JPH0318573B2 - - Google Patents

Info

Publication number
JPH0318573B2
JPH0318573B2 JP59086099A JP8609984A JPH0318573B2 JP H0318573 B2 JPH0318573 B2 JP H0318573B2 JP 59086099 A JP59086099 A JP 59086099A JP 8609984 A JP8609984 A JP 8609984A JP H0318573 B2 JPH0318573 B2 JP H0318573B2
Authority
JP
Japan
Prior art keywords
film
discontinuous
polyester
fine particles
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59086099A
Other languages
Japanese (ja)
Other versions
JPS60230824A (en
Inventor
Masaaki Ono
Masahiko Mogi
Kazuo Okabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP59086099A priority Critical patent/JPS60230824A/en
Publication of JPS60230824A publication Critical patent/JPS60230824A/en
Publication of JPH0318573B2 publication Critical patent/JPH0318573B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は被覆フイルムの製造方法に関するもの
である。 〔従来技術〕 従来、磁性物質をポリエステルフイルムの表面
に蒸着せしめた蒸着型ビデオテープが使用されて
いる。 しかし、この蒸着型ビデオテープは、磁性層の
厚さが非常に薄いため、使用するベースフイルム
の表面形態が、そのまま真空蒸着した強磁性金属
薄膜(以下、単に蒸着膜という)と同一の表面形
態となる。そのためベースフイルムの表面粗さが
粗いと蒸着ビデオテープの電磁変換特性が著しく
悪くなる。この電磁変換特性の面から考えると、
平滑な全くの鏡面からなるベースフイルムが好ま
しいが、そのようなベースフイルム上に形成され
た蒸着膜は、蒸着面がそのまま鏡面を保つので、
すべり性が非常に悪く、蒸着面に保護層を設ける
ようなことをしない限り、蒸着工程以降のテープ
化プロセスにおいて大量のすり傷が発生し、全く
実用性はなくなる。 また蒸着ビデオテープ実際使用時の重大な問題
は蒸着面の走行性である。従来の磁性体粉末を有
機バインダーに混入させてベースフイルムに塗布
してなる塗布型ビデオテープの場合には、バイン
ダー中に滑剤を入れて、磁性面の走行性を向上さ
せることができるが、蒸着ビデオテープの場合、
蒸着面の走行性は保護膜層を設けない限り一般に
不利である。保護膜層を均一に蒸着面上に設ける
ことは困難であるので、この保護膜層を設けない
蒸着テープの場合、蒸着面の走行性向上、特に実
際に使用される時の過酷な条件下、すなわち高温
高湿条件下での走行性向上が計れないなどの欠点
がある。 〔発明の目的〕 本発明の目的は、平滑性、耐すり傷性、通常環
境のみならず高温高湿条件下においても走行性の
優れた蒸着膜を形成することが可能なベースフイ
ルムの製造方法を提供することにある。 〔発明の構成〕 本発明は、一方向に延伸後の平滑なポリエステ
ルフイルムの少なくとも片面に、ポリスチレン、
ポリエチレン、ポリアミド、ポリエステル、ポリ
アクリル酸エステル、ポリエポキシ樹脂、ポリ酢
酸ビニルおよびポリ塩化ビニルからなる群から選
ばれた少なくとも1種からなる疎水性の有機化合
物粒子あるいは疎水性表面処理を施した無機化合
物粒子を含有した水溶性高分子水溶液を固形分濃
度で3〜1000mg/m2塗布し、乾燥したのち、前記
フイルムの延伸方向と直角の方向に延伸し、さら
に必要であれば再延伸を施したあとに、熱処理を
施す被覆フイルムの製造方法を特徴とするもので
ある。 この方法によつて、ポリエステルフイルムの少
なくとも片面に密着された高さ500Å以下の水溶
性高分子を主体とする不連続皮膜と、該不連続皮
膜の不連続部のフイルム面に密着された微細粒子
とからなり、該微細粒子の高さが不連続皮膜の高
さより高い被覆フイルムが製造できる。 本発明の一方向に延伸後の平滑なポリエステル
フイルムとは、周知の方法で形成したポリエステ
ルフイルム、すなわち、ポリエステルを溶融して
シートまたは円筒状に押出し、これを一方向に延
伸、(好ましくは2倍以上に延伸)して形成した
フイルムである。なお、延伸倍率の上限は、特に
限定されないが約6倍である。 また、ポリエステルフイルムの表面は平滑であ
り、具体的にはフイルム表面の粗さは、触針式表
面粗さ計のカツトオフ値0.08mmで、Ra値が0.015μ
以下、より好ましくは0.010μ〜0.002μの範囲内に
あることが望ましい。 なお、Ra値とは、触針式表面粗さ計から得ら
れる断面曲線から適当なカツトオフ値を用いて、
うねりを除いた粗さ曲線において、中心線(中心
線より上の部分と下の部分の面積が等しくなるよ
うにして求められる)からの粗さ曲線の高さ(低
さ)の絶対値の算術平均である(DIN 4768によ
る)。 上記フイルムを形成するポリエステルは、線状
ポリエステルを主体とするものであればどのよう
なものでもよい。たとえば、ポリエチレンテレフ
タレート、ポリテトラメチレンテレフタレート、
ポリ−1,4−シクロヘキシレンジメチレンテレ
フタレート、ポリエチレン−2,6−ナフタリン
ジカルボキシレート、ポリエチレン−p−オキシ
ベンゾエートなどがその代表例である。 また上記のポリエステルは、ホモポリエステル
であつても、コポリエステルであつてもよい。コ
ポリエステルの場合、共重合する成分としては、
例えば、ジエチレングリコール、プロピレングリ
コール、ネオペンチルグリコール、ポリエチレン
グリコール、p−キシリレングリコール、1,4
−シクロヘキサンジメタノールなどのジオール成
分、アジピン酸、セバシン酸、フタル酸、イソフ
タル酸、2,6−ナフタリンジカルボン酸、5−
ナトリウムスルホイソフタル酸などのジカルボン
酸成分、トリメリツト酸、ピロメリツト酸などの
多官能ジカルボン酸成分、p−オキシエトキシ安
息香酸などが挙げられる。なお、共重合の場合、
共重合する成分は20モル%以下とする。 さらに、上記のポリエステルは、他にポリエス
テルと非反応性のスルホン酸のアルカリ金属塩誘
導体、該ポリエステルに実質的に不溶なポリアル
キレングリコールなどの少なくとも一つを5重量
%を超えない程度に混合してもよい。また、その
フイルム中に延伸した際に、フイルム表面突起の
原因となる重合残査からなる内在粒子あるいは外
部から加えられた不活性粒子等が含まれていても
よく、その含有量は、それらのポリマーを二軸延
伸した場合、厚さ30μ以下で、1枚当りのヘイズ
5%以下であれば良い。 本発明の疎水性の有機化合物粒子とは、ポリス
チレン、ポリエチレン、ポリアミド、ポリエステ
ル、ポリアクリル酸エステル、ポリエポキシ樹
脂、ポリ酢酸ビニルまたはポリ塩化ビニルからな
る微細粒子である。また、疎水性表面処理を施し
た無機化合物粒子とは、シリカ、炭酸カルシウム
等の無機化合物表面にメチル基、エチル基のよう
なアルキル基等の疎水性有機基を結合させたもの
である。 本発明の粒子の径は50〜10000Å、好ましくは
100〜5000Åである。径とは本発明フイルムを電
子顕微鏡で観察することによつて求められる微細
粒子の最大長さを言う。微細粒子の形態としては
球形、楕円球形、長方体形、立方体形等である。 本発明の水溶性高分子とは、分子量が1万〜
200万、好ましくは10万〜100万のものが使用され
る。分子量が1万を下まわると、以下に述べる皮
膜が柔らかくなり、構造保持が難しくなり、耐久
性が悪くなる。分子量が200万を上まわると、皮
膜が固くなりすぎ、もろくなり、やはり耐久性が
悪くなる。かかる水溶性高分子としては、ポリビ
ニルアルコール、トラガントゴム、アラビアゴ
ム、カゼイン、ゼラチン、メチルセルロース、ヒ
ドロキシエチルセルロース、カルボキシメチルセ
ルロース等が適用できる。 本発明では上記説明の微細粒子を主体として含
む水溶性高分子水溶液を、上記説明の一軸に延伸
されたポリエステルフイルムに、フイルムの片面
につき固形分濃度で3〜1000mg/m2塗布するが、
シリコーン、フツ素化合物のような滑剤、シラン
カツプリング剤、チタンカツプリング剤等のカツ
プリング剤を塗液に含ませても良い。 使用可能なシリコーンは、分子量が3万〜30万
のものであり、好ましくは、鎖状成分として、 ただしR1:CH3、C6H5、H R2:CH3、C6H5、Hまたは官能性基(例えば、
エポキシ基、アミノ基、水酸基) n:100〜7000でR1、R2によつて上記分子量を
満足させる整数 を有するシリコーン化合物であり、末端にエポキ
シ基、アミノ基、水酸基、その他の官能性末端基
を有する。本発明においてシリコーン化合物は必
ずしもホモポリマーである必要はなく、コポリマ
ーあるいは、数種のホモポリマーの混合体であつ
ても良い。 シリコーンの分子量は3万〜30万のものが好ま
しい。分子量が3万を下まわると皮膜は柔らかく
なりすぎ、また、構造が変化しやすくなる。一
方、30万を超えると逆に皮膜がもろくなる。 使用可能なフツ素系化合物としては、フツ素系
界面活性剤、フツ素含有炭化水素化合物等が挙げ
られるが、原子数割合で10〜60%、好ましくは20
〜50%の含有フツ素分率のものが望ましい。フツ
素含有率が高いと、すべり性の効果が向上する。 また、塗液構成分の乾燥後の結合性を強めるた
めに、溶液にシランカツプリング剤を加えること
が望ましい。 シランカツプリング剤としては、その分子中に
2個以上の異なつた反応基をもつ有機けい素単量
体であり、反応基の一つはメトキシ基、エトキシ
基、シラノール基などであり、もう一つの反応基
は、ビニル基、エポキシ基、メタアクリル基、ア
ミノ基、メルカプト基などである。反応基は水溶
性高分子側鎖、末端基およびポリエステルと結合
するものを選ぶが、シランカツプリング剤として
ビニルトリクロルシラン、ビニルトリエトキシシ
ラン、ビニルトリス(β−メトキシエトキシ)シ
ラン、γ−グリシドキシプロピルトリメトキシシ
ラン、γ−メタアクリロキシプロピルトリメトキ
シシラン、N−β(アミノエチル)γ−アミノプ
ロピルメチルジメトキシシラン、γ−クロロプロ
ピルトリメトキシシラン、γ−メルカプトプロピ
ルトリメトキシシラン、γ−アミノプロピルトリ
エトキシシラン等が適用できる。 塗液成分としての水溶性高分子〔A〕、シリコ
ーンあるいはフツ素系化合物あるいはその混合体
〔B〕、シランカツプリング剤〔C〕、および疎水
性の有機化合物粒子、あるいは疎水性表面処理を
施した無機化合物粒子〔D〕の使用割合(重量
比)は〔A〕:〔B〕:〔C〕:〔D〕=20:0〜20:
0〜20:1〜10、好ましくは〔A〕:〔B〕:
〔C〕:〔D〕=20:0〜20:1〜10:1〜8であ
る。〔B〕、〔C〕はすべり性、耐すり傷性向上、
および成分間の結合力向上のために使用が好まし
いが必須成分ではない。〔B〕が上限を超えると
この被覆フイルム被覆面上に形成される蒸着膜の
付着強度が不良となる。〔C〕が上限を超えると
不連続皮膜構造が固くなりすぎ、皮膜がもろくな
り好ましくない。 〔C〕を使用すると〔D〕がフイルム面に強固
に結びつけられる。微細粒子は、主として不連続
皮膜の不連続部のフイルム面に密着しているが、
〔D〕が上記下限を下まわると密着数が少なくな
り、この不連続皮膜上に形成する蒸着膜面の走行
性向上に寄与しなくなる。上限を超えると微細粒
子のフイルム表面からの脱落が激しくなる。また
電磁変換特性も悪化し、好ましくない。 この塗液を片面につき固形分濃度で3〜1000
mg/m2塗布するが、塗布量が下限をきると、不連
続皮膜が形成されなくなる。また上限を超える
と、不連続皮膜の高さが500Åを超えてしまう。
