JPH0479368B2 - - Google Patents

Info

Publication number
JPH0479368B2
JPH0479368B2 JP3588184A JP3588184A JPH0479368B2 JP H0479368 B2 JPH0479368 B2 JP H0479368B2 JP 3588184 A JP3588184 A JP 3588184A JP 3588184 A JP3588184 A JP 3588184A JP H0479368 B2 JPH0479368 B2 JP H0479368B2
Authority
JP
Japan
Prior art keywords
film
discontinuous
fine particles
height
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3588184A
Other languages
Japanese (ja)
Other versions
JPS60180837A (en
Inventor
Masaaki Ono
Masahiko Mogi
Kazuo Okabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP3588184A priority Critical patent/JPS60180837A/en
Publication of JPS60180837A publication Critical patent/JPS60180837A/en
Publication of JPH0479368B2 publication Critical patent/JPH0479368B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は被覆フイルムに関する。詳しくは磁気
記録媒体用、さらに詳しくは蒸着ビデオ用ポリエ
ステルフイルムに関する。 〔従来技術〕 磁性物質をポリエステルフイルムの表面に蒸着
せしめた蒸着ビデオテープは、極めて高密度な磁
気記録が可能であるが、磁性層の厚さが非常に薄
いため、使用するベースフイルムの表面形態がそ
のまま磁性体蒸着後の蒸着薄膜表面形態となり、
そのためベースフイルムの表面粗さが粗いと、蒸
着ビデオテープの電磁変換特性が著しく悪くな
る。この電磁変換特性の面から考えると、平滑な
全くの鏡面からなるベースフイルムが好ましい
が、そのようなベースフイルム上に形成された蒸
着膜は、蒸着面がそのまま鏡面を保つので、すべ
り性が非常に悪く、蒸着面に保護層を設けるよう
なことをしない限り、蒸着工程以降のテープ化プ
ロセスにおいて大量のすり傷が発生し、全く実用
性はなくなる。 また蒸着ビデオテープ実際使用時の重大な問題
は蒸着面の走行性である。従来の磁性体粉末を有
機バインダーに混入させてベースフイルムに塗布
してなる塗布型ビデオテープの場合には、バイン
ダー中に滑剤を入れて、磁性面の走行性を向上さ
せることができるが、蒸着ビデオテープの場合、
蒸着面の走行性は保護膜層を設けない限り一般に
不利である。保護膜層を均一に蒸着面上に設ける
ことは困難であるので、この保護膜層を設けない
蒸着テープの場合、蒸着面の走行性向上、特に実
際に使用される時の過酷な条件下、すなわち高温
高湿条件下での走行性向上が計れないなどの欠点
がある。 〔発明の目的〕 本発明の目的は、平滑性、耐すり傷性、通常環
境のみならず高温高湿条件下においても走行性の
優れた蒸着膜を形成することが可能なベースフイ
ルムを提供することにある。 〔発明の構成〕 本発明は、上記目的を達成するため次の構成を
有する。すなわち、ポリエステルフイルムと、該
ポリエステルフイルムの少なくとも片面に密着さ
れた水溶性高分子と粒径30〜500Åの微細粒子を
主体とした厚さ500Å以下の不連続皮膜と、該不
連続皮膜の不連続部のフイルム面に密着された微
細粒子とからなり、該不連続皮膜上には微細粒子
による突起が形成され、かつ、該不連続皮膜の不
連続部のフイルム面に密着された微細粒子の高さ
が不連続皮膜の厚さより高い被覆フイルムを特徴
するものである。 本発明のポリエステルフイルムとは、周知の方
法で形成したポリエステルフイルム、すなわち、
ポリエステルを溶融してシートまたは円筒状に押
出し、これを少なくとも一方向に延伸して形成し
たフイルムで、そのフイルムの機械特性としては
通常のバランスタイプ、一軸方向に強力化された
タイプ、二軸方向に強力化されたタイプのいずれ
かであることが望ましい。また、ポリエステルフ
イルムの表面は平滑であることが望ましく、具体
的にはフイルム表面の粗さは、触針式表面粗さ計
のカツトオフ値0.08mmで、Ra値が0.015μ以下、よ
り好ましくは0.010〜0.002μの範囲内にあること
が望ましい。 なお、Ra値とは、触針式表面粗さ計から得ら
れる断面曲線から適当なカツトオフ値を用いて、
うねりを除いた粗さ曲線において、中心線(中心
線より上の部分と下の部分の面積が等しくなるよ
うにして求められる)からの粗さ曲線の高さ(低
さ)の絶対値の算術平均である(DIN 4768)に
よる)。 上記フイルムを形成するポリエステルは、線状
ポリエステルを主体とするものであればどのよう
なものでもよい。たとえば、ポリエチレンテレフ
タレート、ポリテトラメチレンテレフタレート、
ポリ−1,4−シクロヘキシレンジメチレンテレ
フタレート、ポリエチレン−2,6−ナフタリン
ジカルボキシレート、ポリエチレン−p−オキシ
ベンゾエートなどがその代表例である。 また上記のポリエステルは、ホモポリエステル
であつても、コポリエステルであつてもよい。コ
ポリエステルの場合、共重合する成分としては、
たとえば、ジエチレングリコール、プロピレング
リコール、ネオペンチルグリコール、ポリエチレ
ングリコール、p−キシリレングリコール、1,
4−シクロヘキサンジメタノールなどのジオール
成分、アジピン酸、セバシン酸、フタル酸、イソ
フタル酸、2,6−ナフタリンジカルボン酸、5
−ナトリウムスルホイソフタル酸などのジカルボ
ン酸成分、トリメリツト酸、ピロメリツト酸など
の多官能ジカルボン酸成分、p−オキシエトキシ
安息香酸などが挙げられる。なお、共重合の場
合、共重合する成分は20モル%以下とする。 さらに、上記のポリエステルは、他にポリエス
テルと非反応性のスルホン酸のアルカリ金属塩誘
導体、該ポリエステルに実質的に不溶なポリアル
キレングリコールなどの少なくとも一つを5重量
%を超えない程度に混合してもよい。また、その
フイルム中に延伸した際に、フイルム表面突起の
原因となる重合残査からなる内存粒子あるいは外
部から加えられた不活性粒子等が含まれていても
よく、その含有量は、それらのポリマーを二軸延
伸した場合、厚さ30μ以下で、1枚当りのヘイズ
5%以下であれば良い。 本発明の不連続皮膜とは、水溶性高分子と微粒
子を主体とした組成物から形成されたものである
が、好ましくはシランカツプリング剤、またはチ
タンカツプリング剤を含むのが望ましい。そして
不連続皮膜上には微細粒子による微細突起が形成
されている。 また、本発明の不連続皮膜の厚さは500Å以下、
好ましくは50〜300Åである。厚さが500Åを超え
ると、蒸着薄膜の電磁変換特性、特にS/N比が
悪化する。 本発明の水溶性高分子としては、分子量が1万
〜200万、好ましくは10万〜100万のものが使用さ
れる。分子量が1万を下まわると、以下に述べる
皮膜が柔らかくなり、構造保持が難しくなり、耐
久性が悪くなる。分子量が200万を上まわると皮
膜がかたくなりすぎ、もろくなり、やはり耐久性
が悪くなる。かかる水溶性高分子としては、ポリ
ビニルアルコール、トラガントゴム、アラビアゴ
ム、カゼイン、ゼラチン、メチルセルロース、ヒ
ドロキシエチルセルロース、カルボキシメチルセ
ルロース、水溶性ポリエステルエーテル共重合体
等が適用できる。 本発明の水溶性高分子は一成分ではなく、不連
続皮膜を形成するための水溶性高分子と皮膜中に
存在する微細粒子を皮膜から脱落させにくくする
易接着成分となる水溶性高分子との多成分系が望
ましい。 本発明の不連続皮膜形成成分の微細粒子とは、
大きさが30〜500Å、好ましくは50〜400Åのも
の、特に好ましくは50〜95Åのものである。ここ
で大きさとは微細粒子の最大粒径をいい、大きさ
が30Å未満では、この不連続皮膜上に磁性体を蒸
着してなる蒸着薄膜面の走行性は向上しない。ま
た、大きさが500Åを超えると該磁性面の電磁変
換特性が悪化する。微細粒子の形状としては、球
形、楕円球形、長方体形、立方体形等いずれであ
つてもよい。また、粒子種としては無機化合物粒
子、たとえば、MgO,ZnO,MgCO3,CaCO3
CaSO4,BaSO4,Al2O3,SiO2,TiO2やCa,
Ba,Zn,Mnなどの酸塩、とかが使用可能であ
る。微細粒子は複数種を使用してもよい。 微細粒子は不連続皮膜中および皮膜表面に存在
するものであるが、その存在個数は104〜1011
ケ/mm2、好ましくは105〜1010ケ/mm2であるとこ
が必要である。粒子個数が104ケ/mm2未満、ある
いは径が30Å未満であることの不連続皮膜上に磁
性体を蒸着してなる蒸着薄膜面の走行性は向上し
ない。径、粒子個数は電子顕微鏡で観察すること
により求める。粒子個数が1011ケ/mm2を超える
と、該磁性面の電磁変換特性のうち、特にS/N
比が悪化する。また微細粒子が脱落しやすくなり
