JPH0479738B2 - - Google Patents

Info

Publication number
JPH0479738B2
JPH0479738B2 JP13091884A JP13091884A JPH0479738B2 JP H0479738 B2 JPH0479738 B2 JP H0479738B2 JP 13091884 A JP13091884 A JP 13091884A JP 13091884 A JP13091884 A JP 13091884A JP H0479738 B2 JPH0479738 B2 JP H0479738B2
Authority
JP
Japan
Prior art keywords
straightening
point
narrow
continuous casting
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13091884A
Other languages
Japanese (ja)
Other versions
JPS619951A (en
Inventor
Kosaku Ozawa
Kyomi Yadori
Tooru Matsumya
Koshiro Nonaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13091884A priority Critical patent/JPS619951A/en
Publication of JPS619951A publication Critical patent/JPS619951A/en
Publication of JPH0479738B2 publication Critical patent/JPH0479738B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は彎曲半径3〜5mの低機高多点矯正彎
曲型連続鋳造機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a low machine height multi-point correction curved continuous casting machine having a radius of curvature of 3 to 5 m.

(従来の技術) 従来特開昭56−14062号公報には、低機高の多
点矯正彎曲型連続鋳造機において、各矯正点にお
ける鋳片の矯正内部を0.35%以下の範囲で鋳造す
ることにより、内部割れのない鋳片を製造するこ
とができる提案がある。
(Prior art) Conventional Japanese Patent Application Laid-Open No. 14062/1983 discloses that in a multi-point straightening curved continuous casting machine with a low machine height, the straightened inside of the slab at each straightening point is cast within a range of 0.35% or less. There is a proposal for producing slabs without internal cracks.

ところが、本発明者等の実験によると、広面と
狭面の比が4以上のスラブを彎曲半径3〜5mの
低機高多点矯正彎曲型連続鋳造機において鋳造す
る際、狭面冷却装置が従来観点より鋳型下2m程
度であると、狭面が著しく復熱する部分が生じ、
短片のズレ変形が生ずると共に、矯正歪の集中が
発生した。
However, according to experiments conducted by the inventors, when casting slabs with a ratio of wide face to narrow face of 4 or more in a low machine height multi-point straightening curved continuous casting machine with a curvature radius of 3 to 5 m, the narrow face cooling device From a conventional point of view, if it is about 2m below the mold, there will be a part where the narrow side is extremely reheated,
Misalignment deformation of the short pieces occurred, as well as concentration of correction strain.

(発明の目的) 本発明は、上記内部割れ発生原因を鋭意検討し
た結果、広面と狭面の比が4以上のスラブを内部
割れなく能率よく鋳造することができる彎曲半径
3〜5mの低機高多点矯正彎曲型連続鋳造機を提
供するものである。
(Objective of the Invention) As a result of intensive investigation into the causes of the occurrence of internal cracks, the present invention has developed a low-pressure casting machine with a radius of curvature of 3 to 5 m that can efficiently cast slabs with a wide-to-narrow ratio of 4 or more without internal cracks. A high multi-point correction curved continuous casting machine is provided.

(問題点を解決するための手段) 本発明の要旨は、広面と狭面の比が4以上のス
ラブを鋳造する彎曲半径3〜5mの低機高多点矯
正彎曲型連続鋳造機において、鋳型直下より第1
矯正点位置を越えて狭面冷却装置を配置したこと
にある。
(Means for Solving the Problems) The gist of the present invention is to use a low machine height multi-point straightening curved continuous casting machine with a radius of curvature of 3 to 5 m for casting slabs with a wide-to-narrow ratio of 4 or more. 1st from directly below
This is because the narrow-sided cooling device is placed beyond the correction point position.

以下本発明について説明する。 The present invention will be explained below.

彎曲半径の小さい小円弧連続鋳造機により、鋼
の鋳片を製造する際、鋳片を真直に矯正し、且つ
水平に引き出す必要があるが、この時凝固界面に
作用する内部歪が大きく内部割れを生じ易い。そ
の対策として、矯正歪を分散する多点矯正を行
う。しかしながら、ロール列によつて矯正を行う
ため、ロール径、水平に引き出すための幾何学的
制約より、矯正点数を無制限に増加することはで
きない。
When manufacturing steel slabs using a small arc continuous casting machine with a small radius of curvature, it is necessary to straighten the slabs and draw them out horizontally, but at this time the internal strain acting on the solidification interface is large and may cause internal cracks. tends to occur. As a countermeasure, multi-point correction is performed to disperse correction distortion. However, since the straightening is performed using a row of rolls, the number of straightening points cannot be increased indefinitely due to the roll diameter and geometric constraints for horizontal drawing.