本発明の不連続皮膜とは、形状が網状および/ま
たは点在したものであり、第1図の符号2で示し
たもので、その高さは500Å以下、フイルム面上
に占める割合は10〜90%となる。 塗液塗布の一軸延伸フイルムを、一軸と直角方
向に延伸するが、延伸前に皮膜を完全に形成する
ため、熱風等で100〜150℃に加熱し、フイルム表
面塗布液中の水分を完全に蒸発乾固(好ましくは
水分率を皮膜形成成分の1%以下とする)にせし
め、そのあと90〜120℃の延伸温度で2.5〜4.5倍
に延伸する。 さらに、この延伸フイルムを180〜220℃で熱処
理、あるいは1.1〜1.8倍に、再延伸後に180〜220
℃で熱処理すると、平滑なポリエステルフイルム
の表面に、微細粒子が不連続部に存在する、高さ
500Å以下の不連続皮膜が形成された面を少なく
とも片面にもつ二軸延伸ポリエステルフイルムが
得られる。 なお、粒子は、表面が疎水性のため親水性高分
子からなる不連続皮膜の外の不連続部に密着され
る。 以下、図面に基づいて本発明の製造法により作
られる被覆フイルムを説明する。 第1図はポリエステルフイルムの表面を部分的
に覆つた不連続皮膜と、その皮膜の不連続部のフ
イルム面に密着された微細粒子を示す平面図であ
る。拡大倍率1万倍以上で電子顕微鏡観察をする
ことにより、その様子がわかる。 第2図は不連続皮膜および微細粒子が密着され
た第1図のフイルムの概略の断面図である。微細
粒子の高さが不連続皮膜の高さより高い状態を示
す。なお第1図および第2図において、1はポリ
エステルフイルム、2は不連続皮膜、3は微細粒
子である。 本発明の製造法により作られる不連続皮膜の高
さ(厚さ)は、第3図のhで示されるもので、そ
のh、すなわち高さの測定は、触針式表面粗さ計
により、カツトオフ値0.08mmを用い、縦倍率50万
倍の条件で、表面皮膜形成面を測定した時の表面
粗さ曲線において、微細粒子によるピーク部分を
除いた、山と谷との平均的な高さ間隔を測定した
値である。微細粒子の高さは、第3図のhP1
hP2,hP3で示されるもので、hよりも大きく高さ
方向にはずれた山と谷部分の差を測定した値であ
る。なお、第3図は実際に測定した曲線を模式的
に示したものである。 本発明の製造法により形成される不連続皮膜の
高さは500Å以下、好ましくは50〜300Åである。
高さが500Åをこえるとこの表面に蒸着膜を形成
させたビデオテープの電磁変換特性、特にS/N
比が悪化する。 テープ特性は一般市販のVHS方式のVTRを用
い、録画、再生を繰り返して評価した。 テープ走行性の評価は常温常湿、高温高湿の2
条件下での再生を行ない、テープ走行のみだれに
よる画面のゆらぎを観察することにより行つた。
評価基準は次の通りである。 〇:走行順調で再生画面のゆらぎが全くなし。 ×:ところどころで走行が遅くなり、再生画面の
ゆらぎが生ずる。 また耐すり傷性の評価は、やはり常温常湿およ
び高温高湿条件下で100回繰り返し走行させたあ
とのテープ薄膜上のすり傷観察により行なつた。
評価基準は次の通り。 ◎:テープ薄膜面上にほとんど全くすり傷の発生
がみられない。 〇:テープ薄膜面上にきわめて弱いすり傷の発生
が少し見られる。 ×:テープ薄膜面上に、きついすり傷が発生す
る。 なお、常温常湿とは25℃、60%RHであり、高
温高湿とは40℃、80%RH条件である。 S/N比は50%白レベル信号を各テープの最適
記録電流で記録し、再生時のビデオ復調信号に含
まれる信号と雑音の比をビデオノイズメーターを
用い、市販のVHS標準テープを0dBとして比較
測定した。 ドロツプアウトは、磁気記録テープに3段階段
波信号を最適記録電流で記録し、再生時のビデオ
ヘツドアンプ出力の減衰量が18dB、継続時間
20μsec以上のドロツプアウトを10分間ドロツプア
ウトカウンターで測定し、1分間あたりの平均を
とつた。S/N比、ドロツプアウト測定は常温常
湿条件で行なつた。 〔発明の効果〕 本発明の製造法により得られたポリエステルフ
イルムの表面に水溶性高分子を主体とする不連続
皮膜を密着させ、かつ微細粒子をその不連続部に
密着せしめた被覆フイルムは、易滑性と平面性が
優れているだけでなく、被覆フイルムの不連続皮
膜と、微細粒子の密着された面側に蒸着膜を設け
た場合、磁気ヘツド・ガイド等は、その蒸着膜表
面との接触面積が極めて小さくなるにもかかわら
ず、強磁性体薄膜面と磁気ヘツドとの間隔は非常
に狭く保たれるので、この蒸着膜表面の走行性は
極めて良好であり、しかも電磁変換特性は優れて
いる。 なお、この不連続皮膜は高さが500Å以下であ
るので、蒸着テープの電磁変換特性を損うことは
ない。また形成微細粒子の高さは不連続皮膜の高
さより500Å以下の高さとなり、ドロツプアウト
が増加するということはない。 本発明により得られる被覆フイルムは、各種の
用途に適用できるが好ましくは、磁気記録媒体用
のベースフイルム、より好ましくは強磁性金属薄
膜形成用のベースフイルムとするのが望ましい。 〔実施例〕 次に、本発明の被覆フイルム製造法およびその
フイルムを磁気テープに適用した例を実施例に基
づいて説明する。 実施例 1 重合触媒残査等にもとづく内部粒子をできる限
り含まない実質的に無配向、非結晶のポリエチレ
ンテレフタレート原料を約20℃に維持された回転
ドラム上に溶融押出しし、つぎに3.4倍の機械方
向への延伸を施し、その後メタリングバーコータ
ーを用いて下記水溶液エマルジヨンを固形分濃度
で20mg/m2両面塗布した。 水溶液エマルジヨンとしてはメチルセルロース
0.20wt%、ポリアクリル酸エステルエマルジヨン
(固形分濃度40%)0.10wt%の割合のものを調合
した。乾燥、予熱、延伸温度は115℃で水分乾燥
速度は15%/秒とした。 横延伸倍率3.4倍、熱処理温度200℃で、両面に
高さ260Åの不連続皮膜が形成され、不連続皮膜
の高さより50Å高い微細粒子が該不連続皮膜不連
続部に4×106ケ/mm2の割合で密着された厚さ12μ
のポリエチレンテレフタレートフイルムを得た。 このポリエステルフイルム表面に真空蒸着によ
りコバルト−ニツケル合金薄膜を1500Åの膜厚で
形成した。続いて所定幅にフイルムの機械方向に
切断し、磁気テープとした。この特性を表1に示
す。 実施例 2 実施例1のベースフイルム製造において、使用
水溶液エマルジヨン中にシランカツプリング剤N
−β(アミノエチル)γ−アミノプロピルメチル
ジメトキシシラン0.05%の割合で加えた水溶液を
用い、他は実施例1と同様にして両面に高さ280
Åの不連続皮膜が形成され、該不連続皮膜の高さ
より30Å高い微細粒子が該不連続部に4×106
ケ/mm2の割合で密着された厚さ12μのポリエチレ
ンテレフタレートフイルムを得た。 このベースフイルムを用い、実施例1と同様に
して磁気テープを得た。テープ特性を表1に示し
た。 比較例 1 実施例1のベースフイルム製造において、メチ
ルセルロース水溶液濃度を0.50%にした水溶液を
用い、固形分濃度で1600mg/m2両面塗布したこと
以外は実施例1と同様にして両面に高さ700Åの
不連続皮膜が形成され、不連続皮膜の高さより低
い微細粒子が該不連続皮膜不連続部に4×106
ケ/mm2の割合で密着された厚さ12μのポリエチレ
ンテレフタレートフイルムを得た。 このベースフイルムを用い、実施例1と同様に
して磁気テープを得た。テープ特性を表1に示し
た。 比較例 2 実施例1のベースフイルム製造において、メチ
ルセルロース水溶液濃度を0.10%にして固形分濃
度で2mg/m2両面塗布したこと以外は同様にして
厚さ12μのポリエチレンテレフタレートフイルム
を得た。塗布ムラが生じ、全く不連続皮膜等は形
成されなかつた。 このベースフイルムを用い、実施例1と同様に
して磁気テープを得た。テープ特性を表1に示し
た。 表1の特性結果から明らかなように、本発明に
より得られる被覆フイルムの不連続皮膜と微細粒
子の密着された面側に蒸着膜を形有させた磁気テ
ープは、常温常湿、高温高湿の使用においても、
ともに走行性、耐すりきず性が良好であり、しか
も平滑で電磁変換特性がすぐれている。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a coated film. [Prior Art] Conventionally, vapor-deposited video tapes in which a magnetic substance is vapor-deposited on the surface of a polyester film have been used. However, since the thickness of the magnetic layer in this vapor-deposited videotape is extremely thin, the surface morphology of the base film used is the same as that of the ferromagnetic metal thin film (hereinafter simply referred to as the vapor-deposited film) that is vacuum-deposited. becomes. Therefore, if the surface roughness of the base film is rough, the electromagnetic conversion characteristics of the vapor-deposited videotape will be significantly deteriorated. Considering this electromagnetic conversion characteristic,
A base film with a completely smooth mirror surface is preferable, but the deposited film formed on such a base film maintains its mirror surface as it is, so
The slipperiness is very poor, and unless a protective layer is provided on the vapor deposition surface, a large amount of scratches will occur in the tape forming process after the vapor deposition process, making it completely impractical. Furthermore, a serious problem in the actual use of vapor-deposited video tapes is the runnability of the vapor-deposited surface. In the case of conventional coated video tapes, which are made by mixing magnetic powder into an organic binder and coating it on a base film, it is possible to add a lubricant to the binder to improve the running properties of the magnetic surface. In the case of videotape,
