequence type: Other nucleic acid synthesis NA Sequence (a) TCATCTrCTCGAACCCCGAG TGAC
AAGCCT GTAGCCCATG ■Revised AGCAA
A CCCTCAAGCTGMGGGCAGCTCCA
GTGGCT GMCCGCCGGGCCMTGCC
CTCCTGGCTM TGGAGT section AG anti-slip number: 3 Sequence length: 474 Sequence type: Number of nucleic acid strands, double-stranded topology: Linear fJ type: Other nucleic acid synthesis NA kνcriB 1 ) Number: Number from the start codon ('ATG) 2] M or M: Cutting position for oligonucleotide production (m3) 1i111 (ff enzyme: Restriction enzyme sequence prepared for human TNF gene construction) -Tadate's note 4] Lower case letters: Restriction fermentation pigeon belly button base 9j provided for ligation of human TNF gene to plasmid vector Sequence number = 4 Length of string: 27 (U-1), 50 ( U-4), 48 (U-7), 53 (U-1), 50 (L-3), 49 (L-6), 51 (L-9), Type of rice: Number of nucleic acid strands Knee heavy chain topology: Straight chain type: Other nucleic acid synthesis NA 30 (U~2), 49 (U-3), 50 (U~5), 52 (U-6), 49 (U -8), 51 (U-9), 29 (L-1), 52 (L-2), 50 (L-4), 49 (L-5), 51 (L-7), 49 (L- 8), 49 (L-10) (Effect of the invention) According to the present invention, in the amino acid sequence of human TNF, 6
By converting the 8th amino acid to another amino acid, a novel human TNF converter with higher antitumor activity and lower side effects than human TNF can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は合成オリゴヌクレオチドの連結によ
るヒ)TNF遺伝子の構築方法を、第3図及び第4図は
ヒトTNF発現ベクターの構築方法を並びに第5図及び
第6図は部位特異的変異法によるヒトTNF変換体の遺
伝子の作製方法をそれぞれ説明するための図であり、第
7図は大腸菌により発現されたヒトTNF及びヒトTN
F変換体の精製試料の電気泳動結果を示す図である。 配列番号 =5 配列の長さ:21 (ブライマー4291)21(ブラ
イマー4292) 21(ブライマー4293) 翫jりの型 :核酸 鎖の数  ニー重鎖 トポロジー:直鎖状 翫l11の種類:他の核酸合成りNA 昨二*変異導入塩基〕 U−+ 第 図 ↓ pUc9に組み込む UA41 〔注〕 O−5゛末端リン酸化(−) ・−        (+) 獲得したクローン ptlc9に組み込む pL109に組み込む 獲得したりO−ン pUA4+ UA42 UA43 UA41 第 図 pKK + 01 UA44 pKF4+02 第 3  図 EcoRl /ポリンシュ 第 図 蛋白質分子量マーカー 超音波破砕総画体 超音波破砕上清 ヒトTNF/−段階精製試料 ヒトTNF/精製試料 蛋白質分子量マーカー F4291/−段階精製試料 F4291/精製試料 F4292/−段階精製試料 F4292/精製試料 F4293/−段階精製試1 F4293/精製試料 ←−ヒトTNF変換体 (lT、oにd) 手続補正書(自発) 平成3年7月4日
Figures 1 and 2 show the method for constructing the human TNF gene by ligation of synthetic oligonucleotides, Figures 3 and 4 show the method for constructing the human TNF expression vector, and Figures 5 and 6 show the method for constructing the human TNF gene by linking synthetic oligonucleotides. FIG. 7 is a diagram for explaining the method for producing a gene for a human TNF converter by a mutagenesis method, and FIG.
It is a figure which shows the electrophoresis result of the purified sample of F converter. Sequence number = 5 Sequence length: 21 (Blymer 4291) 21 (Blymer 4292) 21 (Blymer 4293) Chain type: Number of nucleic acid strands Knee heavy chain topology: Straight chain Type of chain: Other nucleic acids Synthetic NA Last two * Mutation-introduced base] U-+ Figure ↓ UA41 to be incorporated into pUc9 [Note] O-5゛ terminal phosphorylation (-) ・- (+) Incorporated into pL109 to be incorporated into the obtained clone ptlc9 O-n pUA4+ UA42 UA43 UA41 Fig. pKK + 01 UA44 pKF4+02 Fig. 3 EcoRl/Polinsch Fig. Protein molecular weight marker F4291/- stage purified sample F4291/ purified sample F4292/- stage purified sample F4292/ purified sample F4293/- stage purified sample 1 F4293/ purified sample ←- human TNF converter (lT, o to d) Procedure amendment (voluntary) July 4, 1991

