JPH0479050B2 - - Google Patents

Info

Publication number
JPH0479050B2
JPH0479050B2 JP58007691A JP769183A JPH0479050B2 JP H0479050 B2 JPH0479050 B2 JP H0479050B2 JP 58007691 A JP58007691 A JP 58007691A JP 769183 A JP769183 A JP 769183A JP H0479050 B2 JPH0479050 B2 JP H0479050B2
Authority
JP
Japan
Prior art keywords
magnetic recording
hub
tape
hours
shrinkage rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58007691A
Other languages
Japanese (ja)
Other versions
JPS59132421A (en
Inventor
Chiaki Mizuno
Noburo Hibino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP58007691A priority Critical patent/JPS59132421A/en
Publication of JPS59132421A publication Critical patent/JPS59132421A/en
Publication of JPH0479050B2 publication Critical patent/JPH0479050B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • G11B5/73935Polyester substrates, e.g. polyethylene terephthalate characterised by roughness or surface features, e.g. by added particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は磁気記録媒体に関する。更に詳細に
は、繰返し使用時において良好な走行性能を有
し、かつ熱収縮率の小さい磁気記録媒体に関す
る。 従来、磁気記録媒体(たとえば、カセツトに装
着されたオーデオテープ、ビデオテープ)は室内
の如き温度変化が緩かな環境で使用又は保管され
ている。近年、ラジカセ、カーステレオ、小型ビ
デオテープレコーダーなどが広く使用される様に
なり、磁気記録媒体が屋外や自動車内など高温又
は低温の環境で使用、保管されることが多くなつ
ている。たとえば、自動車部品の高温及び低温試
験方法(JISD0204)によると、夏期昼間の自動
車内部では最高温度で104℃に達すると報告され
ている。 しかし、この様な高温に曝された磁気記録媒体
は収縮してカールしたり、片耳がより大きく収縮
して長さ方向の弓状変形を起し、或いは収縮時の
巻き締り力によつてハブを変形させたり押出して
しまう。このため、音楽などの録音した磁気記録
媒体を高温に曝すと、再生の際に出力レベルが大
きく変動して正常に再生されなくなるだけでな
く、走行不良が起る。特に、薄い支持体を使用し
た磁気記録媒体(例えば、オーデイオコンパクト
カセツトのC―80、C―90、C―120等)の場合、
オーデイオカセツト又はビデオカセツトの如きカ
セツトハーフ内に収納される磁気テープが長いた
め、ハブへ巻き取られる回数が多くなり、収縮に
よる上記の問題が顕著に表われる。 また、表面が平滑すぎる可撓性支持体を用いた
磁気記録媒体は繰返し使用時に良好な走行性能が
得られないことがわかつた。 それ故に、本発明の目的は、第1に、繰返し使
用時に良好な走行性能を有する磁気記録媒体を提
供することにあり、第2に、高温に遭遇して場合
の熱収縮による磁気記録媒体の変形が少く、出力
レベルの安定した磁気記録媒体を提供することに
あり、第3に、熱収縮率が小さく安定した走行性
を有する磁気記録媒体を提供することにあり、第
4に、熱収縮率が小さく、寸法安定性を有し、記
録信号の周波数シフトの小さい磁気記録媒体を提
供することにあり、第5に、薄手磁気記録媒体
(例えば、オーデイオコンパクトカセツトのC―
80、C―90、C―120用テープ等)において熱収
縮率が少なく、安定した走行性、出力レベル及び
寸法安定性を有する磁気記録媒体を提供すること
にある。 本発明者は上記目的を達成するために鋭意検討
した結果、磁気記録層を設けた側と反対側の支持
体表面の表面粗さ(Ra)を0.01〜0.1μmとし、か
つ磁気記録媒体を110℃の雰囲気に4時間放置し
た後の、その熱収縮率を1%以下とすることによ
つて上記の目的が達成されることを見い出した。
ここでいう熱収縮率とは、磁気記録媒体の最も熱
収縮率の大きい方向の熱収縮率を指す。 従来、磁気記録媒体の支持体として、延伸、結
晶化した((特に、長手方向の延伸倍率を高くし、
長手方向の機械的強化した)ポリエステルフイル
ムが使用されている。何故これらの支持体を使用
した磁気記録媒体が高温下で使用されたとき好ま
しくないかその理由を探索した際、かかる磁気記
録媒体の熱収縮率(110℃、4時間放置後の最も
熱収縮の大きい方向における)が1.5〜2.3%ある
ことに着目し、更に検討した。 又可撓性支持体において、磁気記録層と反対側
の支持体面の表面粗さと繰返し使用時の走行性能
及び表面粗さと電流変換特性について詳しく検討
した結果本発明を見い出した。 本発明の磁気記録媒体は可撓性支持体とその上
に設けられた磁性層からなり、110℃で4時間放
置したときの長手方向の熱収縮率が1%以下、更
に好ましくは0.8%以下であり、かつ磁気記録層
と反対側の支持体面の表面粗さ(Ra)が、0.01
〜0.1μm、好ましくは0.02〜0.08μm、特に好まし
くは0.03〜0.06μmである。 本発明の好ましい態様を挙げれば、可撓性支持
体は110℃、4時間放置後の最も熱収縮率の大き
い方向において1.8%以下、好ましくは1.5%以下
の熱収縮率を持つ。この様な支持体としては、延
伸条件を変えることにより、長手方向のヤング率
が450〜650Kg/mm2、巾方向のヤング率が450〜550
Kg/mm2の如く方向によるヤング率の差を小さくし
たポリエステルフイルム、或いは延伸したポリエ
ステルフイルムを110℃以上の雰囲気で熱処理す
ることにより得られる熱収縮率を減少させたポリ
エステルフイルム、或いはポリカーボネートフイ
ルム、ポリアミドフイルム、ポリサルホンフイル
ム、ポリプロピレンフイルム、ポリエーテルサル
ホンフイルム等がある。特に、長手方向のヤング
率が高く且つコストの安いポリエステルフイルム
が好ましい。 又、可撓性支持体の一方の表面の粗さは0.01〜
0.1μmである。 この様な表面粗さは、微細粒子を添加する、所
謂外部粒子を利用する方法、又は、内部で粒子を
析出させる内部粒子を利用する方法、および延伸
製膜工程条件、延伸倍率又は延伸温度などにより
調整することができる。 上述の支持体には、強磁性体とバインダー、必
要により添加剤を含む磁性層が塗布される。更
に、必要により、磁性層と反対側の支持体表面に
バツク層を設けることも可能である。磁性層及び
その組成並にバツク層については特公昭56−
26890号に詳述されている。 一般に、前記の如き支持体に磁性層を塗布する
と、得られる磁気記録媒体の熱収縮率は1%以下