The runnability of the deposited surface is generally disadvantageous unless a protective film layer is provided. Since it is difficult to uniformly provide a protective film layer on the vapor deposition surface, in the case of vapor deposition tapes without this protective film layer, it is necessary to improve the runnability of the vapor deposition surface, especially under harsh conditions when actually used. That is, there are drawbacks such as the inability to improve running performance under high temperature and high humidity conditions. [Object of the Invention] The object of the present invention is to provide a method for producing a base film that can form a deposited film with excellent smoothness, scratch resistance, and runnability not only in normal environments but also under high temperature and high humidity conditions. Our goal is to provide the following. [Structure of the Invention] The present invention provides polystyrene,
Hydrophobic organic compound particles made of at least one selected from the group consisting of polyethylene, polyamide, polyester, polyacrylic ester, polyepoxy resin, polyvinyl acetate, and polyvinyl chloride, or an inorganic compound subjected to hydrophobic surface treatment. A water-soluble polymer aqueous solution containing particles was applied at a solid content concentration of 3 to 1000 mg/m 2 , and after drying, the film was stretched in a direction perpendicular to the stretching direction of the film, and if necessary, re-stretched. The present invention also features a method for producing a coated film that is subsequently subjected to heat treatment. By this method, a discontinuous film mainly composed of a water-soluble polymer with a height of 500 Å or less is adhered to at least one side of a polyester film, and fine particles are attached to the film surface of the discontinuous portion of the discontinuous film. A coated film can be produced in which the height of the fine particles is higher than the height of the discontinuous film. The unidirectionally stretched smooth polyester film of the present invention refers to a polyester film formed by a well-known method, that is, polyester is melted and extruded into a sheet or cylindrical shape, which is stretched in one direction (preferably 2 It is a film formed by stretching to more than double the original length. Note that the upper limit of the stretching ratio is about 6 times, although it is not particularly limited. In addition, the surface of polyester film is smooth, and specifically, the roughness of the film surface is 0.08 mm cutoff value on a stylus type surface roughness meter, and Ra value is 0.015μ.
Below, it is more preferably within the range of 0.010μ to 0.002μ. Note that the Ra value is calculated using an appropriate cut-off value from the cross-sectional curve obtained from a stylus surface roughness meter.
Arithmetic of the absolute value of the height (lowness) of the roughness curve from the center line (calculated so that the areas above and below the center line are equal) in a roughness curve excluding waviness. Average (according to DIN 4768). The polyester forming the film may be of any type as long as it is mainly composed of linear polyester. For example, polyethylene terephthalate, polytetramethylene terephthalate,
Representative examples include poly-1,4-cyclohexylene dimethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, and polyethylene-p-oxybenzoate. Further, the above polyester may be a homopolyester or a copolyester. In the case of copolyester, the components to be copolymerized are:
For example, diethylene glycol, propylene glycol, neopentyl glycol, polyethylene glycol, p-xylylene glycol, 1,4
- Diol components such as cyclohexanedimethanol, adipic acid, sebacic acid, phthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 5-
Examples include dicarboxylic acid components such as sodium sulfoisophthalic acid, polyfunctional dicarboxylic acid components such as trimellitic acid and pyromellitic acid, and p-oxyethoxybenzoic acid. In addition, in the case of copolymerization,
The amount of components to be copolymerized is 20 mol% or less. Furthermore, the above-mentioned polyester is mixed with at least one of an alkali metal salt derivative of sulfonic acid that is non-reactive with the polyester, a polyalkylene glycol that is substantially insoluble in the polyester, etc., to an extent not exceeding 5% by weight. It's okay. Furthermore, when the film is stretched, it may contain internal particles consisting of polymerization residues that cause protrusions on the film surface or inert particles added from the outside, and the content thereof is determined by When the polymer is biaxially stretched, it is sufficient that the thickness is 30 μm or less and the haze per sheet is 5% or less. The hydrophobic organic compound particles of the present invention are fine particles made of polystyrene, polyethylene, polyamide, polyester, polyacrylate, polyepoxy resin, polyvinyl acetate, or polyvinyl chloride. Furthermore, the inorganic compound particles subjected to hydrophobic surface treatment are those in which a hydrophobic organic group such as an alkyl group such as a methyl group or an ethyl group is bonded to the surface of an inorganic compound such as silica or calcium carbonate. The diameter of the particles of the present invention is 50 to 10,000 Å, preferably
It is 100-5000 Å. The diameter refers to the maximum length of fine particles determined by observing the film of the present invention with an electron microscope. The shape of the fine particles is spherical, ellipsoidal, rectangular, cubic, etc. The water-soluble polymer of the present invention has a molecular weight of 10,000 to