Claims (1)

【特許請求の範囲】 1、配列表配列番号1で示した1番目のSerから15
5番目のLeuまでで表わされるアミノ酸配列において
、68番目のProが他のアミノ酸により置換された配
列を有することを特徴とするポリペプチド。 2、68番目に置換される他のアミノ酸がアスパラギン
酸、メチオニン又はチロシンである請求項1のポリペプ
チド。 3、配列表配列番号1で示した1番目のSerから15
5番目のLeuまでで表わされるアミノ酸配列において
68番目のProが他のアミノ酸により置換された配列
を有するポリペプチドをコードするDNAを含むことを
特徴とする組換えプラスミド。 4、前記組換えプラスミドがpKF4291、pKF4
292又はpKF4293である請求項3の組換えプラ
スミド。 5、配列表配列番号1で示した1番目のSerから15
5番目のLeuまでで表わされるアミノ酸配列において
68番目のProが他のアミノ酸により置換された配列
を有するポリペプチドをコードするDNAを含む組換え
プラスミドにより形質転換された組換え微生物細胞。 6、前記組換え微生物細胞が大腸菌である請求項5の組
換え微生物細胞。 7、配列表配列番号1で示した1番目のSerから15
5番目のLeuまでで表わされるアミノ酸配列において
68番目のProが他のアミノ酸により置換された配列
を有するポリペプチドをコードするDNAを含む組換え
プラスミドにより形質転換された組換え微生物細胞を培
地中で培養し、当該アミノ酸配列を有するポリペプチド
を産生し分離することを特徴とするポリペプチドの製造
方法。 8、配列表配列番号1で示した1番目のSerから15
5番目のLeuまでで表わされるアミノ酸配列において
68番目のProが他のアミノ酸により置換された配列
を有するポリペプチドを有効成分として含有することを
特徴とする医薬組成物。 9、配列表配列番号1で示した1番目のSerから15
5番目のLeuまでで表わされるアミノ酸配列において
68番目のProが他のアミノ酸により置換され、かつ
そのN末端にMetを有する配列を有することを特徴と
するポリペプチド。 10、配列表配列番号2で示した1番目のTから465
番目のGまでで表わされる塩基配列において202〜2
04番目のProをコードするCCAを他のアミノ酸を
コードするコドンにより置換された配列を有することを
特徴とするDNA。
[Claims] 1. Ser 1 to 15 shown in sequence number 1 in the sequence listing
A polypeptide characterized in that, in the amino acid sequence up to the 5th Leu, Pro at the 68th position is replaced with another amino acid. 2. The polypeptide according to claim 1, wherein the other amino acids substituted at positions 2 and 68 are aspartic acid, methionine, or tyrosine. 3. 15 from the 1st Ser shown in sequence number 1 in the sequence table
1. A recombinant plasmid comprising a DNA encoding a polypeptide having an amino acid sequence up to the 5th Leu in which Pro at position 68 is replaced with another amino acid. 4. The recombinant plasmid is pKF4291, pKF4
4. The recombinant plasmid of claim 3, which is pKF4292 or pKF4293. 5. 15 from the 1st Ser shown in sequence number 1 in the sequence table
A recombinant microbial cell transformed with a recombinant plasmid containing a DNA encoding a polypeptide having an amino acid sequence up to the 5th Leu in which Pro at position 68 is replaced with another amino acid. 6. The recombinant microbial cell according to claim 5, wherein the recombinant microbial cell is Escherichia coli. 7. Ser 1 to 15 shown in sequence number 1 in the sequence table
A recombinant microbial cell transformed with a recombinant plasmid containing a DNA encoding a polypeptide having an amino acid sequence up to the 5th Leu in which Pro at position 68 is replaced with another amino acid is transformed in a culture medium. A method for producing a polypeptide, which comprises culturing, producing and isolating a polypeptide having the amino acid sequence. 8. 15 from the 1st Ser shown in sequence number 1 in the sequence table
1. A pharmaceutical composition comprising, as an active ingredient, a polypeptide having an amino acid sequence up to the 5th Leu, in which Pro at position 68 is replaced with another amino acid. 9. 15 from the 1st Ser shown in sequence number 1 in the sequence table
A polypeptide characterized in that in the amino acid sequence up to the 5th Leu, Pro at position 68 is replaced with another amino acid, and has a Met at its N-terminus. 10, 465 from the 1st T shown in sequence number 2 in the sequence listing
202 to 2 in the base sequence represented by the number G
A DNA characterized by having a sequence in which CCA encoding Pro at position 04 is replaced with a codon encoding another amino acid.
JP2193935A 1990-07-24 1990-07-24 Polypeptide Pending JPH0479880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2193935A JPH0479880A (en) 1990-07-24 1990-07-24 Polypeptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2193935A JPH0479880A (en) 1990-07-24 1990-07-24 Polypeptide