となる。 本発明に使用される磁性層の組成及び磁気記録
媒体の製法等については特公昭56−26890号に従
うことができる。 本発明の磁気記録媒体は次の如き利点を有す
る。 (1) 室内の如き温度、湿度の変化が緩かな環境に
おいて、繰返し使用しても、テープの変形が少
なく良好な走行性能が得られる。特に、薄い磁
気記録媒体(例えば、オーデイオコンパクトカ
セツトのC−80、C−90、C−120等)でも良
好な走行性能が得られる。 (2) 100℃以上の温度に対しても、テープまたは
シートの変形が少なく出力レベルが安定して得
られる。 (3) 熱収縮率が小さく、記録信号の周波数シフト
を、聴感上あるいは視感上識別できない小さな
範囲に抑えることができる。 (4) ハブにテープを巻いた状態において100℃以
上の高温で保存しても、ハブの内径寸法変化
(収縮)を小さくすることができる。 従つてカセツトの記録再生装置への装填とり
出しがスムーズにできる。 (5) オーデイオカセツトテープにおいて、ハブに
テープを巻いた状態で100℃以上の高温で保存
してもテープ熱収縮率が小さいので巻き締まり
によるハブの押し出し現象が起こらず、従つて
走行不能を発生させることがない。 (6) 100℃以上の高温で保存しても、テープの変
形が少なく、繰返し走行による走行停止も少な
くすることが出来る。 以下に実施例を示し本発明を更に詳細に説明す
る。なお、実施例中「部」は「重量部」を示す。 実施例に示した特性の測定法は以下の通りであ
る。 (a) 耐溶剤性 溶剤中に試験サンプルを浸漬し、24時間後サ
ンプルの状態を調べた。 〇:変化なし △…多少膨潤あるいは、サンプルがカーリング ×…溶解 (b) 熱収縮率測定法 23℃、60%RH雰囲気であらかじめ、約10cm
の間隔で印を付け、マイクロメーターにてその
間隔Aを測定する。その後、測定サンプルに
0.4g/10mm幅のテンシヨンをかけ110℃雰囲気
中に4時間放置し、その後上記雰囲気にとり出
し1時間その間隔A′を測定した。 熱収縮率=A−A′/A×100(%) (c) 23℃、60%RH中の走行性 市販のオーデイオカセツトデツキ40台による走
行テストを行ない、巻き姿の良否、走行停止の
有無、テープ変形の有無を評価した。 〇…走行停止、巻乱れが共にない。 △…走行停止はないが、巻乱れが1〜3台で発
生する。 ×…巻乱れが4〜6台で発生し、その内走行
ストツプが1〜2台で発生する。 (d) 出力レベル変動 あらかじめ、3KHz、−10dBの信号を記録し
た後、テープをハブに巻いた状態で110℃雰囲
気中に4時間放置し、その後室温雰囲気に取り
出し、1時間後、信号の再生を行ないその出力
レベルの変動を読み取つた。 試験サンプルは1種類につき20巻行ない、出
力レベルの変動値が6dB以上の発生率を求め
た。 (e) 周波数シフト あらかじめ3KHz―1dBの信号を記録した後、
テープをハブに巻いた状態で110℃雰囲気中に
4時間放置し、その後室温雰囲気に取り出し、
1時間後、信号の再生を行ない、再生信号の周
波数を調べ、記録信号3KHzに対するシフト率
を求めた。 (f) ハブ内径の収縮率 テープをハブに巻き付けた状態でハブの内径
を測定し、その後そのものと110℃雰囲気中に
4時間放置したた後室温に取り出し、1時間後
ハブの内径を測定してその収縮率を求めた。 (g) ハブ押出し発生率 ハブにテープを巻付け、その状態で110℃雰
囲気中に4時間放置後、ハブが押し出されてい
るかどうか目視で判定した。 試験サンプル数
は、1種につき20巻を用いた。 (h) 110℃、4時間放置後の走行停止率カセツト
テープを110℃雰囲気に 4時間放置後市販の
カーステレオカセツトデツキ20台で24時間走行
させその時のストツプ率を求めた。 (i) 感 度 315Hzの感度を標準テープに対する相対値で
示した。標準テープはBASF AG製「QP−12」
を用い、感度はナカミチKK製「ナカミチ582」
で測定した。 (j) 周波数特性 10KHzと315Hzの出力の差を示す。 実施例 1
The present invention relates to magnetic recording media. More specifically, the present invention relates to a magnetic recording medium that has good running performance during repeated use and has a low thermal shrinkage rate. Conventionally, magnetic recording media (eg, audio tapes and video tapes mounted in cassettes) are used or stored in environments where temperature changes are gradual, such as indoors. In recent years, radio cassette players, car stereos, small video tape recorders, etc. have become widely used, and magnetic recording media are increasingly being used and stored in high or low temperature environments such as outdoors or inside automobiles. For example, according to the High and Low Temperature Test Method for Automotive Parts (JISD0204), it is reported that the maximum temperature inside a car during the daytime in summer reaches 104°C. However, magnetic recording media exposed to such high temperatures may shrink and curl, one ear may shrink more than the other, resulting in bow-shaped deformation in the length direction, or the hub may become distorted due to the tightening force during shrinkage. deforms or extrudes. For this reason, if a magnetic recording medium on which music or the like is recorded is exposed to high temperatures, the output level will fluctuate greatly during playback, not only preventing normal playback but also causing poor running. In particular, in the case of magnetic recording media using thin supports (for example, audio compact cassettes C-80, C-90, C-120, etc.),