2 million, preferably 100,000 to 1 million are used. When the molecular weight is less than 10,000, the film described below becomes soft, it becomes difficult to maintain the structure, and the durability deteriorates. When the molecular weight exceeds 2 million, the film becomes too hard and brittle, resulting in poor durability. As such water-soluble polymers, polyvinyl alcohol, gum tragacanth, gum arabic, casein, gelatin, methylcellulose, hydroxyethylcellulose, carboxymethylcellulose, etc. can be used. In the present invention, a water-soluble polymer aqueous solution containing mainly the fine particles described above is applied to the uniaxially stretched polyester film described above at a solid content concentration of 3 to 1000 mg/m 2 per one side of the film.
A coupling agent such as a lubricant such as silicone or a fluorine compound, a silane coupling agent, or a titanium coupling agent may be included in the coating liquid. The silicone that can be used has a molecular weight of 30,000 to 300,000, and preferably contains as a chain component, However, R 1 : CH 3 , C 6 H 5 , H R 2 : CH 3 , C 6 H 5 , H or a functional group (e.g.
epoxy group, amino group, hydroxyl group) n: 100 to 7000, and is a silicone compound having an integer that satisfies the above molecular weight with R1 and R2 , and has an epoxy group, amino group, hydroxyl group, or other functional terminal at the end. It has a group. In the present invention, the silicone compound is not necessarily a homopolymer, but may be a copolymer or a mixture of several types of homopolymers. The molecular weight of silicone is preferably 30,000 to 300,000. When the molecular weight is less than 30,000, the film becomes too soft and the structure tends to change. On the other hand, if it exceeds 300,000 yen, the film becomes brittle. Usable fluorine-based compounds include fluorine-based surfactants, fluorine-containing hydrocarbon compounds, etc., but the atomic ratio is 10 to 60%, preferably 20%.
A fluorine content of ~50% is desirable. A high fluorine content improves the sliding effect. It is also desirable to add a silane coupling agent to the solution in order to strengthen the bonding properties of the coating liquid components after drying. Silane coupling agents are organosilicon monomers that have two or more different reactive groups in their molecules; one of the reactive groups is a methoxy group, ethoxy group, silanol group, etc., and the other is a silane coupling agent. Examples of reactive groups include vinyl, epoxy, methacrylic, amino, and mercapto groups. The reactive group is selected to be one that bonds with the water-soluble polymer side chain, terminal group, and polyester.As a silane coupling agent, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, γ-glycidoxy Propyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, N-β(aminoethyl)γ-aminopropylmethyldimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyl Triethoxysilane etc. can be applied. Coating liquid components include water-soluble polymer [A], silicone or fluorine compound or mixture thereof [B], silane coupling agent [C], and hydrophobic organic compound particles, or hydrophobic surface treatment. The usage ratio (weight ratio) of the inorganic compound particles [D] is [A]: [B]: [C]: [D] = 20:0 to 20:
0-20:1-10, preferably [A]:[B]:
[C]:[D]=20:0-20:1-10:1-8. [B] and [C] improve slip properties and scratch resistance,
Although it is preferable to use it to improve the bonding strength between the components, it is not an essential component. If [B] exceeds the upper limit, the adhesion strength of the vapor deposited film formed on the coated surface of the coating film will be poor. If [C] exceeds the upper limit, the discontinuous film structure becomes too hard and the film becomes brittle, which is not preferable. When [C] is used, [D] is firmly attached to the film surface. The fine particles mainly adhere to the film surface of the discontinuous part of the discontinuous film,
When [D] is less than the above lower limit, the number of adhesion decreases, and it does not contribute to improving the runnability of the vapor deposited film surface formed on this discontinuous film. If the upper limit is exceeded, fine particles will be more likely to fall off the film surface. Further, the electromagnetic conversion characteristics are also deteriorated, which is not preferable. Apply this coating liquid to one side with a solid content concentration of 3 to 1000.
mg/m 2 is applied, but if the application amount falls below the lower limit, a discontinuous film will no longer be formed. If the upper limit is exceeded, the height of the discontinuous film will exceed 500 Å.
The discontinuous film of the present invention has a net-like and/or dotted shape, and is shown by reference numeral 2 in FIG. It will be 90%. A uniaxially stretched film coated with a coating liquid is stretched in a direction perpendicular to the uniaxial direction, but in order to completely form a film before stretching, it is heated to 100 to 150°C with hot air, etc. to completely remove the moisture in the coating liquid on the film surface. The film is evaporated to dryness (preferably with a moisture content of 1% or less of the film-forming components), and then stretched 2.5 to 4.5 times at a stretching temperature of 90 to 120°C. Furthermore, this stretched film is heat treated at 180 to 220℃, or 1.1 to 1.8 times, and after re-stretching, it is heated to 180 to 220 degrees.