好ましくない。 本発明における不連続皮膜の不連続部のフイル
ム面に密着した微細粒子とは、径が50〜10000Å、
好ましくは100〜5000Åの粒子であり、前述の不
連続皮膜中、表面の微細粒子の径よりも大きく、
その比が2以上、好ましくは5以上であることが
望ましい。径とは本発明フイルムを電子顕微鏡で
観察することによつて求められる微細粒子の最大
長さをいう。微細粒子の形態としては球形、楕円
球形、長方体形、立方体形等である。粒子の高さ
は全粒子の個数中20%以上、好ましくは50%以上
の粒子が、不連続皮膜より高く、好ましくは20〜
500Å高いことが望ましい。粒子個数は104〜108
ケ/mm2、好ましくは106〜108ケ/mm2であることが
望ましい。個数が104ケ/mm2未満であるとこの表
面に磁性体を蒸着してなる蒸着膜面の走行性は向
上しない傾向がある。個数が108ケ/mm2を超える
と、該磁性面の電磁変換特性のうち、特にS/N
比が悪化する傾向がある粒子種としては有機化合
物粒子が好ましいが疎水性表面処理を施した無機
化合物粒子でもよい。たとえばポリスチレン、ポ
リエチレン、ポリアミド、ポリエステル、ポリア
クリル酸エステル、ポリエポキシ樹脂、ポリ酢酸
ビニル、ポリ塩化ビニル、ポリアクリル酸ソー
ダ、ポリビニルメチルエーテル、フツ素系樹脂等
からなる微細粒子である。微細粒子は複数種類の
ものを使用しても良い。微細粒子の高さは不連続
皮膜より高く、好ましくは20〜500Å、さらに好
ましくは30〜200Å高いことが望ましい。微細粒
子の高さが低いと、それらの微細粒子は、この不
連続皮膜形成面側に設ける蒸着膜面の走行性向上
に寄与しない。500Åを上まわると該蒸着膜面の
電磁変換特性が悪化する。すなわち、S/N比が
低くなり、ドロツプアウトが増大する。 不連続皮膜のすべり性を向上させ耐すり傷特性
を向上させる目的でシリコーンあるいはフツ素化
合物あるいはその両者を皮膜構造成分として含ま
せてもよい。 使用可能なシリコーンは、分子量が3万〜30万
のものであり、好ましくは、鎖状成分として ただし、R1:CH3,C6H5,H R2:CH3,C6H5,Hまたは官能基(たとえば、
エポキシ基、アミノ基、水酸基) n:100〜7000でR1,R2によつて上記分子量を
満足させる整数 を有するシリコーン化合物であり、末端にエポキ
シ基、アミノ基、水酸基、その他の官能性未端基
を有する。本発明においてシリコーン化合物は必
ずしもホモポリマーである必要はなく、コポリマ
ーあるいは、数種のホモポリマーの混合体であつ
ても良い。 シリコーンの分子量は3万〜30万のものが好ま
しい。分子量が3万を下まると皮膜は柔らかくな
りすぎ、また、構造が変形しやすくなる。一方、
30万を超えると逆に皮膜がもろくなる。 使用可能なフツ素系化合物としては、フツ素系
界面活性剤、フツ素含有炭化水素化合物等があげ
られるが、原子数割合で10〜60%、好ましくは20
〜50%の含有フツ素分率のものが望ましい。フツ
素含有率が低いと、すべり性の効果が見られなく
なる。 また水溶性高分子、シリコーンあるいはフツ素
化合物またはその両者の結合を強めるため、その
皮膜とポリエステルフイルムとの接着力を強める
ためおよびその皮膜と皮膜中の微細粒子との結合
を強めるために不連続皮膜構成成分に、また不連
続皮膜の不連続部に在在する粒子とポリエステル
フイルムとの接着力を強めるために、不連続部に
存在する粒子にシランカツプリング剤を加えるこ
とが望ましい。 シランカツプリング剤としては、その分子中に
2個以上の異なつた反応基をもつ有機けい素単量
体であり、反応基の一つはメトキシ基、エトキシ
基、シラノール基などであり、もう一つの反応基
は、ビニル基、エポキシ基、メタアクリル基、ア
ミノ基、メルカプト基などである。反応基は水溶
性高分子側鎖、末端基およびポリエステルと結合
するものを選ぶが、シランカツプリング剤として
ビニルトリクロルシラン、ビニルトリエトキシシ
ラン、ビニルトリス(β−メトキシエトキシ)シ
ラン、γ−グリシドキシプロピルトリメトキシシ
ラン、γ−メタアクリロキシプロピルトリメトキ
シシラン、N−β(アミノエチル)γ−アミノプ
ロピルメチルジメトキシシラン、γ−クロロプロ
ピルメチルジメトキシシラン、γ−メルカプトプ
ロピルトリメトキシシラン、γ−アミノプロピル
トリエトキシシラン等が適用できる。 不連続皮膜構成成分としての水溶性高分子
〔A〕シリコーンあるいはフツ素系化合物あるい
はその混合体〔B〕、シランカツプリング剤
〔C〕、微細粒子〔D〕、および不連続皮膜の不連
続部に存在する微細粒子〔E〕の使用割合は
〔A〕:〔B〕:〔C〕:〔D〕:〔E〕=20:0〜20
:0
〜20:1〜40:1〜40、(好ましくは20:0〜
20:1〜20:1〜30:1〜30)である。〔B〕は
すべり性、耐すり傷性向上の目的で使用しても良
い。〔C〕は各種成分間の結合力向上のために使
用が好ましい。〔B〕が上限を超えると蒸着膜の
付着強度が不良となる。〔C〕が上限を超えると
不連続皮膜構造が固くなりすぎ、皮膜がもろくな
り好ましくない。 〔C〕を使用すると〔D〕,〔E〕が不連続皮
膜、フイルム面に強固に結びつけられる。 微細粒子〔D〕は不連続皮膜に104〜1011ケ/
mm2の割合で存在することを特徴とするが、〔D〕
が上記下限を下まわると存在が疎になり、蒸着面
としての走行性が悪化する。上限を超えると微細
粒子の皮膜からの脱落が激しくなり、また電磁変
換特性も悪くなり好ましくない。 微細粒子〔E〕は、主として不連続皮膜の不連
続部のフイルム面に密着しているが、〔E〕が上
記下限を下まわると密着数が少なくなり、この不
連続皮膜上に形成する蒸着膜面の走行性向上に寄
与しなくなる。上限を超えると微細粒子のフイル
ム表面からの脱落が激しくなる。また電磁変換特
性も悪化し、好ましくない。 以下、図面に基づいて本発明の被覆フイルムを
説明する。 第1図はポリエステルフイルムの表面を部分的
に覆つた不連続皮膜と、その不連続皮膜上にその
中に存在する微細粒子により微細突起が存在する
状態とその皮膜の不連続部のフイルム面に密着さ
れあ微細粒子を示す平面図である。拡大倍率1万
倍以上で電子顕微鏡観察をすることにより、その
様子がわかる。 第2図は不連続皮膜および微細粒子が密着され
た第1図のフイルムの概略の断面図である。微細
粒子の高さが不連続皮膜の高さより高い状態を示
す。なお第1図および第2図において、1はポリ
エステルフイルム、2は不連続皮膜、3は不連続
皮膜中の微細粒子、4は不連続皮膜中の不連続部
に存在する微細粒子である。 本発明の不連続皮膜の高さ(厚さ)は、第3図
のhで示されるもので、そのh、すなわち高さの
測定は、触針式表面粗さ計により、カツトオフ値
0.08mmを用い、縦倍率50万倍の条件で、表面皮膜
形成面を測定した時の表面粗さ曲線において、不
連続部に存在する微細粒子によるピーク部分を除
いた、山と谷との平均的な高さ間隔を測定した値
である。微細粒子の高さは、第3図のhP1,hP2
hP3で示されるもので、hよりも大きく高さ方向
にはずれた山と谷部分の差を測定した値である。
なお、第3図は実際に測定した曲線を模式的に示
したものである。不連続皮膜中に存在する微細粒
子による粗さは観測されにくい。 本発明の不連続皮膜の高さは500Å以下、好ま
しくは50〜300Åである。高さが500Åを超えると
この表面に蒸着膜を形成させたビデオテープの電
磁変換特性、特にS/N比が悪化する。 テープ特性は一般市販のVHS方式のVTRを用
い、録画、再生を繰り返して評価した。 テープ走行性の評価は常温常湿、高温高湿の2
条件下での再生を行ない、テープ走行の乱れによ
る画面のゆらぎを観察することにより行なつた。
評価基準は次のとおりである。 ○:走行順調で再生画面のゆらぎが全くなし。 ×:ところどころで走行が遅くなり、再生画面
のゆらぎが生ずる。 また耐すり傷性の評価は、やはり常温常湿およ
び高温高湿条件下で100回繰り返し走行させたあ
とのテープ薄膜上のすり傷観察により行なつた。
評価基準は次のとおりである。 ◎:テープ薄膜面上にほとんど全くすり傷の発
生がみられない。 ○:テープ薄膜面上にきわめて弱いすり傷の発
生が少し見られる。 ×:テープ薄膜面上に、きついすり傷が発生す
る。 なお、常温常湿とは25℃,60%RHであり、高
温高湿とは50℃,80%RH条件である。 S/N比は50%白レベル信号を各テープの最適
記録電流で記録し、再生時のビデオ復調信号に含
まれる信号と雑音の比をビデオノイズメーターを
用い、市販のVHS標準テープをOdBとして比較
測定した。 ドロツプアウトは、磁気記録テープに3段階段
波信号を最適記録電流で記録し、再生時のビデオ
ヘツドアンプ出力の減衰量が18dB、継続時間
20μsec以上のドロツプアウトを10分間ドロツプア
ウトカウンターで測定し、1分間当りの平均をと
つた。S/N比ドロツプアウト測定は常温常湿条
件で行なつた。 本発明の被覆フイルムの微細粒子を含み、それ
による突起をもつ不連続皮膜と、不連続皮膜の不
連続部表面に微細粒子の密着された面側に蒸着膜
を設けた場合、磁気ヘツド、ガイド等は、その蒸
着膜表面との接触面積が極めて小さくなるにもか
かわらず、強磁性体薄膜面と磁気ヘツドとの間隔
は非常に狭く保たれるので、この蒸着膜表面の走
行性は極めて良好であり、しかも電磁変換特性は
優れている。 次に、本発明のフイルムの製法について説明す
る。通常の方法で一方向に延伸後の平滑なポリエ
ステルフイルムの少なくとも片面に、無機微細粒
子ならびに有機化合物微細粒子あるいは有機化合
物エマルジヨンあるいは、疎水性表面処理を施し
た無機微細粒子を含んだ分子量1万〜200万の水
溶性高分子水溶液、さらに好ましくはシランカツ
プリング剤とを含む塗液を塗布し、乾燥したのち
直角方向延伸を行なうか、あるいは直角方向延伸
後、さらに前記一方向に再延伸し熱処理する。水
溶性高分子と親和性の良い無機微細粒子を使用す
ることにより微細粒子が不連続皮膜中に存在せし
めることができ、有機微細粒子あるいは有機化合
物エマルジヨンの有機化合物として、水溶性高分
子と相溶しないものあるいは、疎水性表面処理を
施した無機微細粒子を使用することにより、微細
粒子が不連続部に密着された不連続皮膜表面が形
成される。なおここで水溶性高分子溶液は、二成
分系が好ましい。一成分は無機微細粒子を特に保
持しやすい接着性の有するものを使用する。 さらに具体的には、前記説明のポリエステル原
料を用い、通常の製膜機により溶融押出し、冷却
後、3〜5倍に一軸延伸した縦延伸フイルムに、
その後、予熱延伸前の工程において、無機化合物
微細粒子、有機化合物微細粒子あるいは有機化合
物エマルジヨンを含んだ分子量1万〜200万の水
溶性高分子水溶液、好ましくはシランカツプリン
グ剤とを含む塗液を、各種コーテイング法によつ
て、少なくとも片面に塗布を施す。シリコーンま
たはフツ素系化合物あるいはその混合体を塗液成
分に加えてもよい。 この塗液の塗布量は1ケの面につき固形分濃度
で3〜1000mg/m2が良い。次にこの塗液塗布縦延
伸フイルムを横延伸するが、横延伸前に皮膜を完
全に形成するため、フイルム表面塗布液中水分を
完全に蒸発乾固する必要がある。これは、二軸延
伸機のステンター予熱部で、5%/秒〜100%/
秒の水分乾燥速度となるよう熱風温度100〜150℃
で予熱することによつてなされる。予熱後90〜
120℃の延伸温度で2.5〜4.5倍に横延伸する。乾
燥完結、皮膜完全形成後の横延伸によつてフイル
ム表面に微細粒子を含み、それによる突起ができ
た不連続皮膜とその不連続皮膜の不連続部のフイ
ルム面に微細粒子が密着して形成される。これが
フイルムのすべりに寄与する。さらに、この横延
伸フイルムを180〜220℃で熱処理、あるいは1.1
〜1.8倍に、再延伸後180〜220℃で熱処理すると、
平滑なポリエステルフイルムの表面に、微細粒子
が不連続部に存在する、微細粒子が含有され、そ
れにより突起が設けられた高さ500Å以下の不連
続皮膜が形成された面を少なくとも片面にもつ二
軸延伸ポリエステルフイルムが得られる。 上記説明は単層フイルムについて行なつたが、
本文説明原料と、積極的に微粒子を添加した易
滑、フイルム原料との共押出しによる複合フイル
ムの製造において、平滑フイルム層表面に本説明
内容の技術を適用しても良い。 〔効果〕 以上述べたように、本発明はポリエステルフイ
ルムの表面に水溶性高分子と微細粒子とを主体と
する微細粒子による突起が設けられた不連続皮膜
を密着させ、かつ微細粒子をその不連続部に密着
せしめたことにより、該皮膜形成面側に形成する
蒸着膜は表面の走行性能が飛躍的に向上する。 しかも、この不連続皮膜の高さは500Å以下で
あるので、蒸着テープの電磁変換特性を損うこと
はない。また不連続皮膜不連続部に形成された微
細粒子の高さは不連続皮膜の高さより500Å以下
の高さなのでドロツプアウトが増加するというこ
とはない。 本発明の被覆フイルムは、各種の用途に適用で
きるが、好ましくは磁気記録媒体用のベースフイ
ルム、より好ましくは強磁性金属薄膜形成用のベ
ースフイルムとするのが望ましい。 次に、本発明の被覆フイルムの製造例およびそ
のフイルムを磁気テープに適用した例を実施例に
基づいて説明する。 実施例 1 重合触媒残査等に基づく内部粒子をできる限り
含まない実質的に無配向、非結晶のポリエチレン
テレフタレート原料を約20℃に維持れた回転ドラ
ム上に溶融押出しし、次に3.4倍の機械方向への
延伸を施し、その後メタリングバーコーターを用
いて下記水溶液エマルジヨンを固形分濃度で20
mg/m2両面塗布した。 水溶液エマルジヨンとしてはメトルセルロース
0.20wt%、平均粒径200Åの極微細シリカ0.15wt
%、ポリアクリル酸エステルエマルジヨン(固形
分濃度40%)0.10wt%の割合のものを調合した。
乾燥、予熱、延伸温度は115℃で水分乾燥速度は
15%/秒とした。 横延伸倍率3.4倍、熱処理温度200℃で、両面に
高さ260Åの不連続皮膜が形成され、その不連続
皮膜中に、径が200Åの微細突起が形成されかつ
不連続皮膜の高さより50Å高い微細粒子が該不連
続皮膜不連続部に4×106ケ/mm2の割合で密着さ
れた厚さ12μのポリエチレンテレフタレートフイ
ルムを得た。 このポリエステルフイルム表面に真空蒸着によ
りコバルト−ニツケル合金薄膜を1500Åの膜厚で
形成した。続いて所定幅にフイルムの機械方向に
切断し、磁気テープとした。この特性を表1に示
す。 実施例 2 実施例1のベースフイルム製造において、使用
水溶液エマルジヨン中に水溶性ポリエステルエー
テル共重合体0.35wt%およびシランカツプリング
剤N−β(アミノエチル)γ−アミノプロピルメ
チルジメトキシシラン0.05%の割合で加えた水溶
液を用い、他は実施例1と同様にして両面に微細
粒子を含みそれによる突起が存在する、高さ270
Åの不連続皮膜が形成され、該不連続皮膜の高さ
より40Å高い微細粒子が該不連続部に4×106
ケ/mm2の割合で密着された厚さ12μのポリエチレ
ンテレフタレートフイルムを得た。 このベースフイルムを用い、実施例1と同様に
して磁気テープを得た。テープ特性を表1に示し
た。 実施例 3 実施例2のベースフイルム製造において使用水
溶液エマルジヨン中のポリアクリル酸エステルエ
マルジヨンをポリ酢酸ビニルエマルジヨン(固形
分35%)0.01wt%のものにおきかえた。他は実施
例1と同様にして微細粒子を含み、それによる突
起が存在する高さ270Åの不連続皮膜が形成され、
不連続皮膜の高さより50Å高い微細粒子が該不連
続部に3×106ケ/mm2の割合で密着された厚さ12μ
のポリエチレンテレフタレートフイルムを得た。 このベースフイルムを用い、実施例1と同様に
して蒸着磁気テープを得た。テープ特性を表1に
示した。 比較例 1 実施例1のベースフイルム製造において、メチ
ルセルロース水溶液濃度を0.40%にした水溶液を
用い、他は実施例1と同様にして微細粒子を含
み、それによる突起が存在する高さ600Åの不連
続皮膜が両面に形成され、不連続皮膜の高さより
低い微細粒子が該不連続皮膜不連続部に4×106
ケ/mm2の割合で密着された厚さ12μのポリエチレ
ンテレフタレートフイルムを得た。 このベースフイルムを用い、実施例1と同様に
して磁気テープを得た。テープ特性を表1に示し
た。 比較例 2 実施例1のベースフイルム製造において、極微
細シリカを使用せず、他は同様にして両面に高さ
250Åの不連続皮膜が形成され、不連続皮膜の高
さより60Å高い微細粒子が該不連続皮膜不連続部
に4×106ケ/mm2の割合で密着された厚さ12μのポ
リエチレンテレフタレートフイルムを得た。 このベースフイルムを用い、実施例1と同様に
して磁気テープを得た。テープ特性を表1に示し
た。 比較例 3 実施例1のベースフイルム製造において、極微
細シリカの粒径を1500Åにしたものを用い、他は
同様にして両面に径1500Åの突起が形成された高
さ280Åの不連続皮膜が形成され、不連続皮膜の
高さより30Å高い微細粒子が該不連続皮膜不連続
部に存在した表面を持つ厚さ12μのポリエチレン
テレフタレートフイルムを得た。 比較例 4 実施例1のベースフイルム製造において、メチ
ルセルロース水溶液濃度を0.10%にして、ポリア
クリル酸エステルエマルジヨン濃度を1.5wt%に
したこと以外は同様にして微細粒子を含み、それ
による突起が存在する高さ50Åの不連続皮膜が両
面に形成され、不連続皮膜の高さより650Å高い
微細粒子が該不連続皮膜不連続部に6×107ケ/
mm2の割合で密着された厚さ12μのポリエチレンテ
レフタレートフイルムを得た。 このベースフイルムを用い、実施例1と同様に
して磁気テープを得た。テープ特性を表1に示し
た。 比較例 5 実施例1のベースフイルム製造において、ポリ
アクリル酸エステルエマルジヨンを使用せずに、
他は同様にして微細粒子を含み、それによる突起
が存在する高さ260Åの不連続皮膜が両面に形成
され、該不連続皮膜不連続部に微細粒子の密着さ
れてない表面を持つ厚さ12μのポリエチレンテレ
フタレートフイルムを得た。 このベースフイルムを用い、実施例1と同様に
して磁気テープを得た。テープ特性を表1に示し
た。 表1の特性結果から明らかなように、本発明の
被覆フイルムの微細粒子を含む不連続皮膜と該不
連続皮膜の不連続部に微細粒子の密着された面側
に蒸着膜を形有させた磁気テープは、常温常湿、
高温高湿の使用においても、ともに走行性、耐す
り傷性が良好であり、しかも平滑で電磁変換特性
が優れている。 【表】