Publications (1)

Publication Number Publication Date
JPH0479880A true JPH0479880A (en) 1992-03-13

Family

ID=16316192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2193935A Pending JPH0479880A (en) 1990-07-24 1990-07-24 Polypeptide

Country Status (1)

Country Link
JP (1) JPH0479880A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056695B2 (en) 2000-03-02 2006-06-06 Xencor TNF-α variants
US7101974B2 (en) 2000-03-02 2006-09-05 Xencor TNF-αvariants
US7244823B2 (en) 2000-03-02 2007-07-17 Xencor TNF-alpha variants proteins for the treatment of TNF-alpha related disorders
US7446174B2 (en) 2001-03-02 2008-11-04 Xencor, Inc. Protein based TNF-α variants for the treatment of TNF-α related disorders
US7662367B2 (en) 2000-03-02 2010-02-16 Xencor, Inc. Pharmaceutical compositions for the treatment of TNF-α related disorders
US7687461B2 (en) 2000-03-02 2010-03-30 Xencor, Inc. Treatment of TNF-α related disorders with TNF-α variant proteins

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056695B2 (en) 2000-03-02 2006-06-06 Xencor TNF-α variants
US7101974B2 (en) 2000-03-02 2006-09-05 Xencor TNF-αvariants
US7244823B2 (en) 2000-03-02 2007-07-17 Xencor TNF-alpha variants proteins for the treatment of TNF-alpha related disorders
US7662367B2 (en) 2000-03-02 2010-02-16 Xencor, Inc. Pharmaceutical compositions for the treatment of TNF-α related disorders
US7687461B2 (en) 2000-03-02 2010-03-30 Xencor, Inc. Treatment of TNF-α related disorders with TNF-α variant proteins
US7446174B2 (en) 2001-03-02 2008-11-04 Xencor, Inc. Protein based TNF-α variants for the treatment of TNF-α related disorders

Similar Documents

Publication Publication Date Title
DK174044B1 (en) Polypeptide derived from human granulocyte colony stimulating factor, and method of preparation thereof, DNA encoding said polypeptide, recombinant plasmid containing said DNA, and microorganisms containing said recombinant plasmid .......
EP0335243B1 (en) Mutant human angiogenin (angiogenesis factor with superior angiogenin activity) genes therefor and methods of expression
US5936066A (en) Recombinant human interleukin-1α
NZ211666A (en) Pharmaceutical compositions comprising tumour necrosis factor and its production via recombinant techniques
JPH05255393A (en) Polypeptide
JPH0866194A (en) Gene carrying code for human tumor necrosis factor mutein
US5519119A (en) Muteins of TNF pharmaceutical compositions and a method of making
JPH0479880A (en) Polypeptide
JPS63304987A (en) Gene engineering production of angiogenins
JP3157571B2 (en) Polypeptide
Maeda et al. The DNA‐binding protein of Pf1 filamentous bacteriophage: amino‐acid sequence and structure of the gene
JPH04182497A (en) Polypeptide
JPH04182498A (en) Polypeptide
JPH04368398A (en) Polypeptide
JPH05271289A (en) Polypeptide
JPH03297388A (en) New tnf variant, production thereof and antitumor agent containing the same variant as active ingredient
JP2675294B2 (en) Human tumor necrosis factor
KR100197110B1 (en) Method of preparing an active human neutrophil chemotactic factor polypeptide
JPH05271290A (en) Polypeptide
JP2579747B2 (en) Novel DNA encoding human interleukin 1
JPS61291598A (en) Fish calcitonin derivative and production thereof
EP0477791B1 (en) Polypeptide
JPH04368397A (en) Polypeptide
JPS60232097A (en) Preparation of human tumor necrotic factor polypeptide
JPH04327599A (en) Novel physiologically active polypeptide