Because the magnetic tape contained in a cassette half, such as an audio or video cassette, is long, it has to be wound onto a hub many times, and the above problems due to shrinkage become more apparent. Furthermore, it has been found that magnetic recording media using flexible supports whose surfaces are too smooth do not provide good running performance when used repeatedly. Therefore, an object of the present invention is, firstly, to provide a magnetic recording medium that has good running performance during repeated use, and secondly, to provide a magnetic recording medium that undergoes thermal contraction when exposed to high temperatures. The objective is to provide a magnetic recording medium with little deformation and a stable output level.The third objective is to provide a magnetic recording medium that has a low thermal shrinkage rate and stable runnability. The purpose of the present invention is to provide a magnetic recording medium with a low magnetic flux ratio, dimensional stability, and a small frequency shift of a recorded signal.
The purpose of the present invention is to provide a magnetic recording medium that has a low thermal shrinkage rate, stable running performance, output level, and dimensional stability in tapes for tapes such as 80, C-90, and C-120. As a result of intensive studies to achieve the above object, the present inventors determined that the surface roughness (Ra) of the support surface on the side opposite to the side on which the magnetic recording layer was provided was set to 0.01 to 0.1 μm, and that the magnetic recording medium was It has been found that the above object can be achieved by controlling the heat shrinkage rate to 1% or less after being left in an atmosphere at .degree. C. for 4 hours.
The thermal contraction rate here refers to the thermal contraction rate in the direction of the highest thermal contraction rate of the magnetic recording medium. Conventionally, as a support for magnetic recording media, stretched and crystallized ((especially by increasing the stretching ratio in the longitudinal direction,
A polyester film (with longitudinal mechanical reinforcement) is used. When searching for the reason why magnetic recording media using these supports are undesirable when used at high temperatures, we found that the heat shrinkage rate of such magnetic recording media (the highest heat shrinkage after being left at 110°C for 4 hours) was found. Focusing on the fact that 1.5% to 2.3% (in the larger direction), further investigation was conducted. In addition, the present invention was discovered as a result of detailed studies on the surface roughness of the support surface opposite to the magnetic recording layer, running performance during repeated use, surface roughness, and current conversion characteristics of the flexible support. The magnetic recording medium of the present invention is composed of a flexible support and a magnetic layer provided thereon, and has a longitudinal heat shrinkage rate of 1% or less, more preferably 0.8% or less when left at 110°C for 4 hours. and the surface roughness (Ra) of the support surface opposite to the magnetic recording layer is 0.01