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD OF THE INVENTION The present invention relates to coated films. Specifically, the present invention relates to a polyester film for magnetic recording media, and more particularly to a polyester film for vapor-deposited video. [Prior art] Vapor-deposited video tape, in which a magnetic substance is vapor-deposited on the surface of a polyester film, is capable of extremely high-density magnetic recording, but because the thickness of the magnetic layer is very thin, the surface morphology of the base film used becomes the surface morphology of the deposited thin film after magnetic material deposition,
Therefore, if the surface roughness of the base film is rough, the electromagnetic conversion characteristics of the vapor-deposited video tape will be significantly deteriorated. Considering this electromagnetic conversion characteristic, a base film with a completely smooth mirror surface is preferable, but the deposited film formed on such a base film has extremely slippery properties because the deposited surface maintains its mirror surface. Unfortunately, unless a protective layer is provided on the vapor deposition surface, a large amount of scratches will occur in the tape forming process after the vapor deposition process, making it completely impractical. Furthermore, a serious problem in the actual use of vapor-deposited video tapes is the runnability of the vapor-deposited surface. In the case of conventional coated video tapes, which are made by mixing magnetic powder into an organic binder and coating it on a base film, it is possible to add a lubricant to the binder to improve the running properties of the magnetic surface. In the case of videotape,
The runnability of the deposited surface is generally disadvantageous unless a protective film layer is provided. Since it is difficult to uniformly provide a protective film layer on the vapor deposition surface, in the case of vapor deposition tapes without this protective film layer, it is necessary to improve the runnability of the vapor deposition surface, especially under harsh conditions when actually used. That is, there are drawbacks such as the inability to improve running performance under high temperature and high humidity conditions. [Object of the Invention] The object of the present invention is to provide a base film that can form a deposited film with excellent smoothness, scratch resistance, and runnability not only in normal environments but also under high temperature and high humidity conditions. There is a particular thing. [Configuration of the Invention] The present invention has the following configuration to achieve the above object. That is, a polyester film, a discontinuous film with a thickness of 500 Å or less mainly consisting of a water-soluble polymer and fine particles with a particle size of 30 to 500 Å closely adhered to at least one side of the polyester film, and a discontinuous film of the discontinuous film. The discontinuous film is made up of fine particles that are in close contact with the film surface of the discontinuous part, and protrusions are formed by the fine particles on the discontinuous film, and the height of the fine particles that are in close contact with the film surface of the discontinuous part of the discontinuous film is The thickness of the coating film is higher than the thickness of the discontinuous coating. The polyester film of the present invention is a polyester film formed by a well-known method, that is,
A film made by melting polyester and extruding it into a sheet or cylindrical shape and stretching it in at least one direction.The mechanical properties of the film include a normal balanced type, a uniaxially strengthened type, and a biaxially strengthened type. It is desirable that it be one of the more powerful types. In addition, it is desirable that the surface of the polyester film be smooth, and specifically, the roughness of the film surface is such that the cutoff value of the stylus surface roughness meter is 0.08 mm, and the Ra value is 0.015μ or less, more preferably 0.010. It is desirable that it be within the range of ~0.002μ. Note that the Ra value is calculated using an appropriate cut-off value from the cross-sectional curve obtained from a stylus surface roughness meter.
Arithmetic of the absolute value of the height (lowness) of the roughness curve from the center line (calculated by making the areas above and below the center line equal) in a roughness curve excluding waviness. (according to DIN 4768). The polyester forming the film may be of any type as long as it is mainly composed of linear polyester. For example, polyethylene terephthalate, polytetramethylene terephthalate,
Representative examples include poly-1,4-cyclohexylene dimethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, and polyethylene-p-oxybenzoate. Further, the above polyester may be a homopolyester or a copolyester. In the case of copolyester, the components to be copolymerized are:
For example, diethylene glycol, propylene glycol, neopentyl glycol, polyethylene glycol, p-xylylene glycol, 1,
Diol components such as 4-cyclohexanedimethanol, adipic acid, sebacic acid, phthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 5
Examples include dicarboxylic acid components such as -sodium sulfoisophthalic acid, polyfunctional dicarboxylic acid components such as trimellitic acid and pyromellitic acid, and p-oxyethoxybenzoic acid. In the case of copolymerization, the amount of copolymerized components is 20 mol% or less. Furthermore, the above-mentioned polyester is mixed with at least one of an alkali metal salt derivative of sulfonic acid that is non-reactive with the polyester, a polyalkylene glycol that is substantially insoluble in the polyester, etc., to an extent not exceeding 5% by weight. It's okay. Furthermore, when the film is stretched, it may contain internal particles consisting of polymerization residues that cause protrusions on the film surface or inert particles added from the outside, and the content thereof is determined by When the polymer is biaxially stretched, it is sufficient that the thickness is 30 μm or less and the haze per sheet is 5% or less. The discontinuous film of the present invention is formed from a composition mainly consisting of a water-soluble polymer and fine particles, and preferably contains a silane coupling agent or a titanium coupling agent. Fine protrusions made of fine particles are formed on the discontinuous film. Further, the thickness of the discontinuous film of the present invention is 500 Å or less,
Preferably it is 50 to 300 Å. If the thickness exceeds 500 Å, the electromagnetic conversion characteristics of the deposited thin film, especially the S/N ratio, will deteriorate. The water-soluble polymer used in the present invention has a molecular weight of 10,000 to 2,000,000, preferably 100,000 to 1,000,000. When the molecular weight is less than 10,000, the film described below becomes soft, it becomes difficult to maintain the structure, and the durability deteriorates. If the molecular weight exceeds 2 million, the film becomes too hard and brittle, resulting in poor durability. As such water-soluble polymers, polyvinyl alcohol, gum tragacanth, gum arabic, casein, gelatin, methyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, water-soluble polyester ether copolymers, etc. can be used. The water-soluble polymer of the present invention is not a single component, but includes a water-soluble polymer for forming a discontinuous film and a water-soluble polymer that serves as an easily adhesive component that makes it difficult for fine particles present in the film to fall off from the film. A multi-component system is desirable. The fine particles of the discontinuous film forming component of the present invention are:
The size is 30 to 500 Å, preferably 50 to 400 Å, particularly preferably 50 to 95 Å. Here, the size refers to the maximum particle size of fine particles, and if the size is less than 30 Å, the runnability of the vapor-deposited thin film formed by vapor-depositing a magnetic material on this discontinuous film will not improve. Moreover, if the size exceeds 500 Å, the electromagnetic conversion characteristics of the magnetic surface deteriorate. The shape of the fine particles may be spherical, ellipsoidal, rectangular, cubic, or the like. In addition, the particle types include inorganic compound particles such as MgO, ZnO, MgCO 3 , CaCO 3 ,
CaSO 4 , BaSO 4 , Al 2 O 3 , SiO 2 , TiO 2 and Ca,
Acid salts such as Ba, Zn, and Mn can be used. Multiple types of fine particles may be used. Fine particles exist in the discontinuous film and on the film surface, and the number of particles present is 10 4 to 10 11
It is necessary that the number of particles/mm 2 is preferably 10 5 to 10 10 pores/mm 2 . The runnability of a deposited thin film obtained by depositing a magnetic material on a discontinuous film having a particle count of less than 10 4 particles/mm 2 or a diameter of less than 30 Å does not improve. The diameter and number of particles are determined by observation with an electron microscope. When the number of particles exceeds 10 to 11 particles/ mm2 , the electromagnetic conversion characteristics of the magnetic surface, especially the S/N
The ratio worsens. Further, fine particles tend to fall off, which is not preferable. In the present invention, the fine particles closely attached to the film surface of the discontinuous portion of the discontinuous film are those with a diameter of 50 to 10,000 Å,
Preferably, the particles are 100 to 5000 Å, which is larger than the diameter of the fine particles on the surface of the discontinuous film described above.