又、歪を小さくするため、矯正点数を増加させ
ようとする程、矯正を早く開始する必要がある。
一方、このような低機高多点矯正彎曲型連続鋳造
機は、矯正完了後最終凝固をさせるまでの水平部
においては、溶鋼静圧が小さいため、バルジング
を生じにくく、高速で鋳造する上で、内部割れが
発生しにくく、高生産性を発揮することができ
る。
Furthermore, in order to reduce distortion, the more the number of correction points is increased, the earlier it is necessary to start correction.
On the other hand, in such a low machine height multi-point straightening curved continuous casting machine, the static pressure of molten steel is small in the horizontal section after straightening is completed and until final solidification, so bulging is less likely to occur and it is difficult to cast at high speed. , internal cracks are less likely to occur and high productivity can be achieved.

しかるに、メニスカスから第1矯正点位置まで
の距離の短かい低機高多点矯正彎曲型連続鋳造機
において、高速で製造することは、即ち薄シエル
での矯正を意味する。従来の彎曲半径が10.5m前
後と大きい1点矯正彎曲型連続鋳造機において
は、矯正時の凝固シエル厚は80〜100mmの厚シエ
ルであり、このような薄シエル(50mm以下)の矯
正で生じる後記する独得の減少は知られていなか
つた。
However, in a low machine height multi-point straightening curved continuous casting machine in which the distance from the meniscus to the first straightening point position is short, manufacturing at high speed means straightening with a thin shell. In conventional single-point straightening curved continuous casting machines with a large radius of curvature of around 10.5 m, the solidified shell thickness during straightening is a thick shell of 80 to 100 mm. There was no known decrease in unique benefits, which will be described later.

広面幅と狭面幅との比が4以上の鋼鋳片いわゆ
るスラブを鋳造する従来型の彎曲半径10.5mの高
機高1点矯正彎曲連続鋳造設備の狭面冷却を第8
図に基き説明する。
The narrow side cooling of the conventional curved continuous casting equipment with a high machine height of 10.5 m and a high machine height of 1 point, which casts steel slabs with a ratio of wide side width to narrow side width of 4 or more, was carried out as part 8.
This will be explained based on the diagram.

1は鋳型、2は該鋳型と同一の一定半径R=
10.5mにおいてロールを配置した円弧部、3は鋳
片を機械的に曲げ戻し直線に矯正する矯正帯、4
は完全に鋳片が凝固するまで支持する水平部であ
る。これら円弧部2、矯正帯3、水平部4のロー
ル間には、広面冷却スプレーが上下に配置され
る。一方狭面は、鋳型直下円弧部では狭面支持ロ
ール5により支持され、狭面冷却スプレー6が配
置される。
1 is the mold, 2 is the same constant radius R= as the mold
3 is a straightening band for mechanically bending back the slab and straightening it into a straight line;
is the horizontal part that supports the slab until it completely solidifies. Wide-surface cooling sprays are arranged above and below between the rolls of the circular arc section 2, correction band 3, and horizontal section 4. On the other hand, the narrow surface is supported by a narrow surface support roll 5 at the arcuate portion directly below the mold, and a narrow surface cooling spray 6 is disposed thereon.

この狭面配置スプレーは、メニスカス7よりせ
いぜい3mまでで終わる。その理由は、狭面スプ
レーの必要性が、主として鋳型1直下の薄シエル
部でバルジングを起し、ブレークアウトが発生す
るのを防止する所にあり、鋳型下2mも注水すれ
ば、凝固シエル厚が充分厚くなり、ブレークアウ
トの心配はなくなるからである。
This narrow surface arrangement spray ends at most 3 m from the meniscus 7. The reason for this is that the need for narrow-sided spraying is mainly to prevent bulging and breakout from occurring in the thin shell directly below the mold 1. This is because the film becomes sufficiently thick and there is no need to worry about breakouts.