-0.1 μm, preferably 0.02-0.08 μm, particularly preferably 0.03-0.06 μm. In a preferred embodiment of the present invention, the flexible support has a heat shrinkage rate of 1.8% or less, preferably 1.5% or less in the direction of greatest heat shrinkage after being left at 110°C for 4 hours. By changing the stretching conditions, such a support can have a Young's modulus in the longitudinal direction of 450 to 650 Kg/mm 2 and a Young's modulus in the width direction of 450 to 550.
A polyester film with a reduced difference in Young's modulus depending on the direction, such as Kg/mm 2 , or a polyester film with a reduced heat shrinkage rate obtained by heat-treating a stretched polyester film in an atmosphere of 110°C or higher, or a polycarbonate film. Examples include polyamide film, polysulfone film, polypropylene film, and polyethersulfone film. Particularly preferred is a polyester film that has a high Young's modulus in the longitudinal direction and is inexpensive. Also, the roughness of one surface of the flexible support is 0.01~
It is 0.1 μm. Such surface roughness can be determined by a method using so-called external particles, which adds fine particles, or a method using internal particles, which precipitates particles inside, as well as stretching film forming process conditions, stretching ratio, stretching temperature, etc. It can be adjusted by A magnetic layer containing a ferromagnetic material, a binder, and optionally additives is coated on the above-mentioned support. Furthermore, if necessary, it is also possible to provide a back layer on the surface of the support opposite to the magnetic layer. Regarding the magnetic layer, its composition, and back layer, please refer to Japanese Patent Publication No. 1983-
Detailed in issue 26890. Generally, when a magnetic layer is applied to a support as described above, the resulting magnetic recording medium has a thermal shrinkage rate of 1% or less. The composition of the magnetic layer used in the present invention, the manufacturing method of the magnetic recording medium, etc. can be based on Japanese Patent Publication No. 56-26890. The magnetic recording medium of the present invention has the following advantages. (1) Even in environments where temperature and humidity change slowly, such as indoors, the tape does not deform much even after repeated use, and good running performance can be obtained. In particular, good running performance can be obtained even with thin magnetic recording media (eg, audio compact cassettes C-80, C-90, C-120, etc.). (2) Even at temperatures of 100°C or higher, the tape or sheet does not deform much and a stable output level can be obtained. (3) The thermal shrinkage rate is small, and the frequency shift of the recorded signal can be suppressed to a small range that cannot be discerned audibly or visually. (4) Even when the hub is wrapped with tape and stored at high temperatures of 100°C or higher, changes in the inner diameter of the hub (shrinkage) can be minimized. Therefore, the cassette can be loaded and unloaded into the recording/reproducing device smoothly. (5) With audio cassette tape, even if the tape is wrapped around the hub and stored at a high temperature of 100℃ or higher, the tape has a small thermal shrinkage rate, so the hub will not be pushed out due to tight wrapping, resulting in the inability to run. I have nothing to do. (6) Even when stored at high temperatures of 100°C or higher, the tape does not deform much and stops running due to repeated running. The present invention will be explained in more detail with reference to Examples below. In addition, "parts" in the examples indicate "parts by weight." The characteristics shown in the examples were measured as follows. (a) Solvent resistance A test sample was immersed in a solvent, and the state of the sample was examined after 24 hours. 〇: No change △…Slight swelling or curling of the sample ×…Dissolution (b) Heat shrinkage rate measurement method Approximately 10 cm in advance at 23℃ and 60%RH atmosphere
Mark the distance A and measure the distance A with a micrometer. Then, on the measurement sample
A tension of 0.4 g/10 mm width was applied and the sample was left in an atmosphere of 110° C. for 4 hours, and then taken out into the above atmosphere and the interval A' was measured for 1 hour. Heat shrinkage rate = A-A'/A x 100 (%) (c) Running performance at 23°C and 60% RH A running test was conducted using 40 commercially available audio cassette decks to determine whether the winding was good or not, and whether or not running stopped. The presence or absence of tape deformation was evaluated. 〇…There is no stopping of running and no irregular winding. Δ: There is no stopping of running, but winding disorder occurs in 1 to 3 machines. x: Winding disturbance occurs in 4 to 6 machines, and running stop occurs in 1 to 2 of them. (d) Output level fluctuation After recording a 3KHz, -10dB signal in advance, the tape was wound around a hub and left in an atmosphere of 110℃ for 4 hours, then taken out to a room temperature atmosphere, and after 1 hour, the signal was played back. We conducted this experiment and read the fluctuations in the output level. 20 turns were made for each type of test sample, and the incidence of output level fluctuation of 6 dB or more was determined. (e) Frequency shift After recording a 3KHz-1dB signal in advance,
Leave the tape wrapped around the hub in an atmosphere of 110℃ for 4 hours, then take it out to room temperature.
One hour later, the signal was reproduced, the frequency of the reproduced signal was checked, and the shift rate with respect to the recorded signal of 3KHz was determined. (f) Shrinkage rate of hub inner diameter Measure the inner diameter of the hub with tape wrapped around it, then leave it in an atmosphere of 110℃ for 4 hours, take it out to room temperature, and measure the inner diameter of the hub after 1 hour. The shrinkage rate was determined. (g) Rate of occurrence of hub extrusion A tape was wrapped around the hub, and after leaving it in an atmosphere of 110°C for 4 hours, it was visually determined whether the hub was being extruded. The number of test samples used was 20 rolls for each type. (h) Running stop rate after being left at 110°C for 4 hours After leaving the cassette tape in an atmosphere of 110°C for 4 hours, it was run on 20 commercially available car stereo cassette decks for 24 hours, and the stop rate at that time was determined. (i) Sensitivity Sensitivity at 315Hz is shown as a relative value to the standard tape. The standard tape is “QP-12” manufactured by BASF AG.
The sensitivity is "Nakamichi 582" manufactured by Nakamichi KK.
It was measured with (j) Frequency characteristics Shows the difference between 10KHz and 315Hz output. Example 1

【表】 第1表に示す支持体について、酢酸エチル、メ
チルエチルケトン、トルエンに対する耐溶剤性及
び110℃雰囲気4時間放置後の熱収縮の最も大き
い方向における熱収縮率を測定し第2表に示す。
[Table] For the supports shown in Table 1, the solvent resistance to ethyl acetate, methyl ethyl ketone, and toluene and the heat shrinkage rate in the direction of maximum heat shrinkage after being left in an atmosphere at 110° C. for 4 hours were measured and shown in Table 2.

【表】【table】

【表】 サンプルNo.2〜14、16は熱収縮率も小さく、耐
溶剤性もあり特に好ましい。但し、サンプルNo.14
は熱収縮率は小さいが、やや耐溶剤性が劣る。サ
ンプルNo.1は熱収縮率が大きい。 実施例 2 強磁性粉末(γ−Fe2O3) 100部 塩化ビニル−酢酸ビニル−ビニル 20部 アルコール共重合体(重量比 90:3:7) 熱可塑性ポリウレタン 5部 カーボンブラツク 2部 オレイン酸 1部 ジメチルポリシロキサン(重合度 約60) 0.1部 α−オレフインオキシド(炭素数 1部 18) 上記の組成物をボールミルで分散して磁性塗料
を調製し、これを実施例1のサンプルNo.1〜16の
支持体上に乾燥膜厚が5μmになるようにリバース
ロールで塗布した。 塗膜が末乾の内に磁場配向処理を行い、乾燥後
カレンダー処理を行つた。 これを3.81mm幅にスリツトし、オーデイオカセ
ツトテープを得た。このカセツトテープをオーデ
イオコンパクトカセツトに90m収納した。 得られたオーデイオコンパクトカセツトテープ
の特性を第3表に示す。
[Table] Samples Nos. 2 to 14 and 16 are particularly preferred because of their low thermal shrinkage and solvent resistance. However, sample No. 14
has a small heat shrinkage rate, but its solvent resistance is slightly inferior. Sample No. 1 has a large heat shrinkage rate. Example 2 Ferromagnetic powder (γ-Fe 2 O 3 ) 100 parts Vinyl chloride-vinyl acetate-vinyl 20 parts Alcohol copolymer (weight ratio 90:3:7) Thermoplastic polyurethane 5 parts Carbon black 2 parts Oleic acid 1 Parts Dimethylpolysiloxane (degree of polymerization: approx. 60) 0.1 parts α-olefin oxide (number of carbon atoms: 1 part 18) The above composition was dispersed in a ball mill to prepare a magnetic paint, and this was mixed into samples No. 1 to 1 of Example 1. It was coated onto No. 16 support using a reverse roll so that the dry film thickness was 5 μm. Magnetic field orientation treatment was performed while the coating film was still dry, and calender treatment was performed after drying. This was slit to a width of 3.81 mm to obtain an audio cassette tape. I stored 90m of this cassette tape in an audio compact cassette. Table 3 shows the properties of the audio compact cassette tape obtained.

【表】 熱収縮率が小さく、表面粗さ(Ra)の大きい
ベースを使用したサンプルNo.3′〜16′は、23℃、
60%RH内での走行性も良く、110℃、4時間放
置後の出力レベル変動、周波数シフト及びハブ内
径の収縮率が少く、走行性も良が、サンプルNo.9
のように支持体の表面粗さ(Ra)が大きいと支
持体の粗さが磁性層表面に浮き出て磁性層表面の
粗さも増し、周波数特性が低くくなり好ましくな
い。本発明ではサンプルNo.3′〜8、10′〜16′が好
ましく、更に好ましくはNo.4′〜7′、11′、12′、
14′〜16′である。 従来の磁気記録媒体であるサンプルNo.1′は高温
に曝された場合、熱収縮率が大きい為、出力レベ
ル変動、周波数シフト、ハブ内径の収縮率が大き
く、ハブ押し出し、走行ストツプ率も高いため本
発明の目的を満足できない。 実施例 3
[Table] Samples No. 3' to 16', which use bases with low thermal shrinkage and high surface roughness (Ra), are
Sample No. 9 has good running performance within 60% RH, with little output level fluctuation, frequency shift, and shrinkage rate of the hub inner diameter after being left at 110℃ for 4 hours.
If the surface roughness (Ra) of the support is large, as shown in the figure, the roughness of the support will stand out on the surface of the magnetic layer, increasing the roughness of the surface of the magnetic layer and lowering the frequency characteristics, which is undesirable. In the present invention, samples Nos. 3' to 8, 10' to 16' are preferred, and more preferably Nos. 4' to 7', 11', 12',
It is 14′ to 16′. Sample No. 1', which is a conventional magnetic recording medium, has a large thermal contraction rate when exposed to high temperatures, resulting in large output level fluctuations, frequency shifts, large shrinkage rates of the inner diameter of the hub, and high hub extrusion and running stop rates. Therefore, the object of the present invention cannot be satisfied. Example 3

【表】 実施例2と同様の組成物の磁性塗料を第4表の
No.17〜32の支持体上に乾燥膜敬5μになるように
リバースロールで塗布した。その後、実施例2と
同様の処理を行ない全厚12μの3.81mm幅オーデイ
オカセツトテープを得た。 このカセツトテープをオーデイオコンパクトカ
セツトに135m収納した。 得られたオーデイオコンパクトカセツトテープ
の特性を第5表に示す。
[Table] Magnetic paints with the same composition as in Example 2 were used as shown in Table 4.
It was coated onto supports Nos. 17 to 32 using a reverse roll so that the dry film thickness was 5 μm. Thereafter, the same treatment as in Example 2 was carried out to obtain an audio cassette tape having a total thickness of 12μ and a width of 3.81mm. I stored 135m of this cassette tape in an audio compact cassette. Table 5 shows the properties of the audio compact cassette tape obtained.

【表】【table】

【表】 熱収縮率が小さく表面粗さ(Ra)の大きいベ
ースを使用したサンプルNo.20′〜25′、27′〜32′は

23℃、60%RH内での走行性も良く、110℃、4
時間放置後の出力レベル変動、周波数シフト及び
ハブ内径の収縮率が少く走行性も良いが、サンプ
ル25′のように支持体の表面粗さ(Ra)が大きい
と支持体の粗さが、磁性層表面に浮き出て、磁性
層表面の粗さも増し、周波数特性が低くくなり好
ましくない。 本発明ではサンプルNo.20′〜24′、27′〜32′が好
ましく、更に好ましくはサンプルNo.21′〜23′、
27′〜30′である。従来の磁気記録媒体であるサン
プルNo.17′は実施例2サンプルNo.1′同様に本発明
の目的を満足できない。 実施例2のサンプルNo.1′と実施例No.17′を比較
するとテープ厚の薄いNo.17′の方が、110℃、4時
間放置後の出力レベル変動、走行ストツプ率、ハ
ブ押し出し率、ハブ内径の収縮率が大きいことが
わかる。これはハブへの巻回数の差によるもので
ある。
[Table] Samples No. 20′ to 25′ and 27′ to 32′, which use bases with low heat shrinkage and high surface roughness (Ra),
Good running performance at 23℃, 60%RH, 110℃, 4
The output level fluctuation, frequency shift, and shrinkage rate of the inner diameter of the hub are small after being left for a long time, and the running performance is good. However, if the surface roughness (Ra) of the support is large like sample 25', This is undesirable because it stands out on the layer surface, increases the roughness of the magnetic layer surface, and lowers the frequency characteristics. In the present invention, sample Nos. 20' to 24' and 27' to 32' are preferred, and more preferably samples No. 21' to 23',
It is 27′ to 30′. Sample No. 17', which is a conventional magnetic recording medium, cannot satisfy the object of the present invention, like Sample No. 1' of Example 2. Comparing Sample No. 1' of Example 2 and Example No. 17', No. 17' with a thinner tape shows better output level fluctuation, running stop rate, and hub extrusion rate after being left at 110℃ for 4 hours. , it can be seen that the contraction rate of the hub inner diameter is large. This is due to the difference in the number of turns around the hub.

Claims (1)

【特許請求の範囲】[Claims] 1 一面の表面粗さが0.01〜0.1μmである可撓性
支持体の他面に磁気記録層を設けてなり、110℃
の雰囲気に4時間放置した後の熱収縮率が1%以
下であることを特徴とする磁気記録媒体。
1 A flexible support with a surface roughness of 0.01 to 0.1 μm on one side and a magnetic recording layer provided on the other side.
A magnetic recording medium having a thermal shrinkage rate of 1% or less after being left in an atmosphere of 4 hours.
JP58007691A 1983-01-20 1983-01-20 Magnetic recording medium Granted JPS59132421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58007691A JPS59132421A (en) 1983-01-20 1983-01-20 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58007691A JPS59132421A (en) 1983-01-20 1983-01-20 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS59132421A JPS59132421A (en) 1984-07-30
JPH0479050B2 true JPH0479050B2 (en) 1992-12-14

Family

ID=11672798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58007691A Granted JPS59132421A (en) 1983-01-20 1983-01-20 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS59132421A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104326A (en) * 1984-10-23 1986-05-22 Fuji Photo Film Co Ltd Magnetic recording medium
JPH0766520B2 (en) * 1985-01-08 1995-07-19 富士写真フイルム株式会社 Magnetic recording medium
JPH0547140A (en) * 1991-08-10 1993-02-26 Hitachi Maxell Ltd Magnetic tape cartridge
JPH09120523A (en) * 1996-06-17 1997-05-06 Fuji Photo Film Co Ltd Video tape
JP4190447B2 (en) * 2004-03-26 2008-12-03 富士フイルム株式会社 Leader tape and magnetic tape cartridge using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5099506A (en) * 1973-12-29 1975-08-07
JPS5396072A (en) * 1977-02-02 1978-08-22 Teijin Ltd Preparation of polyester film with excellent dimensional stability
JPS5434206A (en) * 1977-08-23 1979-03-13 Teijin Ltd Polyester film
JPS54159203A (en) * 1978-06-07 1979-12-15 Fuji Photo Film Co Ltd Audio magnetic recording tape
JPS57150130A (en) * 1981-03-12 1982-09-16 Fuji Photo Film Co Ltd Magnetic recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5099506A (en) * 1973-12-29 1975-08-07
JPS5396072A (en) * 1977-02-02 1978-08-22 Teijin Ltd Preparation of polyester film with excellent dimensional stability
JPS5434206A (en) * 1977-08-23 1979-03-13 Teijin Ltd Polyester film
JPS54159203A (en) * 1978-06-07 1979-12-15 Fuji Photo Film Co Ltd Audio magnetic recording tape
JPS57150130A (en) * 1981-03-12 1982-09-16 Fuji Photo Film Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS59132421A (en) 1984-07-30

Similar Documents

Publication Publication Date Title
US4946740A (en) Magnetic recording medium
US4710421A (en) Magnetic recording medium
JPH0473214B2 (en)
US4743487A (en) Magnetic recording medium
JPH0479050B2 (en)
US4499121A (en) Method of preparing a magnetic recording medium with a calendering treatment
US4781964A (en) Magnetic recording medium
JPH0481259B2 (en)
US4728558A (en) Magnetic recording medium
US4728563A (en) Magnetic recording medium
JPH0481260B2 (en)
JP2796830B2 (en) Magnetic recording medium and method of manufacturing the same
US5357391A (en) Audio tape cassette, audio tape and production method of the same
JPS61168124A (en) Magnetic recording medium
US4713278A (en) Magnetic recording medium
KR100263679B1 (en) Catridge for magnetic tape
US4837081A (en) Magnetic recording medium
JPS61269222A (en) Magnetic recording medium and its production
JPS61208616A (en) Magnetic tape having leader tape
JPH0668824B2 (en) Magnetic recording tape
JPS5911531A (en) Magnetic recording medium
JPH05212786A (en) Base film for magnetic recording tape
JPS59186120A (en) Flexible disk for magnetic recording
JPH0386916A (en) Metal coating type magnetic recording medium
JPS63298810A (en) Magnetic tape