It is desirable that the ratio is 2 or more, preferably 5 or more. The diameter refers to the maximum length of fine particles determined by observing the film of the present invention with an electron microscope. The shape of the fine particles is spherical, ellipsoidal, rectangular, cubic, etc. The height of the particles is such that 20% or more of the total number of particles, preferably 50% or more of the particles are higher than the discontinuous film, preferably 20~
A height of 500 Å is desirable. The number of particles is 10 4 to 10 8
It is desirable that the density is 10 6 to 10 8 pores/mm 2 , preferably 10 6 to 10 8 pores/mm 2 . If the number is less than 10 4 pieces/mm 2 , there is a tendency that the runnability of the vapor-deposited film surface formed by vapor-depositing a magnetic material on this surface does not improve. If the number exceeds 108 pieces/ mm2 , the electromagnetic conversion characteristics of the magnetic surface, especially the S/N
Although organic compound particles are preferable as the particle type that tends to deteriorate the ratio, inorganic compound particles subjected to hydrophobic surface treatment may also be used. For example, they are fine particles made of polystyrene, polyethylene, polyamide, polyester, polyacrylic acid ester, polyepoxy resin, polyvinyl acetate, polyvinyl chloride, polysodium acrylate, polyvinyl methyl ether, fluorine resin, and the like. Plural types of fine particles may be used. It is desirable that the height of the fine particles is higher than that of the discontinuous film, preferably 20 to 500 Å, more preferably 30 to 200 Å. If the height of the fine particles is low, these fine particles do not contribute to improving the runnability of the vapor deposited film surface provided on the surface on which the discontinuous film is formed. If it exceeds 500 Å, the electromagnetic conversion characteristics of the deposited film surface will deteriorate. That is, the S/N ratio becomes low and dropout increases. Silicone, a fluorine compound, or both may be included as a structural component of the film in order to improve the slipperiness and scratch resistance of the discontinuous film. The silicone that can be used has a molecular weight of 30,000 to 300,000, and is preferably used as a chain component. However, R 1 : CH 3 , C 6 H 5 , H R 2 : CH 3 , C 6 H 5 , H or a functional group (for example,
(epoxy group, amino group, hydroxyl group) n: 100 to 7000, is a silicone compound having an integer that satisfies the above molecular weight according to R 1 and R 2 , and has an epoxy group, amino group, hydroxyl group, or other functional group at the end. It has an end group. In the present invention, the silicone compound is not necessarily a homopolymer, but may be a copolymer or a mixture of several types of homopolymers. The molecular weight of silicone is preferably 30,000 to 300,000. When the molecular weight is less than 30,000, the film becomes too soft and the structure becomes easily deformed. on the other hand,
On the other hand, if it exceeds 300,000, the film becomes brittle. Usable fluorine-based compounds include fluorine-based surfactants, fluorine-containing hydrocarbon compounds, etc., but the atomic ratio is 10 to 60%, preferably 20%.
A fluorine content of ~50% is desirable. If the fluorine content is low, no slipping effect can be seen. In addition, in order to strengthen the bond between water-soluble polymers, silicones, fluorine compounds, or both, to strengthen the adhesive force between the film and the polyester film, and to strengthen the bond between the film and the fine particles in the film, discontinuous It is desirable to add a silane coupling agent to the particles present in the discontinuities in order to strengthen the adhesion between the coating components and the particles present in the discontinuities of the discontinuous coating and the polyester film. Silane coupling agents are organosilicon monomers that have two or more different reactive groups in their molecules; one of the reactive groups is a methoxy group, ethoxy group, silanol group, etc., and the other is a silane coupling agent. Examples of reactive groups include vinyl, epoxy, methacrylic, amino, and mercapto groups. The reactive group is selected to be one that bonds with the water-soluble polymer side chain, terminal group, and polyester.As a silane coupling agent, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, γ-glycidoxy Propyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, N-β(aminoethyl)γ-aminopropylmethyldimethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyl Triethoxysilane etc. can be applied. Water-soluble polymer [A] silicone or fluorine-based compound or mixture thereof [B], silane coupling agent [C], fine particles [D], and discontinuous parts of the discontinuous film as components of the discontinuous film The usage ratio of fine particles [E] present in is [A]:[B]:[C]:[D]:[E]=20:0~20
:0
〜20:1〜40:1〜40, (preferably 20:0〜
20:1~20:1~30:1~30). [B] may be used for the purpose of improving slip properties and scratch resistance. [C] is preferably used to improve the bonding strength between various components. If [B] exceeds the upper limit, the adhesion strength of the deposited film will be poor. If [C] exceeds the upper limit, the discontinuous film structure becomes too hard and the film becomes brittle, which is not preferable. When [C] is used, [D] and [E] are firmly bonded to the discontinuous film or film surface. The fine particles [D] are 10 4 to 10 11 pieces per discontinuous film.
mm 2 , [D]
If it is less than the above lower limit, the presence of the particles becomes sparse, and the runnability of the vapor deposition surface deteriorates. Exceeding the upper limit is not preferable since the fine particles fall off from the film more frequently and the electromagnetic characteristics deteriorate. The fine particles [E] mainly adhere to the film surface of the discontinuous part of the discontinuous film, but when [E] falls below the above lower limit, the number of adhering particles decreases, and the vapor deposition formed on the discontinuous film decreases. It no longer contributes to improving the runnability of the membrane surface. If the upper limit is exceeded, fine particles will be more likely to fall off the film surface. Further, the electromagnetic conversion characteristics are also deteriorated, which is not preferable. Hereinafter, the coated film of the present invention will be explained based on the drawings. Figure 1 shows a discontinuous film that partially covers the surface of a polyester film, a state in which fine protrusions are present on the discontinuous film due to fine particles existing within the film, and a state in which the film surface at the discontinuous part of the film is FIG. 3 is a plan view showing fine particles in close contact with each other. The situation can be seen by observing it with an electron microscope at a magnification of 10,000 times or more. FIG. 2 is a schematic cross-sectional view of the film of FIG. 1 with a discontinuous coating and fine particles adhered thereto. Indicates a state in which the height of the fine particles is higher than the height of the discontinuous film. In FIGS. 1 and 2, 1 is a polyester film, 2 is a discontinuous film, 3 is a fine particle in the discontinuous film, and 4 is a fine particle existing in a discontinuous portion of the discontinuous film. The height (thickness) of the discontinuous film of the present invention is indicated by h in FIG.
The average of the peaks and valleys in the surface roughness curve when measuring the surface film-formed surface using a 0.08mm lens at a vertical magnification of 500,000 times, excluding peaks due to fine particles present in discontinuities. This is the value measured by the height interval. The heights of fine particles are h P1 , h P2 , h P2 , and
This is indicated by h P3 , and is the value measured as the difference between the peak and valley portions that are larger than h in the height direction.
Note that FIG. 3 schematically shows the actually measured curve. Roughness due to fine particles present in the discontinuous film is difficult to observe. The height of the discontinuous coating of the present invention is 500 Å or less, preferably 50 to 300 Å. If the height exceeds 500 Å, the electromagnetic characteristics of the videotape with the vapor-deposited film formed on its surface, especially the S/N ratio, will deteriorate. Tape characteristics were evaluated by repeatedly recording and playing back using a commercially available VHS VTR. The tape runnability was evaluated at normal temperature and humidity, and at high temperature and high humidity.
This was done by performing playback under these conditions and observing screen fluctuations due to disturbances in tape running.
The evaluation criteria are as follows. ○: The vehicle runs smoothly and there is no fluctuation in the playback screen. ×: The running becomes slow in some places, and the playback screen fluctuates. The scratch resistance was evaluated by observing scratches on the tape thin film after repeatedly running the tape 100 times under normal temperature and humidity conditions and high temperature and high humidity conditions.
The evaluation criteria are as follows. ◎: Almost no scratches are observed on the thin film surface of the tape. ○: A few very weak scratches are observed on the thin film surface of the tape. ×: Severe scratches occur on the thin film surface of the tape. Note that normal temperature and humidity is 25°C and 60% RH, and high temperature and high humidity is 50°C and 80% RH. For the S/N ratio, record a 50% white level signal at the optimum recording current for each tape, and measure the signal-to-noise ratio contained in the video demodulated signal during playback using a video noise meter, using a commercially available VHS standard tape as OdB. Comparative measurements were made. Dropout records a three-step wave signal on a magnetic recording tape at the optimum recording current, and the attenuation of the video head amplifier output during playback is 18 dB and the duration is
Dropouts of 20 μsec or more were measured using a dropout counter for 10 minutes, and the average per minute was taken. The S/N ratio dropout measurement was performed at room temperature and humidity. When a discontinuous film containing the fine particles of the coating film of the present invention has protrusions caused by the fine particles and a vapor deposited film is provided on the surface of the discontinuous portion of the discontinuous film on the side where the fine particles are closely attached, a magnetic head, a guide Although the contact area with the surface of the deposited film is extremely small, the distance between the ferromagnetic thin film surface and the magnetic head is kept very narrow, so the running properties of the deposited film surface are extremely good. Moreover, the electromagnetic conversion characteristics are excellent. Next, a method for manufacturing the film of the present invention will be explained. At least one side of a smooth polyester film stretched in one direction by a conventional method contains inorganic fine particles, organic compound fine particles, organic compound emulsion, or inorganic fine particles subjected to hydrophobic surface treatment, with a molecular weight of 10,000 or more. A coating solution containing a 2,000,000 ml water-soluble polymer aqueous solution, more preferably a silane coupling agent is applied, and after drying, stretching is carried out in the orthogonal direction, or after stretching in the orthogonal direction, the coating solution is further stretched in the above-mentioned one direction and then heat treated. do. By using inorganic fine particles that have good affinity with water-soluble polymers, fine particles can be made to exist in a discontinuous film, and are compatible with water-soluble polymers as organic fine particles or organic compounds in organic compound emulsion. By using inorganic fine particles that are not treated with a hydrophobic surface or that have been subjected to a hydrophobic surface treatment, a discontinuous film surface in which the fine particles are closely adhered to the discontinuous portions can be formed. Note that the water-soluble polymer solution here is preferably a two-component system. One component used is one that has adhesive properties that can particularly easily hold inorganic fine particles. More specifically, the polyester raw material described above is melt-extruded using a normal film-forming machine, cooled, and then uniaxially stretched 3 to 5 times to form a longitudinally stretched film.
Thereafter, in a step before preheating and stretching, a coating liquid containing a water-soluble polymer aqueous solution with a molecular weight of 10,000 to 2 million, containing fine inorganic compound particles, fine organic compound particles, or organic compound emulsion, preferably a silane coupling agent, is applied. , applied on at least one side by various coating methods. Silicone or fluorine compounds or mixtures thereof may be added to the coating liquid components. The coating amount of this coating liquid is preferably 3 to 1000 mg/m 2 in terms of solid content per surface. Next, this longitudinally stretched film coated with the coating solution is stretched in the transverse direction, but in order to form a film completely before the transverse stretching, it is necessary to completely evaporate the moisture in the coating solution on the film surface to dryness. This is the stenter preheating part of the biaxial stretching machine, which is 5%/second to 100%/second.
Hot air temperature 100-150℃ to achieve moisture drying speed of seconds
by preheating. 90~ after preheating
Transversely stretch 2.5 to 4.5 times at a stretching temperature of 120°C. After drying is completed and the film is completely formed, the film surface contains fine particles due to lateral stretching, and the resulting discontinuous film has protrusions, and the fine particles adhere to the film surface at the discontinuous parts of the discontinuous film. be done. This contributes to film slippage. Furthermore, this horizontally stretched film is heat treated at 180 to 220℃ or
Heat treatment at 180-220℃ after re-stretching to ~1.8x
A film having at least one surface of a smooth polyester film on which a discontinuous film with a height of 500 Å or less containing protrusions is formed, in which fine particles are present in discontinuous portions. An axially stretched polyester film is obtained. The above explanation was about a single layer film, but
In the production of a composite film by coextrusion of the raw material described in the text and a film raw material to which fine particles are actively added, the technology described herein may be applied to the surface of a smooth film layer. [Effects] As described above, the present invention allows a discontinuous coating provided with protrusions made of microparticles mainly composed of a water-soluble polymer and microparticles to be brought into close contact with the surface of a polyester film. By closely adhering to the continuous portion, the running performance of the surface of the vapor deposited film formed on the film forming surface is dramatically improved. Moreover, since the height of this discontinuous film is 500 Å or less, the electromagnetic conversion characteristics of the vapor-deposited tape are not impaired. Further, since the height of the fine particles formed in the discontinuous portions of the discontinuous film is 500 Å or less higher than the height of the discontinuous film, dropout does not increase. Although the coated film of the present invention can be applied to various uses, it is preferably used as a base film for magnetic recording media, and more preferably as a base film for forming a ferromagnetic metal thin film. Next, an example of manufacturing a coated film of the present invention and an example of applying the film to a magnetic tape will be described based on Examples. Example 1 A substantially non-oriented, non-crystalline polyethylene terephthalate raw material containing as little internal particles as possible due to polymerization catalyst residue etc. was melt-extruded onto a rotating drum maintained at about 20°C, and then a 3.4 times larger machine was used. After that, using a metering bar coater, the following aqueous solution emulsion was applied at a solid content concentration of 20%.
mg/m 2 coated on both sides. As an aqueous emulsion, methcellulose
0.20wt%, 0.15wt of ultrafine silica with average particle size of 200Å
% and polyacrylic acid ester emulsion (solid content concentration 40%) at a ratio of 0.10 wt%.
Drying, preheating, and stretching temperatures are 115℃ and moisture drying speed is
The rate was set at 15%/second. At a transverse stretching ratio of 3.4 times and a heat treatment temperature of 200°C, a discontinuous film with a height of 260 Å is formed on both sides, and microprotrusions with a diameter of 200 Å are formed in the discontinuous film, which is 50 Å higher than the height of the discontinuous film. A polyethylene terephthalate film having a thickness of 12 μm was obtained in which fine particles were adhered to the discontinuous portions of the discontinuous film at a rate of 4×10 6 particles/mm 2 . A cobalt-nickel alloy thin film with a thickness of 1500 Å was formed on the surface of this polyester film by vacuum deposition. Subsequently, the film was cut into a predetermined width in the machine direction to obtain a magnetic tape. This characteristic is shown in Table 1. Example 2 In the production of the base film of Example 1, the ratio of 0.35 wt% of water-soluble polyester ether copolymer and 0.05% of silane coupling agent N-β(aminoethyl)γ-aminopropylmethyldimethoxysilane in the aqueous emulsion used. Using the aqueous solution added in Example 1, the other conditions were the same as in Example 1, and the height was 270 mm, with fine particles on both sides and protrusions caused by them.
A discontinuous film with a height of 40 Å is formed, and fine particles with a height of 40 Å higher than the height of the discontinuous film are deposited at the discontinuous portion of 4×10 6
A polyethylene terephthalate film with a thickness of 12 μm was obtained, which was adhered at a ratio of 1/mm 2 . A magnetic tape was obtained in the same manner as in Example 1 using this base film. The tape properties are shown in Table 1. Example 3 In the production of the base film in Example 2, the polyacrylic acid ester emulsion in the aqueous emulsion used was replaced with a polyvinyl acetate emulsion (solid content 35%) containing 0.01 wt%. Otherwise, a discontinuous film with a height of 270 Å containing fine particles and protrusions was formed in the same manner as in Example 1.
Fine particles 50 Å higher than the height of the discontinuous film were adhered to the discontinuous portion at a rate of 3 × 10 6 particles/mm 2 to a thickness of 12 μm.
A polyethylene terephthalate film was obtained. Using this base film, a vapor-deposited magnetic tape was obtained in the same manner as in Example 1. The tape properties are shown in Table 1. Comparative Example 1 In the production of the base film of Example 1, an aqueous solution with a methyl cellulose aqueous solution concentration of 0.40% was used, and the other conditions were the same as in Example 1. A discontinuous film with a height of 600 Å containing fine particles and protrusions due to the presence of the methyl cellulose aqueous solution was used. A film is formed on both sides, and 4×10 6 fine particles lower than the height of the discontinuous film are formed on the discontinuous part of the discontinuous film.
A polyethylene terephthalate film with a thickness of 12 μm was obtained, which was adhered at a ratio of 1/mm 2 . A magnetic tape was obtained in the same manner as in Example 1 using this base film. The tape properties are shown in Table 1. Comparative Example 2 In manufacturing the base film of Example 1, ultrafine silica was not used, and the other things were the same, but the height was increased on both sides.