このブレークアウト防止の観点からの狭面必要
冷却長は、連鋳機の型式にかかわらずほぼ一定と
考えられる。即ち、第1図に示す彎曲半径3mの
低機高15点矯正連続鋳造機においても、狭面冷却
長をブレークアウト防止の観点から定めて、0.2
%〔C〕鋼の鋳造を起つたが、鋳造サイズは250
mm×1050mm、鋳造速度は1.7m/minの高速鋳造
において、狭面の冷却長は、この場合、メニスカ
スより2mまでであり、矯正帯はメニスカスより
3m(第1矯正点位置)〜7m(第15矯正点位
置)までである。
The required cooling length of the narrow surface from the viewpoint of preventing breakout is considered to be approximately constant regardless of the type of continuous casting machine. That is, even in the low-height 15-point straightening continuous casting machine with a curvature radius of 3 m shown in Fig. 1, the narrow surface cooling length was determined from the viewpoint of breakout prevention, and was set to 0.2.
% [C] I started casting steel, but the casting size was 250.
mm x 1050 mm, casting speed is 1.7 m/min, the cooling length of the narrow surface is up to 2 m from the meniscus, and the straightening zone is from 3 m (first straightening point position) to 7 m (first straightening point position) from the meniscus. 15 orthodontic point positions).

この鋳造条件で次式により矯正内部歪を求める
と、最大位置において、0.23%と充分小さいもの
である。
When the corrected internal strain is calculated using the following formula under these casting conditions, it is found to be sufficiently small at 0.23% at the maximum position.

Si=K√ εui=(D/2−Si) ×(1/Ri−1/Ri−1)×100 ここにSiはロールiにおける凝固シエル厚、li
はロールiのメニスカスよりの距離、Kは凝固定
数であり、25mm・min-1/2である。又Vは鋳造速
度、Dは鋳片厚、Ri、Ri−1はロールiの前後
の彎曲半径である。
Si=K√ εui=(D/2−Si)×(1/Ri−1/Ri−1)×100 where Si is the solidified shell thickness at roll i, li
is the distance of roll i from the meniscus, and K is the coagulation fixation number, which is 25 mm·min -1/2 . Further, V is the casting speed, D is the slab thickness, and Ri and Ri-1 are the curvature radii of the front and rear rolls i.

このように、15点にも矯正歪を分散させている
にもかかわらず、上面に内部割れが発生した。こ
の内部割れは、溶鋼流動を示す負偏析帯を伴つて
おらず、ロールのミスセツトに基くものでないこ
とが明らかな上、広面の冷却は充分で、第2図a
に示す様に、表面温度8が低く割れが上面に限ら
れる事よりもバルジングに基く割れとはとうてい
考られない。
In this way, even though the correction strain was distributed over 15 points, internal cracks occurred on the top surface. This internal crack was not accompanied by a negative segregation zone indicating molten steel flow, and it was clear that it was not caused by a misset of the rolls.
As shown in Figure 2, since the surface temperature 8 is low and the cracks are limited to the upper surface, it is highly unlikely that the cracks are due to bulging.

ところでラジオアイソトープ添加法等により、
割れの開始点を正確に求めたところ、メニスカス
より2mより割れが始まつていることが確認され
た。尚第3図は、Sプリントより観察された割れ
開始点を、次式によりメニスカスよりの位置lc
換算した結果である。
By the way, by radioisotope addition method etc.
When the starting point of the crack was accurately determined, it was confirmed that the crack started from 2 m below the meniscus. FIG. 3 shows the results of converting the crack starting point observed by S-print to the position l c from the meniscus using the following equation.

lc=V・(a+λ)2/K2 ここにaは表面より割れ開始までのシエル厚λ
は凝固界面よりの割れ侵入長であり、ラジオアイ
ソトープ添加テストに基き3mmを用いている。
l c = V・(a+λ) 2 /K 2 where a is the shell thickness λ from the surface to the start of cracking
is the crack penetration depth from the solidification interface, and 3 mm is used based on the radioisotope addition test.

第3図に示される様に、第1矯正点位置の1m
も上方より、矯正割れが生ずることは、バルジン
グ割れでない以上極めて不可解な現象である。し
かし割れが上面に限られることより、何れかの原
因により矯正歪が1m程逆上りし、集中している
ものである。
As shown in Figure 3, 1m from the first correction point position.
The occurrence of straightening cracks from above is an extremely puzzling phenomenon since it is not a bulging crack. However, since the crack is limited to the upper surface, the correction strain reverses by about 1 m due to some reason and is concentrated.

このような現象は従来全く知られていなかつた
が、機内凝固テストの結果、第4図に示す短片オ
シレーシヨンマーク10のズレδsが、第5図に示
すように、メニスカスより2m位置を境に、3m
までの間で急に発生していることが解つた。
Although such a phenomenon was completely unknown in the past, as a result of the in-machine coagulation test, the deviation δs of the short piece oscillation mark 10 shown in Fig. 4 was found to be 2 m below the meniscus as shown in Fig. 5. 3m at the border
It became clear that this had happened suddenly.

このズレ変形は、鋳片が薄シエルであるため、
断面を平面より変形さすエネルギーが小さく、剛
性の小さいところで集中的に変形を生じる。この
ことは、断面が平面を保ちながら、剛性の高いと
ころで矯正が行われるよりも、全エネルギーが少
くて済むので、そのような変形が生ずるものと考
えられる。即ち剛性の弱い部分が優先的に変形す
るため、第6図に示す要素11から要素12の変
形と結果としてズレが観察される。
This misalignment occurs because the slab is a thin shell.
The energy required to deform a cross section is smaller than that of a flat surface, and deformation occurs concentratedly in areas with low rigidity. This is considered to be because such deformation occurs because less total energy is required than when correction is performed in a highly rigid area while keeping the cross section flat. That is, since the parts with weak rigidity are preferentially deformed, deformation of elements 11 to 12 shown in FIG. 6 and resulting displacement are observed.

このズレは、発生位置を詳細にみると、丁度第
2図aの狭面温度9において狭面の冷却が終わ
り、急激に復熱が生ずる領域に対応している。即
ち、鋳造方向狭面の中で不連続且つ弱い部分とな
つている。このような狭面復熱位置には、変形が
集中発生し、前述の内部割れを発生させるのであ
る。そして一旦割れが開口すると、割れは小さな
歪でも成長するため、有害な欠陥になる。
If we look closely at the position where this deviation occurs, it corresponds to the area where the cooling of the narrow surface ends exactly at the narrow surface temperature 9 in FIG. 2a, and reheating occurs rapidly. That is, it is a discontinuous and weak portion within the narrow surface in the casting direction. Deformation concentrates at such narrow surface recuperation positions, causing the aforementioned internal cracks. Once a crack opens, even a small strain will cause the crack to grow and become a harmful defect.

以上の調査をもとに、鋼種、狭面冷却長を種々
変更し、テストを行つた結果を第7図に示す。
又、第2図bは、メニスカスより8mまで狭面冷
却したときの広面温度8及び狭面温度9を示す。
Based on the above investigation, tests were conducted with various changes in steel type and narrow surface cooling length, and the results are shown in FIG. 7.
Moreover, FIG. 2b shows the wide surface temperature 8 and the narrow surface temperature 9 when the narrow surface is cooled to 8 m from the meniscus.

尚第7図の鋳造条件は、電磁鋼の鋳造速度が
0.8m/minと低い他、第1図の条件と同じであ
る。電磁鋼の鋳造速度が遅いのは、極めて内部割
れが発生仕易い事もあるが、バルジングが発生し
易く、ブレークアウトの危険が高いためである。
The casting conditions shown in Figure 7 are based on the casting speed of electromagnetic steel.
Other than the low speed of 0.8 m/min, the conditions are the same as in Figure 1. The reason why the casting speed of electromagnetic steel is slow is that it is extremely prone to internal cracking, but also because it is prone to bulging and has a high risk of breakout.

第7図より、この条件では鋼種により差がある
が、鋳型直下より第1矯正点位置を越えて狭面冷
却装置を配置し、鋳型直下より第1矯正点位置を
越えて狭面冷却を行う事により、内部割れが有効
に防止でき、極めて有効である事が明らかであ
る。
From Figure 7, although there are differences depending on the steel type under these conditions, the narrow-face cooling device is placed from directly below the mold beyond the first straightening point position, and narrow-face cooling is performed from directly below the mold beyond the first straightening point position. It is clear that internal cracks can be effectively prevented by this method, and that this method is extremely effective.