When heat treated at ℃, fine particles are present in discontinuities on the smooth surface of polyester film.
A biaxially stretched polyester film having at least one surface on which a discontinuous film of 500 Å or less is formed is obtained. In addition, since the surface of the particles is hydrophobic, they are closely attached to the discontinuous portions outside the discontinuous film made of the hydrophilic polymer. Hereinafter, a covered film produced by the production method of the present invention will be explained based on the drawings. FIG. 1 is a plan view showing a discontinuous film partially covering the surface of a polyester film and fine particles closely attached to the film surface at the discontinuous portion of the film. The situation can be seen by observing it with an electron microscope at a magnification of 10,000 times or more. FIG. 2 is a schematic cross-sectional view of the film of FIG. 1 with a discontinuous coating and fine particles adhered thereto. Indicates a state in which the height of the fine particles is higher than the height of the discontinuous film. In FIGS. 1 and 2, 1 is a polyester film, 2 is a discontinuous film, and 3 is a fine particle. The height (thickness) of the discontinuous film produced by the manufacturing method of the present invention is indicated by h in Fig. 3, and the measurement of h, that is, the height, is performed using a stylus type surface roughness meter. The average height of peaks and valleys, excluding peaks caused by fine particles, in the surface roughness curve when measuring the surface film-formed surface using a cutoff value of 0.08 mm and a vertical magnification of 500,000 times. This is the measured value of the interval. The height of the fine particles is h P1 in Figure 3,
They are indicated by h P2 and h P3 , and are the measured values of the difference between a peak and a valley that are larger than h in the height direction. Note that FIG. 3 schematically shows the actually measured curve. The height of the discontinuous film formed by the production method of the present invention is 500 Å or less, preferably 50 to 300 Å.
When the height exceeds 500 Å, the electromagnetic conversion characteristics of the videotape with a vapor-deposited film formed on this surface, especially the S/N
The ratio worsens. Tape characteristics were evaluated by repeatedly recording and playing back using a commercially available VHS VTR. The tape runnability was evaluated at normal temperature and humidity, and at high temperature and high humidity.
This was done by performing playback under these conditions and observing screen fluctuations due to sloping tape running.
The evaluation criteria are as follows. 〇: Running smoothly and there is no fluctuation in the playback screen. ×: The running becomes slow in some places, and the playback screen fluctuates. The scratch resistance was evaluated by observing scratches on the tape thin film after repeatedly running the tape 100 times under normal temperature and humidity conditions and high temperature and high humidity conditions.
The evaluation criteria are as follows. ◎: Almost no scratches are observed on the thin film surface of the tape. ○: A few very weak scratches are observed on the thin film surface of the tape. ×: Severe scratches occur on the thin film surface of the tape. Note that normal temperature and humidity is 25°C and 60% RH, and high temperature and high humidity is 40°C and 80% RH. The S/N ratio was determined by recording a 50% white level signal at the optimum recording current for each tape, and measuring the signal-to-noise ratio contained in the video demodulated signal during playback using a video noise meter, assuming a commercially available VHS standard tape as 0 dB. Comparative measurements were made. Dropout records a three-step wave signal on a magnetic recording tape at the optimum recording current, and the attenuation of the video head amplifier output during playback is 18 dB and the duration is
Dropouts of 20 μsec or more were measured using a dropout counter for 10 minutes, and the average per minute was taken. S/N ratio and dropout measurements were carried out at room temperature and humidity. [Effects of the Invention] A coated film obtained by the production method of the present invention in which a discontinuous film mainly composed of a water-soluble polymer is adhered to the surface of the polyester film and fine particles are adhered to the discontinuous portions is as follows: Not only does it have excellent slipperiness and flatness, but when a vapor deposited film is provided on the side where the discontinuous coating of the coating film and the fine particles are in close contact, the magnetic head guide etc. Even though the contact area becomes extremely small, the distance between the ferromagnetic thin film surface and the magnetic head is kept very narrow, so the running properties of the deposited film surface are extremely good, and the electromagnetic conversion characteristics are excellent. Are better. Note that since this discontinuous film has a height of 500 Å or less, it does not impair the electromagnetic conversion