A polyethylene terephthalate film with a thickness of 12 μm was formed to form a 250 Å discontinuous film, and fine particles 60 Å higher than the height of the discontinuous film were adhered to the discontinuous portions of the discontinuous film at a rate of 4 × 10 6 particles/mm 2 . Obtained. A magnetic tape was obtained in the same manner as in Example 1 using this base film. The tape properties are shown in Table 1. Comparative Example 3 In the production of the base film of Example 1, ultrafine silica particles with a particle size of 1500 Å were used, and in the same manner as above, a discontinuous film with a height of 280 Å with protrusions of 1500 Å in diameter formed on both sides was formed. A polyethylene terephthalate film with a thickness of 12 .mu.m was obtained having a surface where fine particles having a height of 30 Å higher than the height of the discontinuous film were present at the discontinuous portions of the discontinuous film. Comparative Example 4 The base film was manufactured in the same manner as in Example 1 except that the concentration of the methylcellulose aqueous solution was 0.10% and the concentration of the polyacrylic acid ester emulsion was 1.5wt%. A discontinuous film with a height of 50 Å is formed on both sides, and fine particles 650 Å higher than the height of the discontinuous film are formed at the discontinuous part of the discontinuous film at 6 × 10 7 particles/
A polyethylene terephthalate film with a thickness of 12 μm was obtained which was closely adhered at a ratio of mm 2 . A magnetic tape was obtained in the same manner as in Example 1 using this base film. The tape properties are shown in Table 1. Comparative Example 5 In manufacturing the base film of Example 1, without using polyacrylic acid ester emulsion,
In the same way, a discontinuous film with a height of 260 Å containing fine particles and protrusions caused by the discontinuous film is formed on both sides, and the discontinuous film has a surface with no fine particles in close contact with the discontinuous part, and a thickness of 12 μm. A polyethylene terephthalate film was obtained. A magnetic tape was obtained in the same manner as in Example 1 using this base film. The tape properties are shown in Table 1. As is clear from the characteristic results in Table 1, the discontinuous film containing fine particles of the coated film of the present invention and the discontinuous portion of the discontinuous film have a vapor deposited film formed on the side to which the fine particles are adhered. Magnetic tape can be used at room temperature and humidity.
Even when used at high temperatures and high humidity, it has good running properties and scratch resistance, and is smooth and has excellent electromagnetic characteristics. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の被覆フイルムで、ポリエステ
ルフイルムの表面を部分的に覆つた不連続皮膜
と、その不連続皮膜上にその中に存在する微細粒
子により微細突起が存在する状態と、その皮膜の
不連続部のフイルム面に密着された微細粒子とを
模式的に示した平面図である。第2図は第1図の
断面を模式的に示した断面図であり、不連続皮膜
内・上の微細粒子と不連続皮膜の不連続部に微細
粒子が密着された状態を示す。図中hが皮膜厚さ
である。第3図は本発明により形成された不連続
皮膜面の縦倍率50万倍での触針式表面粗さ曲線チ
ヤートである。hが皮膜の高さ、hP1,hP2,hP3
不連続皮膜不連続部に存在する微細粒子の高さで
ある。 1……ポリエステルフイルム、2……不連続皮
膜、3,4……微細粒子。
Figure 1 shows the coated film of the present invention, showing a discontinuous film that partially covers the surface of a polyester film, a state in which fine protrusions are present on the discontinuous film due to fine particles existing therein, and a state in which the film is coated. FIG. 3 is a plan view schematically showing fine particles closely adhered to the film surface of the discontinuous portion. FIG. 2 is a cross-sectional view schematically showing the cross section of FIG. 1, and shows the fine particles in and on the discontinuous film and the fine particles in close contact with the discontinuous portions of the discontinuous film. h in the figure is the film thickness. FIG. 3 is a stylus type surface roughness curve chart at a vertical magnification of 500,000 times for the discontinuous film surface formed according to the present invention. h is the height of the film, and h P1 , h P2 , and h P3 are the heights of the fine particles present in the discontinuous parts of the discontinuous film. 1... Polyester film, 2... Discontinuous film, 3, 4... Fine particles.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエステルフイルムと、該フイルムの少な
くとも片面に密着された水溶性高分子と粒径30〜
500Åの微細粒子を主体とした厚さ500Å以下の不
連続皮膜と、該不連続皮膜の不連続部のフイルム
面に密着された微細粒子とからなり、該不連続皮
膜上には微細粒子による突起が形成され、かつ、
該不連続皮膜の不連続部のフイルム面に密着され
た微細粒子の高さが不連続皮膜の厚さより高い被
覆フイルム。
1. A polyester film, a water-soluble polymer closely adhered to at least one side of the film, and a particle size of 30~
It consists of a discontinuous film with a thickness of 500 Å or less mainly composed of 500 Å fine particles, and fine particles closely attached to the film surface of the discontinuous part of the discontinuous film, and there are no protrusions caused by the fine particles on the discontinuous film. is formed, and
A coated film in which the height of the fine particles closely adhered to the film surface of the discontinuous portion of the discontinuous coating is higher than the thickness of the discontinuous coating.
JP3588184A 1984-02-29 1984-02-29 Coated film Granted JPS60180837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3588184A JPS60180837A (en) 1984-02-29 1984-02-29 Coated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3588184A JPS60180837A (en) 1984-02-29 1984-02-29 Coated film

Publications (2)

Publication Number Publication Date
JPS60180837A JPS60180837A (en) 1985-09-14
JPH0479368B2 true JPH0479368B2 (en) 1992-12-15

Family

ID=12454342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3588184A Granted JPS60180837A (en) 1984-02-29 1984-02-29 Coated film

Country Status (1)

Country Link
JP (1) JPS60180837A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69716145T2 (en) * 1996-02-05 2003-06-12 Teijin Ltd Biaxially oriented composite film
TW448104B (en) * 1996-06-06 2001-08-01 Teijin Ltd Laminate film and magnetic recording medium using the same
JPH10157024A (en) 1996-11-29 1998-06-16 Teijin Ltd Laminated film
KR100448034B1 (en) * 1997-05-20 2005-06-01 데이진 가부시키가이샤 Biaxially oriented laminate film of wholly aromatic polyamide and magnetic recording media
WO1999053483A1 (en) 1998-04-13 1999-10-21 Teijin Limited Aromatic polyamide film for high-density magnetic recording medium

Also Published As

Publication number Publication date
JPS60180837A (en) 1985-09-14

Similar Documents

Publication Publication Date Title
JPS6357238B2 (en)
EP0074750B1 (en) Polyester film for magnetic recording medium and magnetic recording medium made therewith
JPH0380410B2 (en)
JPS62290535A (en) Polyester film for magnetic record medium and manufacture thereof
JPH10157024A (en) Laminated film
JPH0479368B2 (en)
JPS6230106B2 (en)
JPH0134456B2 (en)
JPS60180838A (en) Coated film
JPS6230105B2 (en)
JP2555998B2 (en) Easy-adhesive polyester film
JP2523102B2 (en) Composite polyester film for magnetic recording media
JPS6412218B2 (en)
JPH0126337B2 (en)
JPH0318573B2 (en)
JPS6412224B2 (en)
JPH0699579B2 (en) Polyester film for magnetic recording media
JP3743701B2 (en) Composite polyester film for magnetic recording media
JPH0126338B2 (en)
JP3598016B2 (en) Composite polyester film for magnetic recording medium and magnetic recording medium
JPH0628096B2 (en) Polyester film for magnetic recording media
JPH0651401B2 (en) Polyester film for magnetic recording media
JP3288926B2 (en) Laminated film
JPH09323386A (en) Laminated film
JPS59182820A (en) Covering film