(発明の効果) 本発明は以上述べたように、狭面の復熱を防止
する事により、矯正歪の集中を防止し、彎曲半径
3〜5mの低機高多点矯正彎曲連続鋳造機におい
て、高割れ感受性鋼種を、内部割れを発生させる
ことなく高速鋳造することができるものであり、
工業的に極めて有用である。
(Effects of the Invention) As described above, the present invention prevents the concentration of straightening strain by preventing heat recovery on the narrow surface, and can be used in a low machine height multi-point straightening curved continuous casting machine with a bending radius of 3 to 5 m. , it is possible to cast highly crack-sensitive steel grades at high speed without causing internal cracks,
It is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は3mR低機高15点矯正彎曲型連続鋳造
装置の説明図、第2図はスプレー冷却帯における
表面温度の図表で、aはメニスカスより2mま
で、bは8mまで狭面冷却を行つた場合、第3図
は割れ発生位置を説明する図表、第4図は狭面の
ズレ変形の説明図、第5図はズレの発生位置を説
明する図表、第6図はズレ発生と歪の関係の模式
図、第7図は狭面冷却による内部割れ減少テスト
の図表、第8図は従来型10.5mR高機高1点矯正
彎曲型連続鋳造装置の説明図である。 1……鋳型、2……円弧部、3……矯正帯、4
……水平部、5……狭面支持ロール、6……狭面
冷却装置、11……ズレ発生前の要素、12……
ズレ発生后の要素。
Figure 1 is an explanatory diagram of a 3mR low machine height 15-point straightening curved continuous casting machine, and Figure 2 is a chart of the surface temperature in the spray cooling zone, where a shows narrow-plane cooling up to 2 m from the meniscus and b shows narrow-plane cooling up to 8 m. Fig. 3 is a diagram explaining the position of crack occurrence, Fig. 4 is an illustration of shear deformation of the narrow surface, Fig. 5 is a diagram explaining the position of misalignment, and Fig. 6 is a diagram explaining the occurrence of misalignment and distortion. A schematic diagram of the relationship, Fig. 7 is a chart of internal crack reduction test by narrow surface cooling, and Fig. 8 is an explanatory diagram of a conventional 10.5 mR high machine height single point correction curved continuous casting machine. 1... Mold, 2... Arc part, 3... Orthodontic band, 4
...Horizontal part, 5...Narrow surface support roll, 6...Narrow surface cooling device, 11...Element before deviation occurs, 12...
Elements after misalignment occurs.

Claims (1)

【特許請求の範囲】[Claims] 1 広面と狭面の比が4以上のスラブを鋳造する
彎曲半径3〜5mの低機高多点矯正彎曲型連続鋳
造機において、鋳型直下より第1矯正点位置を越
えて狭面冷却装置を配置したことを特徴とする低
機高多点矯正彎曲型連続鋳造機。
1. In a low machine height multi-point straightening curved continuous casting machine with a curvature radius of 3 to 5 m that casts slabs with a ratio of wide face to narrow face of 4 or more, the narrow face cooling device is installed from directly below the mold beyond the first straightening point position. A curved continuous casting machine with a low machine height and multi-point correction.
JP13091884A 1984-06-27 1984-06-27 Low-height multi-point straightening and curving type continuous casting machine Granted JPS619951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13091884A JPS619951A (en) 1984-06-27 1984-06-27 Low-height multi-point straightening and curving type continuous casting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13091884A JPS619951A (en) 1984-06-27 1984-06-27 Low-height multi-point straightening and curving type continuous casting machine

Publications (2)

Publication Number Publication Date
JPS619951A JPS619951A (en) 1986-01-17
JPH0479738B2 true JPH0479738B2 (en) 1992-12-16

Family

ID=15045778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13091884A Granted JPS619951A (en) 1984-06-27 1984-06-27 Low-height multi-point straightening and curving type continuous casting machine

Country Status (1)

Country Link
JP (1) JPS619951A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2075062C (en) * 1991-01-10 1996-09-24 Teruo Suzuki Sheet stretcher, attachment adjuster and a sheet to be stretched by the stretcher

Also Published As

Publication number Publication date
JPS619951A (en) 1986-01-17

Similar Documents

Publication Publication Date Title
JP5012056B2 (en) Steel continuous casting method
JP3427794B2 (en) Continuous casting method
JPH0479738B2 (en)
EP0127319A1 (en) Continuous casting apparatus for the production of cast sheets
JP4019476B2 (en) Slab cooling method in continuous casting
JPH1190598A (en) Method for continuously casting stainless steel
JP3391188B2 (en) Method for preventing surface cracks in corners of continuous cast slabs
JP2001137901A (en) Rolling method in hot-charge of continuously cast slab
JP3356091B2 (en) Continuous casting of thin slabs
US3435879A (en) Continuous casting method
JP3507263B2 (en) Continuous casting method of molten steel
JPS635857A (en) Continuous casting method for steel containing high silicon
JP7028088B2 (en) How to pull out the slab
JP3055462B2 (en) Continuous casting method
JPS6228056A (en) Continuous casting method
US3945424A (en) Method of straightening a continuously cast strand
JPS635859A (en) Continuous casting method for high silicon steel
JP3314036B2 (en) Continuous casting method and continuous casting device
JPS63252655A (en) Method for casting under light draft
JP3223914B2 (en) Cooling method of round billet
JPS59113964A (en) Continuous casting method
JPS606257A (en) Bend straightening method of continuous casting billet
JPH06335756A (en) Continuous casting method
JP2000343189A (en) Cooling method of continuous casting machine support roll
JPS63171254A (en) Non-solidified rolling method