JPH0479700B2 - - Google Patents

Info

Publication number
JPH0479700B2
JPH0479700B2 JP59072528A JP7252884A JPH0479700B2 JP H0479700 B2 JPH0479700 B2 JP H0479700B2 JP 59072528 A JP59072528 A JP 59072528A JP 7252884 A JP7252884 A JP 7252884A JP H0479700 B2 JPH0479700 B2 JP H0479700B2
Authority
JP
Japan
Prior art keywords
catalyst
pores
manufacturing
fluid
monolithic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59072528A
Other languages
Japanese (ja)
Other versions
JPS60216848A (en
Inventor
Mitsuru Minami
Hiroshi Wakizaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59072528A priority Critical patent/JPS60216848A/en
Publication of JPS60216848A publication Critical patent/JPS60216848A/en
Publication of JPH0479700B2 publication Critical patent/JPH0479700B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、モノリス触媒の製造方法に関し、更
に詳しくは該触媒内部の位置によつて触媒成分の
付着量が異なるモノリス触媒の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a monolithic catalyst, and more particularly to a method for producing a monolithic catalyst in which the amount of catalyst components deposited varies depending on the position inside the catalyst.

本発明の方法によつて製造したモノリス触媒を
自動車の排気系等に取り付けて使用すると、触媒
内部における現実の排気ガスの流速分布に適合し
た最適な排気ガス浄化を行うことができる。
When a monolithic catalyst manufactured by the method of the present invention is installed and used in an automobile exhaust system, etc., it is possible to perform optimal exhaust gas purification that matches the actual flow velocity distribution of exhaust gas inside the catalyst.

[従来技術] 従来モノリス触媒の製造に際しては、モノリス
触媒基材を触媒担持層成分を含有するスラリーに
浸漬し、引き上げ、乾燥し、焼成して、該基材の
細孔内表面上に触媒担持層を形成していた。尚、
触媒成分である触媒貴金属等の担持は、前記担持
層を形成した後、触媒成分を含有する溶液中に浸
漬して行つたり、あるいはあらかじめ前記スラリ
ー中に該触媒成分を含有させ、担持層と一体的に
形成して行なつていた。
[Prior art] Conventionally, when manufacturing a monolithic catalyst, a monolithic catalyst base material is immersed in a slurry containing catalyst support layer components, pulled up, dried, and fired to support the catalyst on the inner surface of the pores of the base material. It formed a layer. still,
The catalyst component, such as a noble metal, can be supported by immersing the support layer in a solution containing the catalyst component after forming the support layer, or by incorporating the catalyst component into the slurry in advance and then forming the support layer. It was carried out in an integrated manner.

従つて従来の製造方法によつて製造したモノリ
ス触媒は、触媒成分の担持密度がモノリス触媒全
域にわたつてほぼ一様であつた。
Therefore, in the monolithic catalyst manufactured by the conventional manufacturing method, the supporting density of catalyst components was almost uniform over the entire area of the monolithic catalyst.

しかるに、モノリス触媒を自動車の排気系等に
取り付けて現実に使用する場合を考えると、排気
ガスはモノリス触媒内を一様なスピード、圧力で
通過するわけではなく、一般にモノリス触媒の軸
心部付近を通過するガス量が多くなる。従つて、
モノリス触媒による排気ガスの浄化効率、及び触
媒の耐久性を考慮すると、モノリス触媒の軸心部
付近に触媒成分をより多く担持させる方がよい。
また、触媒担持層を軸心部付近で厚く、外周部で
薄くすれば、軸心部付近の圧力損失が外周部のそ
れより高くなり、触媒内部における流速分布は小
さくなり、触媒性能は向上する。
However, when we consider the case where a monolithic catalyst is actually used by installing it in an automobile exhaust system, etc., exhaust gas does not pass through the monolithic catalyst at a uniform speed and pressure, but generally near the axial center of the monolithic catalyst. The amount of gas passing through increases. Therefore,
Considering the exhaust gas purification efficiency of the monolith catalyst and the durability of the catalyst, it is better to support a larger amount of catalyst components near the axial center of the monolith catalyst.
Additionally, if the catalyst support layer is made thicker near the shaft center and thinner at the outer periphery, the pressure loss near the shaft center will be higher than that at the outer periphery, the flow velocity distribution inside the catalyst will become smaller, and the catalyst performance will improve. .