characteristics of the vapor-deposited tape. In addition, the height of the formed fine particles is 500 Å or less higher than the height of the discontinuous film, so there is no increase in dropout. The coated film obtained by the present invention can be applied to various uses, but it is preferably used as a base film for magnetic recording media, more preferably as a base film for forming a ferromagnetic metal thin film. [Example] Next, a method for manufacturing a coated film of the present invention and an example in which the film is applied to a magnetic tape will be described based on Examples. Example 1 A substantially non-oriented, non-crystalline polyethylene terephthalate raw material containing as little internal particles as possible due to polymerization catalyst residue, etc., was melt-extruded onto a rotating drum maintained at about 20°C, and then extruded using a 3.4 times larger machine. After that, the following aqueous solution emulsion was coated on both sides at a solid content concentration of 20 mg/m 2 using a metering bar coater. Methyl cellulose as an aqueous emulsion
Polyacrylate emulsion (solid content concentration 40%) was prepared in a proportion of 0.20wt% and 0.10wt%. The drying, preheating, and stretching temperatures were 115°C, and the moisture drying rate was 15%/sec. At a transverse stretching ratio of 3.4 times and a heat treatment temperature of 200°C, a discontinuous film with a height of 260 Å is formed on both sides, and fine particles 50 Å higher than the height of the discontinuous film are formed in the discontinuous parts of the discontinuous film at 4 × 10 6 particles/ Thickness 12μ closely adhered in the proportion of mm2
A polyethylene terephthalate film was obtained. A cobalt-nickel alloy thin film with a thickness of 1500 Å was formed on the surface of this polyester film by vacuum deposition. Subsequently, the film was cut into a predetermined width in the machine direction to obtain a magnetic tape. This characteristic is shown in Table 1. Example 2 In the production of the base film of Example 1, a silane coupling agent N was added to the aqueous emulsion used.
- Using an aqueous solution of β (aminoethyl)γ-aminopropylmethyldimethoxysilane added at a ratio of 0.05%, the other conditions were the same as in Example 1, and the height was 280 mm on both sides.
A discontinuous film with a height of 30 Å is formed, and fine particles 30 Å higher than the height of the discontinuous film are deposited at the discontinuity of 4×10 6
A polyethylene terephthalate film with a thickness of 12 μm was obtained, which was adhered at a ratio of 1/mm 2 . A magnetic tape was obtained in the same manner as in Example 1 using this base film. The tape properties are shown in Table 1. Comparative Example 1 The base film of Example 1 was manufactured in the same manner as in Example 1, except that an aqueous solution with a methyl cellulose solution concentration of 0.50% was used and the solid content concentration was 1600 mg/m 2 2 Both sides were coated to a height of 700 Å A discontinuous film of 4 x 10
A polyethylene terephthalate film with a thickness of 12 μm was obtained, which was adhered at a ratio of 1/mm 2 . A magnetic tape was obtained in the same manner as in Example 1 using this base film. The tape properties are shown in Table 1. Comparative Example 2 A polyethylene terephthalate film having a thickness of 12 μm was obtained in the same manner as in Example 1 except that the concentration of the methyl cellulose aqueous solution was 0.10% and the solid content was coated on both sides at a solid content of 2 mg/m 2 . Application unevenness occurred, and no discontinuous film was formed. A magnetic tape was obtained in the same manner as in Example 1 using this base film. The tape properties are shown in Table 1. As is clear from the characteristic results in Table 1, the magnetic tape with a vapor deposited film formed on the side where the discontinuous film of the coated film and the fine particles are in close contact with each other obtained by the present invention can be used at room temperature and normal humidity, at high temperature and high humidity. Also in the use of
Both have good running properties and scratch resistance, are smooth, and have excellent electromagnetic characteristics. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造法により得られる被覆フ
イルムの微細粒子と不連続皮膜の密着された面を
模式的に示した平面図である。第2図は第1図の
断面を模式的に示した断面図であり、微細粒子と
不連続皮膜の密着された状態を示す。図中hが皮
膜厚さである。第3図は本発明の製造法により形
成された不連続皮膜面の縦倍率50万倍での触針式
表面粗さ曲線チヤートである。hが皮膜の高さ、
hP1,hP2,hP3が微細粒子の高さである。 1:ポリエステルフイルム、2:不連続皮膜、
3:微細粒子。
FIG. 1 is a plan view schematically showing the surface of the coated film obtained by the production method of the present invention, where the fine particles and the discontinuous film are in close contact with each other. FIG. 2 is a sectional view schematically showing the cross section of FIG. 1, and shows a state in which fine particles and a discontinuous film are in close contact with each other. h in the figure is the film thickness. FIG. 3 is a stylus type surface roughness curve chart at a longitudinal magnification of 500,000 times for the discontinuous film surface formed by the manufacturing method of the present invention. h is the height of the film,
h P1 , h P2 , and h P3 are the heights of the fine particles. 1: Polyester film, 2: Discontinuous film,
3: Fine particles.