しかし、モノリス触媒内において、触媒成分の
担持量及び担持層成分の量を場所的に異ならせる
方法は、従来提供されていなかつた。
However, a method for varying the amount of supported catalyst components and the amount of supported layer components locally within a monolithic catalyst has not been provided in the past.

[発明の目的] 本発明は、上記事情に鑑み案出されたものであ
る。したがつて本発明の目的は、モノリス触媒の
使用状況に応じて、触媒成分の担持層及び担持層
成分の量を場所的に変化させたモノリス触媒を製
造する新規な方法を提供することにある。
[Object of the Invention] The present invention has been devised in view of the above circumstances. Therefore, an object of the present invention is to provide a new method for producing a monolithic catalyst in which the supporting layer of the catalyst component and the amount of the supporting layer component are varied locally depending on the usage status of the monolithic catalyst. .

[発明の構成] 本発明は、モノリス触媒基材の細孔内表面上に
触媒担持層を形成するに際し、担持層成分を含有
するスラリー等の流動体を前記内表面上に付着さ
せた後、該流動体の乾燥前に、所定の流速分布を
有する気流で該流動体を前記基材内部の位置によ
つて定まる所定量吹き飛ばすものである。
[Structure of the Invention] In the present invention, when forming a catalyst support layer on the inner surface of the pores of a monolithic catalyst base material, after depositing a fluid such as a slurry containing a support layer component on the inner surface, Before drying the fluid, the fluid is blown away by a predetermined amount determined by the position inside the base material using an air flow having a predetermined flow velocity distribution.

即ち、本発明は、軸方向に延びる多数の細孔を
有し柱状をなすモノリス触媒基材の、前記細孔内
表面上に、触媒担持層を形成してモノリス触媒を
製造する、モノリス触媒の製造方法において、 前記触媒担持層は、少なくとも触媒担持層成分
を含有する流動体を前記細孔内表面上に付着さ
せ、その後流動体の所定量を、所定の流速分布を
有する気流で、前記内表面上から除去した後、乾
燥し、焼成して形成することを特徴とするモノリ
ス触媒の製造方法である。
That is, the present invention provides a monolithic catalyst in which a catalyst support layer is formed on the inner surface of the pores of a columnar monolithic catalyst substrate having a large number of pores extending in the axial direction. In the manufacturing method, the catalyst supporting layer is formed by depositing a fluid containing at least a component of the catalyst supporting layer on the inner surface of the pores, and then blowing a predetermined amount of the fluid into the inner surface of the pore with an air flow having a predetermined flow velocity distribution. This is a method for producing a monolithic catalyst, which is characterized in that it is formed by removing it from the surface, drying it, and firing it.

モノリス触媒基材は、触媒の外形を規定し、そ
の材質としては一般にコージエライトが用いられ
るが、その他ムライトあるいはスピネル等を用い
ることもできる。該基材は、一体成形構造であ
り、排気ガスの流れ方向に伸びる多数の細孔
(100〜600個/平方インチ)を有し、その外形は
柱状(円柱、四角柱等、モノリス触媒の設置され
るべき排気系の内形状に適合した形状)をなす。
The monolith catalyst base defines the external shape of the catalyst, and its material is generally cordierite, but other materials such as mullite or spinel can also be used. The base material has an integrally molded structure, has a large number of pores (100 to 600 pores/square inch) extending in the direction of flow of exhaust gas, and has a columnar external shape (cylindrical, square prism, etc.), which is suitable for the installation of monolithic catalysts. (a shape that matches the internal shape of the exhaust system to be used).

本発明では、まず該モノリス触媒基材の該細孔
内表面上に触媒担持層成分を含有するスラリー等
の流動体を付着させる。これは一般には、該スラ
リー中に該モノリス触媒基材を浸漬することによ
つて行なうが、その方法に限定されず、たとえば
後述する方法を用いてもよい。触媒担持層成分と
しては一般にアルミナが用いられるが、アルミナ
に限定されない。尚、該スラリー中には、触媒貴
金属等の触媒成分の溶液を含有させ、触媒担持層
の形成と同時に触媒成分を担持させてもよい。
In the present invention, first, a fluid such as a slurry containing a component of the catalyst support layer is deposited on the inner surface of the pores of the monolithic catalyst base material. This is generally carried out by immersing the monolithic catalyst substrate in the slurry, but the method is not limited to this, and for example, the method described below may be used. Although alumina is generally used as a component of the catalyst support layer, it is not limited to alumina. Note that the slurry may contain a solution of a catalyst component such as a catalytic precious metal, and the catalyst component may be supported simultaneously with the formation of the catalyst support layer.

次に上記流動体を付着させたモノリス触媒基材
の細孔内に、所定の流速分布を有するガス(一般
に空気を用いる)を圧送あるいは吸引し、該流動
体を若干量吹き飛ばす。ここに吹き飛ばされる量
は、流動体の付着している位置によつて異なるよ
うに前記流速分布で規定する。
Next, a gas (generally air is used) having a predetermined flow velocity distribution is pumped or sucked into the pores of the monolithic catalyst substrate to which the fluid has been adhered, and a small amount of the fluid is blown away. The amount blown away here is determined by the flow velocity distribution so as to vary depending on the position where the fluid is attached.

流速分布は、例えば、それぞれ所定の開口断面
積を有し軸方向に伸びる複数の通風孔を有する柱
状の整流体を、モノリス触媒基材の少なとも一端
面に同軸的に接続し、前記細孔内に圧送あるいは
吸引する気流を該整流体で整流することによつて
与えることができる。整流体の材質としては、セ
ラミツクス、樹脂、金属、ゴム等を用いることが
できる。
The flow velocity distribution can be determined, for example, by coaxially connecting a columnar flow regulator having a plurality of ventilation holes each having a predetermined opening cross-sectional area and extending in the axial direction to at least one end surface of the monolithic catalyst substrate, and This can be provided by rectifying the airflow that is forced into or sucked into the air by using the rectifying fluid. As the material of the flow regulator, ceramics, resin, metal, rubber, etc. can be used.

ここにおいて、中心部付近に大量の触媒成分を
担持し、外周部付近には少量の触媒成分を担持す
るモノリス触媒を得たい場合には、前記整流体と
しては、軸心部付近の通風孔の断面積は小さく、
又、外周部付近の通風孔の断面積は大きいものを
用いる。すると前記流速分布は軸心部付近では小
さく、又外周部付近では大きくなる。このため軸
心部付近の触媒担持層を厚く、又外周部付近の触
媒担持層を薄く形成することができ、所望のモノ
リス触媒を得られる。
Here, when it is desired to obtain a monolithic catalyst that supports a large amount of catalyst components near the center and a small amount of catalyst components near the outer periphery, the above-mentioned flow regulation is performed using a ventilation hole near the shaft center. The cross-sectional area is small;
In addition, the cross-sectional area of the ventilation holes near the outer periphery is large. Then, the flow velocity distribution is small near the axial center and large near the outer periphery. Therefore, it is possible to form a thick catalyst support layer near the shaft center and a thin catalyst support layer near the outer circumference, thereby obtaining a desired monolithic catalyst.

このようにして触媒担持層成分を含有する流動
体を基材内の位置によつて定まる所望の量だけモ
ノリス触媒基材内表面に残留付着させた後、乾燥
させ、焼成して触媒担持層を形成する。
In this way, a desired amount of the fluid containing the components of the catalyst support layer is left on the inner surface of the monolithic catalyst base material in a desired amount determined by the position within the base material, and then dried and fired to form the catalyst support layer. Form.

上記製造工程において、前記流動体をモノリス
触媒基材の細孔内表面に付着させる際に、前記整
流体を介し、該流動体を該細孔内に圧送あるいは
吸引することによつて付着させてもよい。その場
合は、付着後連続的に空気をモノリス基材細孔内
に圧送あいは吸引し、流動体を吹飛ばすことがで
きる。
In the above manufacturing process, when the fluid is attached to the inner surface of the pores of the monolithic catalyst base material, the fluid is attached by force feeding or suction into the pores through the flow regulator. Good too. In that case, after adhesion, air can be continuously pumped or sucked into the pores of the monolith base material to blow away the fluid.

尚、担持させる触媒成分としては、従来知られ
ている公知の触媒成分である白金(Pt)、パラジ
ウム(Pd)、イリジウム(Ir)、ルテニウム
(Ru)、ロジウム(Rh)、オスミウス(Os)等の
貴金属、あるいはクロム(Cr)、ニツケル(Ni)、
パナジウム(V)、銅(Cu)等の卑金属等を用い
ることができる。
The supported catalyst components include conventionally known catalyst components such as platinum (Pt), palladium (Pd), iridium (Ir), ruthenium (Ru), rhodium (Rh), and osmius (Os). precious metals, or chromium (Cr), nickel (Ni),
Base metals such as panadium (V) and copper (Cu) can be used.

[実施例] 以下、本発明を具体的実施例に基づき説明す
る。
[Examples] The present invention will be described below based on specific examples.

(第1実施例) 第1図は、モノリス触媒基材1の細孔内表面に
付着させたスラリーを所定の流速分布を有する気
流で吹き飛ばす様子を表わす模式図であり、第2
図は、第1図において用いる整流体2の断面模式
図である。
(First Example) FIG. 1 is a schematic diagram showing how the slurry attached to the inner surface of the pores of the monolithic catalyst base material 1 is blown away with an air flow having a predetermined flow velocity distribution.
The figure is a schematic cross-sectional view of the flow regulator 2 used in FIG. 1.

(1) 付着工程 アルミナゾル700g(アルミナ含有量10wt%)
と硝酸アルミニウム水溶液150g(40wt%)と蒸
留水450mlとから成る混合懸濁液にアルミナ粉末
1000gを加え、攪拌して、流動体であるスラリー
を調整した。次に該スラリー中に円筒形のモノリ
ス触媒基材(直径10.7cm、長さ15cm、細孔数300
個/平方インチ、材質コージエライト)を2分間
浸漬し、該モノリス触媒基材の細孔内表面に前記
スラリーを一様に付着させた。
(1) Adhesion process Alumina sol 700g (alumina content 10wt%)
Add alumina powder to a mixed suspension consisting of 150g (40wt%) of aluminum nitrate aqueous solution and 450ml of distilled water.
1000 g was added and stirred to prepare a fluid slurry. Next, a cylindrical monolith catalyst substrate (diameter 10.7 cm, length 15 cm, pore number 300) was placed in the slurry.
The slurry was immersed for 2 minutes to uniformly adhere the slurry to the inner surface of the pores of the monolithic catalyst substrate.

(2) 吹き飛ばし工程 第1図に示すように、上記スラリーを一様に付
着させたモノリス触媒基材1の両端部を、管3及
び管4と同軸的に接続し、管3内部に整流体2を
収納し、前記モノリス触媒基材1の上端面に該整
流体2を接続した。ここに整流体2としては、そ
の断面形状が、第2図に示すように、通風孔20
0の断面積が軸心部付近では小さく、外周部付近
では大きくなつているものを用いた。
(2) Blowing process As shown in Figure 1, both ends of the monolithic catalyst base material 1 to which the slurry is evenly adhered are coaxially connected to the tubes 3 and 4, and a flow regulator is installed inside the tube 3. 2 was housed therein, and the flow regulator 2 was connected to the upper end surface of the monolithic catalyst substrate 1. As shown in FIG.
The cross-sectional area of 0 was small near the axial center and large near the outer periphery.

続いて矢印のように管3から管4の方向に空気
を圧送し、モノリス触媒基材1の細孔内表面に付
着している前記スラリーを所定量吹き飛ばした。
ここに該スラリーの吹き飛ばし量は、軸心部付近
では少なく、外周部付近では大きい。該吹き飛ば
し量は、前記整流体によつて与えられる圧送空気
の流速分布、及び空気圧送時間等によつて規定さ
れるからである。
Subsequently, air was forced in the direction of the tube 3 to the tube 4 as shown by the arrow, and a predetermined amount of the slurry adhering to the inner surface of the pores of the monolithic catalyst substrate 1 was blown away.
Here, the amount of slurry blown out is small near the shaft center and large near the outer periphery. This is because the blowing amount is determined by the flow velocity distribution of the pressurized air provided by the fluid regulator, the air pressure feeding time, and the like.

(3) 乾燥焼成工程 上述の如くスラリーを吹き飛ばした後、該モノ
リス触媒基材を200℃で1時間乾燥し、その後700
℃で2時間焼成して表面に触媒担持層を形成した
モノリス触媒担体を得た。
(3) Drying and firing process After blowing off the slurry as described above, the monolithic catalyst base material was dried at 200°C for 1 hour, and then heated at 700°C.
A monolithic catalyst carrier having a catalyst supporting layer formed on its surface was obtained by firing at ℃ for 2 hours.

(4) 担持工程 上述のように担持層を形成したモノリス触媒担
体を蒸溜水に浸漬して充分吸水させた後引き上
げ、余分な水分を吹き払い、その後、触媒成分で
あるPtを含有するジニトロジアンミン白金水溶
液に1時間浸漬し、引き上げ、余分な水分を吹き
飛ばし、200℃で1時間乾燥させ、前記触媒担持
層にPtを担持させた。
(4) Supporting process The monolithic catalyst carrier on which the supporting layer has been formed as described above is immersed in distilled water to absorb sufficient water, then pulled out and the excess moisture is blown off. It was immersed in a platinum aqueous solution for 1 hour, pulled out, blown off excess moisture, and dried at 200° C. for 1 hour to support Pt on the catalyst support layer.

以上のようにしてモノリス触媒を製造した。本
実施例のモノリス触媒では、軸心部付近に触媒成
分であるPtが多量に担持され、又外周部付近で
は、触媒成分担持量が少ないため、現実の排気系
に設置し、使用したところ排気ガスの浄化効率、
触媒の耐久性ともに良好であつた。
A monolithic catalyst was produced as described above. In the monolithic catalyst of this example, a large amount of Pt, which is a catalyst component, is supported near the shaft center, and a small amount of catalyst component is supported near the outer periphery, so when installed in an actual exhaust system and used, the exhaust gas gas purification efficiency,
The durability of the catalyst was also good.

(第2実施例) 第3図は、第2実施例においてモノリス触媒基
材1にスラリー9を付着させる工程を示す模式図
であり、第4図は第3図において用いる整流体2
の断面模式図である。
(Second Example) FIG. 3 is a schematic diagram showing the step of attaching the slurry 9 to the monolith catalyst base material 1 in the second example, and FIG. 4 is a flow regulating flow diagram 2 used in FIG.
FIG.

第2実施例は、担持層成分を含有するスラリー
をモノリス触媒基材内表面に付着させる工程を、
整流体を用いて行なう場合である。
In the second example, the step of attaching a slurry containing a support layer component to the inner surface of a monolithic catalyst base material is as follows:
This is the case when using a rectifier.

(1) 付着工程 モノリス触媒基材1を第3図に示すように管3
及び管4の間に同軸的に接続し、管3の内部に第
4図に示す断面形状の整流体3をその下端面がモ
ノリス触媒基材1の上端面と接続されるように配
設した。
(1) Adhesion process The monolithic catalyst base material 1 is attached to the tube 3 as shown in Fig. 3.
and a tube 4, and a flow regulator 3 having a cross-sectional shape shown in FIG. .

続いて、管3の上部から、上記実施例と同じ成
分のスラリー9を矢印の方向に圧送し、モノリス
触媒基材1の細孔内表面に該スラリー9を付着さ
せた。本実施例では第4図に示すように、整流体
2は外周部付近21では、通風孔を有しないた
め、上記スラリー9もモノリス触媒基材1の外周
部付近11には侵入を妨げられ、付着しない。な
お、外周部へのスラリーの侵入を防止する観点か
らは、軸心部付近の通風孔が単一の通風孔で構成
される整流体を用いてもよい。通風孔が単一と
は、第4図において通風孔20を区画する格子の
存在しない整流体をいう。
Subsequently, a slurry 9 having the same components as in the above example was pumped from the upper part of the tube 3 in the direction of the arrow, and the slurry 9 was adhered to the inner surface of the pores of the monolithic catalyst substrate 1. In this embodiment, as shown in FIG. 4, since the flow regulator 2 does not have ventilation holes near the outer periphery 21, the slurry 9 is also prevented from entering the outer periphery 11 of the monolithic catalyst base material 1. Does not stick. Note that from the viewpoint of preventing the slurry from entering the outer peripheral portion, a flow regulator may be used in which the ventilation hole near the axial center portion is constituted by a single ventilation hole. The single ventilation hole in FIG. 4 refers to a flow regulating system in which there is no grid dividing the ventilation hole 20.

(2) 吹き飛ばし工程 続いて、上述の如くスラリー9を付着させたモ
ノリス触媒基材の細孔内に矢印の如く空気を圧送
し、モノリス触媒基材内表面に付着しているスラ
リー9を所定量吹き飛ばした。該圧送空気のモノ
リス触媒基材1の内部における流速分布は第4図
に示す整流体2で与えられ、中心部付近10では
遅く、外周部付近11の内側近傍12では速い。
従つて該圧送空気により、モノリス触媒基材軸心
部付近10に付着しているスラリー9は少量吹き
飛ばされ、外周部付近11の内側近傍12では大
量に吹き飛ばされる。
(2) Blowing process Next, air is forced as shown by the arrow into the pores of the monolithic catalyst substrate to which the slurry 9 has been attached as described above, and a predetermined amount of the slurry 9 attached to the inner surface of the monolithic catalyst substrate is blown away. I blew it away. The flow velocity distribution of the pressurized air inside the monolithic catalyst base material 1 is given by the flow regulator 2 shown in FIG.
Therefore, by the compressed air, a small amount of the slurry 9 adhering to the vicinity 10 of the shaft center of the monolithic catalyst base is blown away, and a large amount of slurry 9 is blown away near the inner side 12 of the outer circumference 11.

(3) 乾燥焼成工程 上記の如くモノリス触媒基材細孔内表面にスラ
リー9を場所的に量を変えて付着させたものを第
1実施例と同様の条件で乾燥、焼成し、触媒担持
層を形成した。
(3) Drying and firing step Slurry 9 was deposited on the inner surface of the pores of the monolithic catalyst substrate in varying amounts in places as described above, and then dried and fired under the same conditions as in the first example to form a catalyst support layer. was formed.

(4) 担持工程 上記の如く触媒担持層を形成したモノリス触媒
担体に第1実施例と同様の条件で触媒成分を担持
させた。
(4) Supporting process Catalyst components were supported on the monolithic catalyst carrier on which the catalyst supporting layer was formed as described above under the same conditions as in the first example.

本第2実施例において製造したモノリス触媒
は、外周部付近11に全く触媒成分が担持されて
いない。一般に、モノリス触媒を自動車の排気系
に取付けて使用する場合、該触媒の端面外周部
は、保持材であるリテーナーによつて覆れる。従
つて、該覆われた部分に触媒成分を担持させても
該担持された触媒成分は排気ガス浄化に何ら寄与
しない。即ち無駄である。しかるに、本実施例の
方法によつて製造したモノリス触媒は該覆われる
部分には触媒成分が担持されず経済的である。
In the monolithic catalyst manufactured in the second example, no catalyst component was supported near the outer peripheral portion 11. Generally, when a monolithic catalyst is used by being attached to an automobile exhaust system, the outer periphery of the end face of the catalyst is covered with a retainer, which is a holding material. Therefore, even if a catalyst component is supported on the covered portion, the supported catalyst component does not contribute to exhaust gas purification. In other words, it is a waste. However, the monolithic catalyst produced by the method of this example is economical because no catalyst component is supported on the covered portion.

なお、上記2つの実施例では担持工程を別個に
設けたが、これは上記スラリー中に触媒成分を含
有させ、担持層と同時に形成してもよい。
Although the supporting step was provided separately in the above two examples, the catalyst component may be contained in the slurry and formed simultaneously with the supporting layer.

[発明の効果] 以上要するに本発明は、モノリス触媒基材の細
孔の内表面に触媒担持層を形成するに際し、担持
層形成成分を流動状態で該基材細孔内表面に付着
させた後、所定の流速分布を有する気流を該細孔
内に圧送あるいは吸引し、該付着させた流動体
を、場所によつてその残留付着量が異なるように
該細孔内表面に残し、その後乾燥焼成して形成す
るものである。
[Effects of the Invention] In summary, the present invention provides, when forming a catalyst support layer on the inner surface of the pores of a monolithic catalyst base material, after adhering the support layer forming component to the inner surface of the pores of the base material in a fluidized state. , an air flow having a predetermined flow velocity distribution is pumped or sucked into the pores, and the adhered fluid is left on the inner surface of the pores so that the amount of residual adhesion varies depending on the location, and then dried and baked. It is formed by

上述したところからも明らかな如く、本発明の
方法によつて、モノリス触媒を製造すると、モノ
リス触媒内における触媒成分の担持量を場所的に
任意に変化させることができる。従つて、現実の
モノリス触媒の使用に適合した触媒成分の担持分
布を有するモノリス触媒を得ることができる。ま
た、触媒担持層を軸心部付近で厚く、外周部で薄
くすれば、軸心部付近の圧力損失が外周部のそれ
より高くなり、触媒内部における流速分布は小さ
くなり、触媒性能は向上する。従つて排気ガス浄
化効率も高く、耐久性もよい。又、無駄な量の原
料も必要としない。
As is clear from the above, when a monolithic catalyst is produced by the method of the present invention, the amount of catalyst components supported within the monolithic catalyst can be arbitrarily changed depending on the location. Therefore, it is possible to obtain a monolithic catalyst having a supported distribution of catalyst components suitable for actual use of the monolithic catalyst. Additionally, if the catalyst support layer is made thicker near the shaft center and thinner at the outer periphery, the pressure loss near the shaft center will be higher than that at the outer periphery, the flow velocity distribution inside the catalyst will become smaller, and the catalyst performance will improve. . Therefore, the exhaust gas purification efficiency is high and the durability is also good. Moreover, unnecessary amounts of raw materials are not required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の吹飛ばし工程を
説明する模式図であり、第2図は第1実施例で用
いる整流体の断面模式図である。第3図は、本発
明の第2実施例の付着工程、吹飛ばし工程を説明
する模式図であり、第4図は第2実施例で用いる
整流体の断面模式図である。 1…モノリス触媒基材、2…整流体。
FIG. 1 is a schematic diagram illustrating the blowing process of the first embodiment of the present invention, and FIG. 2 is a schematic cross-sectional diagram of a flow regulator used in the first embodiment. FIG. 3 is a schematic diagram illustrating the adhesion process and the blowing process in the second embodiment of the present invention, and FIG. 4 is a schematic cross-sectional diagram of a flow regulator used in the second embodiment. 1...monolith catalyst base material, 2...fluid regulator.

Claims (1)

【特許請求の範囲】 1 軸方向に延びる多数の細孔を有し柱状をなす
モノリス触媒基材の、前記細孔内表面上に、触媒
担持層を形成してモノリス触媒を製造する、モノ
リス触媒の製造方法において、 前記触媒担持層は、少なくとも触媒担持層成分
を含有する流動体を前記細孔内表面上に付着さ
せ、その後流動体の所定量を、所定の流速分布を
有する気流で、前記内表面上から除去した後、乾
燥し、焼成して形成することを特徴とするモノリ
ス触媒の製造方法。 2 前記所定の流速分布は、 前記モノリス触媒基材の少なくとも一端面に、
それぞれ所定の開口断面積を有し軸方向に延びる
複数の通風孔を有する柱状の整流体を、該モノリ
ス触媒基材と同軸的に接続し、 該整流体によつて整流された気流を前記基材細
孔内を通過させることによつて与えられる特許請
求の範囲第1項記載の製造方法。 3 前記流動体は、触媒成分を含有する特許請求
の範囲第1項記載の製造方法。 4 前記所定の開口断面積は、前記整流体の軸心
部付近の通風孔では小さく、外周部付近の通風孔
では大きい特許請求の範囲第2項記載の製造方
法。 5 前記流動体の前記細孔内表面上への付着は、
前記整流体を介して行なう特許請求の範囲第1項
記載の製造方法。 6 前記整流体の外周部付近の通風孔はマスク
し、該外周部における前記流動体の前記細孔内へ
の侵入を防止する特許請求の範囲第5項記載の製
造方法。 7 前記整流体の前記マスクのされていない部分
の通風孔は、単一の通風孔から成る特許請求の範
囲第6項記載の製造方法。
[Scope of Claims] 1. A monolithic catalyst, which is produced by forming a catalyst support layer on the inner surface of the pores of a columnar monolithic catalyst substrate having a large number of pores extending in the axial direction. In the method for manufacturing the catalyst support layer, a fluid containing at least a component of the catalyst support layer is deposited on the inner surface of the pores, and then a predetermined amount of the fluid is applied to the catalyst support layer by an air flow having a predetermined flow velocity distribution. A method for producing a monolithic catalyst, characterized in that the monolithic catalyst is formed by removing it from the inner surface, drying it, and then firing it. 2. The predetermined flow velocity distribution is such that on at least one end surface of the monolithic catalyst base material,
A columnar flow regulator having a plurality of ventilation holes each having a predetermined opening cross-sectional area and extending in the axial direction is coaxially connected to the monolith catalyst base material, and the airflow rectified by the flow regulator is directed to the base. The manufacturing method according to claim 1, which is provided by passing a material through pores. 3. The manufacturing method according to claim 1, wherein the fluid contains a catalyst component. 4. The manufacturing method according to claim 2, wherein the predetermined opening cross-sectional area is small in the ventilation holes near the axial center of the flow regulator, and large in the ventilation holes near the outer peripheral part. 5. The adhesion of the fluid onto the inner surface of the pores includes:
2. The manufacturing method according to claim 1, wherein said manufacturing method is carried out via said flow regulator. 6. The manufacturing method according to claim 5, wherein the ventilation holes near the outer periphery of the fluid regulator are masked to prevent the fluid from entering the pores at the outer periphery. 7. The manufacturing method according to claim 6, wherein the ventilation hole in the unmasked portion of the flow regulator is a single ventilation hole.
JP59072528A 1984-04-10 1984-04-10 Preparation of monolithic catalyst Granted JPS60216848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59072528A JPS60216848A (en) 1984-04-10 1984-04-10 Preparation of monolithic catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59072528A JPS60216848A (en) 1984-04-10 1984-04-10 Preparation of monolithic catalyst

Publications (2)

Publication Number Publication Date
JPS60216848A JPS60216848A (en) 1985-10-30
JPH0479700B2 true JPH0479700B2 (en) 1992-12-16

Family

ID=13491922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59072528A Granted JPS60216848A (en) 1984-04-10 1984-04-10 Preparation of monolithic catalyst

Country Status (1)

Country Link
JP (1) JPS60216848A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3803579C1 (en) * 1988-02-06 1989-07-13 Degussa Ag, 6000 Frankfurt, De
CN101218039B (en) 2005-07-07 2010-08-04 株式会社科特拉 Device and method for coating base material
JP5376919B2 (en) * 2008-12-04 2013-12-25 株式会社キャタラー Exhaust gas purification catalyst
CN102387862B (en) 2009-04-03 2014-05-28 株式会社科特拉 Method and device for manufacturing exhaust emission control catalyst and nozzle used for the device
TWI498450B (en) * 2012-11-22 2015-09-01 Nat Applied Res Laboratories Closed flow channel reaction tank system for manufacturing catalyst or support material
JP6189775B2 (en) * 2013-03-29 2017-08-30 日本碍子株式会社 Manufacturing method of separation membrane
JP6546758B2 (en) * 2015-03-09 2019-07-17 株式会社キャタラー Catalyst slurry coating system
JP6577898B2 (en) * 2016-03-31 2019-09-18 日本碍子株式会社 Liquid mixture supply jig and method of manufacturing separation membrane structure using the same

Also Published As

Publication number Publication date
JPS60216848A (en) 1985-10-30

Similar Documents

Publication Publication Date Title
US4774217A (en) Catalytic structure for cleaning exhaust gas
AU651158B2 (en) Honeycomb heater and catalytic converter
US4451441A (en) Method for exhaust gas treatment
EP3426395B1 (en) Preparation method of a non-woven fibrous material-based honeycomb catalyst
JP2002177794A (en) Ceramic catalytic body and ceramic support
JPH0479700B2 (en)
JP2009521640A (en) General purpose engine sound and emissions reduction apparatus and method for general purpose engine noise level reduction and emissions reduction
JPH10500893A (en) Metal foil catalyst member by aqueous electrodeposition
JP2007330860A (en) Honeycomb substrate for catalyst and catalyst employing the same for cleaning exhaust
JPS6125644A (en) Monolithic catalyst for purifying waste gas
JPS6164337A (en) Production of monolithic catalyst
CA1061313A (en) Process for coating a refractory support with an active metal oxide film
JPS6118438A (en) Manufacture of monolithic catalyst
JP2003326162A (en) Catalyst for purifying exhaust gas and its manufacturing method
JPS614536A (en) Manufacture of monolithic catalyst
JPS6351949A (en) Method for wash-coating of metal monolithic base material
JP2537510B2 (en) Exhaust gas purification catalyst
JPS6146252A (en) Monolith catalyst for purifying exhaust gas
JPS614535A (en) Manufacture of monolithic catalyst
WO2020195237A1 (en) Catalyst layer forming material, catalyst device constituent material, catalyst device, and production methods thereof
JPS60225652A (en) Preparation of monolithic catalyst having catalyst non-supporting part
JPH10280950A (en) Diesel exhaust emission controlling catalyst
JPS6121734A (en) Method for supporting catalytic component of monolithic catalyst for purifying exhaust gas
JP4054425B2 (en) Method for producing exhaust gas purifying catalyst
JPS6322186B2 (en)