Claims (1)

【特許請求の範囲】[Claims] 1 一方向に延伸後の平滑なポリエステルフイル
ムの少なくとも片面に、ポリスチレン、ポリエチ
レン、ポリアミド、ポリエステル、ポリアクリル
酸エステル、ポリエポキシ樹脂、ポリ酢酸ビニル
およびポリ塩化ビニルからなる群から選ばれた少
なくとも1種からなる疎水性の有機化合物粒子あ
るいは疎水性表面処理を施した無機化合物粒子を
含有した水溶性高分子水溶液を固形分濃度で3〜
1000mg/m2塗布し、乾燥したのち、前記フイルム
の延伸方向と直角の方向に延伸し、さらに必要で
あれば再延伸を施したあとに、熱処理を施す被覆
フイルムの製造方法。
1 At least one member selected from the group consisting of polystyrene, polyethylene, polyamide, polyester, polyacrylic ester, polyepoxy resin, polyvinyl acetate, and polyvinyl chloride is applied to at least one side of the smooth polyester film after being stretched in one direction. A water-soluble polymer aqueous solution containing hydrophobic organic compound particles or inorganic compound particles subjected to hydrophobic surface treatment at a solid concentration of 3 to 3
A method for producing a coated film, which comprises applying 1000 mg/m 2 , drying, stretching in a direction perpendicular to the stretching direction of the film, and further stretching if necessary, followed by heat treatment.
JP59086099A 1984-05-01 1984-05-01 Preparation of coated film Granted JPS60230824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59086099A JPS60230824A (en) 1984-05-01 1984-05-01 Preparation of coated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59086099A JPS60230824A (en) 1984-05-01 1984-05-01 Preparation of coated film

Publications (2)

Publication Number Publication Date
JPS60230824A JPS60230824A (en) 1985-11-16
JPH0318573B2 true JPH0318573B2 (en) 1991-03-12

Family

ID=13877256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59086099A Granted JPS60230824A (en) 1984-05-01 1984-05-01 Preparation of coated film

Country Status (1)

Country Link
JP (1) JPS60230824A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494574A (en) * 1978-01-09 1979-07-26 Toray Ind Inc Polyester film with improved surface

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494574A (en) * 1978-01-09 1979-07-26 Toray Ind Inc Polyester film with improved surface

Also Published As

Publication number Publication date
JPS60230824A (en) 1985-11-16

Similar Documents

Publication Publication Date Title
JPS6357238B2 (en)
EP0074750B1 (en) Polyester film for magnetic recording medium and magnetic recording medium made therewith
JPH0380410B2 (en)
JPH10157024A (en) Laminated film
JPS6230106B2 (en)
JPH0479368B2 (en)
JPH0134456B2 (en)
JPS60180838A (en) Coated film
JPS6230105B2 (en)
JPH0318573B2 (en)
JP2555998B2 (en) Easy-adhesive polyester film
JP2523102B2 (en) Composite polyester film for magnetic recording media
JPS6412218B2 (en)
JPH0126337B2 (en)
JPS6412224B2 (en)
JPH021005B2 (en)
JPH0126338B2 (en)
JPH0699579B2 (en) Polyester film for magnetic recording media
JPS62130848A (en) Polyester film for magnetic record medium
JPH0628096B2 (en) Polyester film for magnetic recording media
JPS6050151B2 (en) Polyester film for magnetic recording media
JPH0575582B2 (en)
JPH06286089A (en) Biaxially oriented composite polyethylene naphthalate film for metal thin film magnetic recording medium
JPS59182820A (en) Covering film
JPH09323385A (en) Laminated film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees