JPH0478980A - Uneven shape detector - Google Patents

Uneven shape detector

Info

Publication number
JPH0478980A
JPH0478980A JP2193736A JP19373690A JPH0478980A JP H0478980 A JPH0478980 A JP H0478980A JP 2193736 A JP2193736 A JP 2193736A JP 19373690 A JP19373690 A JP 19373690A JP H0478980 A JPH0478980 A JP H0478980A
Authority
JP
Japan
Prior art keywords
transparent light
image
light guide
mirror
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2193736A
Other languages
Japanese (ja)
Other versions
JP2956154B2 (en
Inventor
Taku Niizaki
卓 新崎
Seigo Igaki
井垣 誠吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2193736A priority Critical patent/JP2956154B2/en
Publication of JPH0478980A publication Critical patent/JPH0478980A/en
Application granted granted Critical
Publication of JP2956154B2 publication Critical patent/JP2956154B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Input (AREA)

Abstract

PURPOSE:To reduce assembly error by emitting fully reflected scattered beams to the outside of a transparent light transmission body, forming a spherical face or a non-spherical image formation mirror, where the image is formed, on one part of the transparent light transmission body and arranging an image sensor at a position where the image is formed by the image formation mirror. CONSTITUTION:A spherical mirror is formed by deposition, etc., while being spherically shaped on one end face of a transparent light transmission body 20, and an image sensor 4 is arranged at the image forming position of the spherical mirror 8. When an uneven object 10 gets contact with one face of the transparent light transmission body 20, scattered beams 11 generated from projecting parts P as the result of lighting a contact face S are propagated in the transparent light transmission body 20 while being fully reflected. The scattered beams 11 fully reflected from the projecting parts P are emitted to the outside of the transparent light transmission body 20 by the spherical mirror 8 and image-formed on the image sensor 4 and therefore, the uneven pattern image of the uneven object 10 is converted to a picture data. Thus, since the spherical mirror 8 is formed on one face of the transparent light transmission body 20, an optical system is integrally formed and assembly error is reduced.

Description

【発明の詳細な説明】 〔概 要〕 本発明は指紋等の凹凸パターン像を検出する凹凸形状検
出装置に関し、 組立誤差が少なく、耐久性が改善された光学系を提供す
ることを目的とし、 透明導光体の一面に凹凸物体を接触させ、その接触面を
照明した結果発生する散乱光を該透明導光体内で少なく
とも1回全反射させ、この全反射した散乱光を結像して
前記凹凸物体の凹凸パターン像を得る凹凸形状検出装置
において、全反射した該散乱光を該透明導光体の外部に
出射させ、且つ結像させる球面または非球面結像ミラー
を該透明導光体の一部に形成するとともに、該結像ミラ
ーによる像の形成位置に画像センサを配置してなるよう
に構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to an uneven shape detection device for detecting uneven pattern images such as fingerprints, and aims to provide an optical system with less assembly error and improved durability. A concave-convex object is brought into contact with one surface of a transparent light guide, and the scattered light generated as a result of illuminating the contact surface is totally reflected at least once within the transparent light guide, and the totally reflected scattered light is imaged to form an image. In an uneven shape detection device for obtaining an uneven pattern image of an uneven object, a spherical or aspherical imaging mirror is attached to the transparent light guide to emit the totally reflected scattered light to the outside of the transparent light guide and form an image. An image sensor is arranged at a position where an image is formed by the imaging mirror.

〔産業上の利用分野〕[Industrial application field]

本発明は、指紋等の凹凸パターン像を検出する凹凸形状
検出装置の改良に関する。
The present invention relates to an improvement in an uneven shape detection device for detecting an uneven pattern image such as a fingerprint.

個人の識別法として指紋の照合を行うシステムがある。There is a system that performs fingerprint matching as a personal identification method.

このシステムでは指紋を画像として取り扱うのが通常で
、指紋の凹凸パターン像を検出し画像データに変換する
入力装置(凹凸形状検出装置、以下指紋像入力装置)が
必要となる。
This system usually handles the fingerprint as an image, and requires an input device (an uneven shape detection device, hereinafter referred to as a fingerprint image input device) that detects the uneven pattern image of the fingerprint and converts it into image data.

このため、指に光を照射し、指紋より発生する散乱光の
うち、凹部から発生する散乱光を除去し、凸部から発生
する散乱光を結像させる光学系が用いられているが、製
作容易で、且つ組立誤差の少ないことが求められている
For this reason, an optical system is used that irradiates the finger with light, removes the scattered light generated from the concave parts of the scattered light generated by the fingerprint, and forms an image of the scattered light generated from the convex parts. It is required to be easy and to have few assembly errors.

〔従来の技術〕[Conventional technology]

第4図は従来例(その1)の指紋像入力装置断面図、第
5図は従来例(その2)の指紋像入力装置断面図である
。なお、第4図には指の各点から発した散乱光の結像状
態を、第5図には指の一点から発した光束の結像状態を
それぞれ示している。
FIG. 4 is a sectional view of a conventional example (part 1) of a fingerprint image input device, and FIG. 5 is a sectional view of a conventional example (part 2) of a fingerprint image input device. Note that FIG. 4 shows the imaging state of scattered light emitted from each point on the finger, and FIG. 5 shows the imaging state of the light beam emitted from one point on the finger.

第4図は、指紋の凸部(隆線)を検出し画像データに変
換する指紋像入力装置例を示している。
FIG. 4 shows an example of a fingerprint image input device that detects convex portions (ridges) of a fingerprint and converts them into image data.

図中、透明導光体2は、例えばガラス板を加工したもの
で、図示左側端面にはアルミ蒸着等により平面ミラー6
が形成され、平面ミラー6に対応する右側端面にはレン
ズ3が接着されている。そしてレンズ3による結像位置
には画像センサ4が、透明導光体2の下方には光源5が
それぞれ配置されている。
In the figure, the transparent light guide 2 is, for example, a processed glass plate, and the left end surface in the figure has a flat mirror 6 formed by vapor deposition of aluminum or the like.
is formed, and a lens 3 is bonded to the right end surface corresponding to the plane mirror 6. An image sensor 4 is placed at the position where the image is formed by the lens 3, and a light source 5 is placed below the transparent light guide 2.

このような指紋像入力装置において、透明導光体2の上
面(接触面)に指1を押し当てると、指1の凸部Pは接
触するが凹部Qは接触しない。このため、指の凹部Qか
らの反射・散乱光は、−度空気中を通って透明導光体2
に入射するため、図示破線のごとく透明導光体2の下方
に透過し、透明導光体2中を全反射しながら伝播する成
分は存在しない。
In such a fingerprint image input device, when the finger 1 is pressed against the upper surface (contact surface) of the transparent light guide 2, the convex part P of the finger 1 comes into contact, but the concave part Q does not come into contact. Therefore, the reflected/scattered light from the concave portion Q of the finger passes through the air through the transparent light guide 2.
Therefore, there is no component that transmits downward through the transparent light guide 2 as shown by the broken line in the figure and propagates through the transparent light guide 2 while being totally reflected.

一方、凸部Pからの反射・散乱光は、指1から直接透明
導光体2中に球面波として入射し、その一部は透明導光
体2中での全反射条件を満足して透明導光体2中を全反
射を繰り返して伝播してゆく。
On the other hand, the reflected/scattered light from the convex portion P directly enters the transparent light guide 2 from the finger 1 as a spherical wave, and a part of it satisfies the condition of total reflection in the transparent light guide 2 and becomes transparent. The light propagates through the light guide 2 through repeated total reflection.

そして、この全反射成分は平面ミラー6で反射して右側
端面(出射面)より出射し、レンズ3により画像センサ
4上に結像されて画像データに変換される。
Then, this total reflection component is reflected by the plane mirror 6, exits from the right end surface (output surface), is imaged by the lens 3 on the image sensor 4, and is converted into image data.

なお、凸部からの反射・散乱光は球面波であるため、単
一の球面レンズを用いて収差の少ない結像をさせる場合
には、第5図に示すように、レンズ3の曲率中心に配置
された開口絞り7が必要になる。
Note that the reflected and scattered light from the convex portion is a spherical wave, so when using a single spherical lens to form an image with little aberration, the center of curvature of the lens 3 should be centered as shown in Figure 5. An aperture stop 7 is required.

[発明が解決しようとする課題] 上記説明した指紋像入力装置の光学系を製作する場合、
透明導光体2の端面に平面ミラー6および開口絞り7を
蒸着または接着により形成し、レンズ3を接着している
[Problems to be Solved by the Invention] When manufacturing the optical system of the fingerprint image input device described above,
A plane mirror 6 and an aperture stop 7 are formed on the end face of the transparent light guide 2 by vapor deposition or bonding, and a lens 3 is bonded thereto.

このように従来の光学系の製作工程は複雑でコスト高に
なるとともに、特にレンズの接着による組立誤差の発生
、耐久性等の課題がある。
As described above, the manufacturing process of conventional optical systems is complicated and costly, and there are problems such as assembly errors caused by adhesion of lenses and durability.

本発明は、上記課題に鑑み、組立誤差および耐久性を改
善した凹凸形状検出装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an uneven shape detection device with improved assembly errors and durability.

〔課題を解決するための手段〕[Means to solve the problem]

第1図1実施例の構成図から原理構成部分を抽出して説
明する。
The principle components will be extracted from the configuration diagram of the first embodiment in FIG. 1 and explained.

20は透明導光体、4は画像センサ、5は光源である。20 is a transparent light guide, 4 is an image sensor, and 5 is a light source.

8は透明導光体20の一面に形成された球面結像ミラー
(または非球面結像ミラー、以下球面ミラーと称する)
で、透明導光体20中で少なくとも1回合反射した凸部
からの散乱光11を外部に出射させるとともに、画像セ
ンサ4上に結像させる。
8 is a spherical imaging mirror (or aspherical imaging mirror, hereinafter referred to as spherical mirror) formed on one surface of the transparent light guide 20
Then, the scattered light 11 from the convex portion that has been reflected at least once in the transparent light guide 20 is emitted to the outside and is imaged on the image sensor 4.

〔作用〕[Effect]

(1)透明導光体20の一面に凹凸物体10を接触させ
ると、その接触面を照明した結果発生する凸部Pからの
散乱光11は、透明導光体20の内部を全反射しながら
伝播する。
(1) When the uneven object 10 is brought into contact with one surface of the transparent light guide 20, the scattered light 11 from the convex portion P generated as a result of illuminating the contact surface is totally reflected inside the transparent light guide 20. propagate.

この凸部Pから全反射した散乱光11を、球面ミラー8
によって透明導光体20の外部に出射させ、画像センサ
4上に結像させる。
The scattered light 11 totally reflected from this convex portion P is transferred to the spherical mirror 8
The light is emitted to the outside of the transparent light guide 20 and formed into an image on the image sensor 4.

これにより、凹凸物体10の凹凸パターン像が画像デー
タに変換される。
As a result, the uneven pattern image of the uneven object 10 is converted into image data.

このように、球面ミラー8を透明導光体20の一面に形
成することにより、結像のためのレンズが不要となる。
By forming the spherical mirror 8 on one surface of the transparent light guide 20 in this manner, a lens for image formation becomes unnecessary.

なお、球面ミラー8は、透明導光体20の一面を球面に
整形し、その球面にアルミ蒸着等を行うことによって形
成されるため、光学系の一体成形が可能となり、組立て
誤差の改善、耐久性の向上が達成される。
Note that the spherical mirror 8 is formed by shaping one surface of the transparent light guide 20 into a spherical surface and performing aluminum vapor deposition on the spherical surface, so the optical system can be integrally molded, improving assembly errors and improving durability. sexual improvement is achieved.

(2)以上の構成において、出射面に開口絞りを設ける
と、結像の収差が改善される。
(2) In the above configuration, if an aperture stop is provided on the exit surface, imaging aberrations are improved.

(3)また、各凸部から発する散乱光の結像面までの行
路長差が最小となるように、例えば球面ミラー8の傾き
を設定すると、所謂あおりの効果により、台形歪みが改
善される。
(3) Furthermore, if the inclination of the spherical mirror 8 is set, for example, so that the difference in path length of the scattered light emitted from each convex portion to the imaging plane is minimized, trapezoidal distortion is improved by the so-called tilting effect. .

(4)さらに、接触面の中心から発する散乱光のうち、
球面ミラー8の中心から発する散乱光を光軸とし、この
先軸と画像センサ4の受光面の法線とが所定角度をなす
ように設定すると、散乱光の球面ミラー8までの光路長
差に基づく結像面の傾きが補正される。
(4) Furthermore, among the scattered light emitted from the center of the contact surface,
If the scattered light emitted from the center of the spherical mirror 8 is set as the optical axis, and the forward axis and the normal line of the light receiving surface of the image sensor 4 are set to form a predetermined angle, the difference in the optical path length of the scattered light to the spherical mirror 8 is determined. The tilt of the image plane is corrected.

〔実施例〕〔Example〕

本発明の実施例を図を用いて詳細に説明する。 Embodiments of the present invention will be described in detail with reference to the drawings.

(第1の実施例) 第1図は第1の実施例の構成図である。(First example) FIG. 1 is a block diagram of the first embodiment.

透明導光体20は、例えば所定厚さのガラス板であって
、一方の端面ば球面に整形され、蒸着等により球面ミラ
ー8が形成される。
The transparent light guide 20 is, for example, a glass plate with a predetermined thickness, one end surface of which is shaped into a spherical surface, and a spherical mirror 8 is formed by vapor deposition or the like.

また、画像センサ4は2次元のセンサであって、球面ミ
ラー8の結像位置に配置される。
Further, the image sensor 4 is a two-dimensional sensor, and is arranged at the imaging position of the spherical mirror 8.

ここで、球面の曲率は、全反射した散乱光11が透明導
光体20の外部で像を結ぶように決められ、またその曲
率中心は光軸12(接触面Sの中心から発した散乱光の
うち、球面ミラー8の中心から発する光線を光軸12と
する)が接触面Sに対し平行となるように決められる。
Here, the curvature of the spherical surface is determined so that the totally reflected scattered light 11 forms an image outside the transparent light guide 20, and the center of the curvature is the optical axis 12 (the scattered light emitted from the center of the contact surface S). Of these, the light beam emitted from the center of the spherical mirror 8 is determined to be parallel to the contact surface S (optical axis 12).

このように形成した透明導光体20の接触面Sに指1(
凹凸物体10)を押し当てて光源5により光を照射する
と、光は指表面・内部で反射散乱される。
Touch the contact surface S of the transparent light guide 20 formed in this way with a finger 1 (
When the uneven object 10) is pressed and irradiated with light by the light source 5, the light is reflected and scattered on the finger surface and inside.

このうち指の凹部Ωからの散乱光は、−度空気中を通り
透明導光体20に入射するため、透明導光体20中を全
反射し伝播する成分は存在しない。
Among these, the scattered light from the concave portion Ω of the finger passes through the air and enters the transparent light guide 20, so there is no component that is totally reflected and propagated through the transparent light guide 20.

ところが、凸部Pからの反射・散乱光は、指から直接透
明導光体20中に球面波として入射し、その一部は透明
導光体20中での全反射条件を満足する。
However, the reflected/scattered light from the convex portion P directly enters the transparent light guide 20 from the finger as a spherical wave, and a part of it satisfies the condition for total reflection in the transparent light guide 20.

ここまでは第4図、第5図の従来例と同じであるが、凸
部Pからの反射・散乱光の結像は以下のように行われる
Up to this point, it is the same as the conventional example shown in FIGS. 4 and 5, but the imaging of reflected and scattered light from the convex portion P is performed as follows.

指紋の凸部Pにて散乱された光のうち、透明導光体20
内部で全反射条件を満たし透明導光体20中を伝播して
いる散乱光11は、透明導光体端面に形成された球面ミ
ラー8により反射され、一方の端面(出射面)9より空
気中に取り出される。
Of the light scattered by the convex part P of the fingerprint, the transparent light guide 20
The scattered light 11 that satisfies the total internal reflection condition and propagates through the transparent light guide 20 is reflected by the spherical mirror 8 formed on the end face of the transparent light guide, and is emitted into the air from one end face (output face) 9. It is taken out.

球面ミラー8は、結像光学系(凹面鏡)も兼ねているた
め、空気中に取り出された散乱光11は焦点を結ぶ。
Since the spherical mirror 8 also serves as an imaging optical system (concave mirror), the scattered light 11 extracted into the air is focused.

各凸部Pからの像の集合は、厳密には曲面(像面湾曲)
を形成するが、平面で近似し、この近似平面に2次元の
画像センサ4を置くことにより、凸部パターン像(指紋
隆線パターン像)の画像データが得られる。
Strictly speaking, the set of images from each convex portion P is a curved surface (field curvature)
However, by approximating it with a plane and placing the two-dimensional image sensor 4 on this approximate plane, image data of a convex pattern image (fingerprint ridge pattern image) can be obtained.

なお、各部から球面ミラー8までの光路長の差によって
結像面に傾きが生じるが、画像センサ4の法線nと光軸
12とのなす角度を調整することにより補正することが
できる。
Incidentally, although the imaging plane is tilted due to the difference in the optical path length from each part to the spherical mirror 8, it can be corrected by adjusting the angle between the normal n of the image sensor 4 and the optical axis 12.

(第2の実施例) 第2図は第2の実施例の構成図である。(Second example) FIG. 2 is a block diagram of the second embodiment.

第2の実施例は、第1の実施例において、出射面9に開
口絞り7を設けた例である。
The second embodiment is an example in which an aperture stop 7 is provided on the exit surface 9 in the first embodiment.

即ち、接触面S(指1)の中心より発し、且つ球面ミラ
ー8の中心から発する光(光軸12)が開口絞り7の中
心で、且つ垂直に通るように、開口絞り7を接着、ある
いは印刷により形成する。これにより、球面ミラー8に
よる結像の収差を減少させることができる。
That is, the aperture diaphragm 7 is glued or glued so that the light (optical axis 12) emitted from the center of the contact surface S (finger 1) and from the center of the spherical mirror 8 passes vertically at the center of the aperture diaphragm 7. Formed by printing. This makes it possible to reduce the aberration of the image formed by the spherical mirror 8.

(第3の実施例) 第3図は第3の実施例の構成図である。(Third example) FIG. 3 is a block diagram of the third embodiment.

第3の実施例は各部数乱光の結像面までの行路長差に基
づく台形歪みを補正するために、所謂あおり効果を持た
せたものである。
In the third embodiment, a so-called tilting effect is provided in order to correct the trapezoidal distortion based on the difference in path length of the scattered light of each copy to the imaging plane.

このため、例えば球面ミラー8の傾きを、各凸部から発
する散乱光の結像面までの光路長差が最小となるように
設定する。この結果光軸12は接触面Sと平行な軸Rに
対しある角度を持つ。このため、開口絞り7を設ける場
合は、この先軸12が通るように出射面9の中心よりず
らす。
For this reason, for example, the inclination of the spherical mirror 8 is set so that the difference in optical path length between the scattered light emitted from each convex portion and the imaging plane is minimized. As a result, the optical axis 12 has an angle with respect to the axis R parallel to the contact surface S. Therefore, when the aperture stop 7 is provided, it is offset from the center of the exit surface 9 so that the shaft 12 passes through the aperture stop 7.

なお、第2.第3の実施例についても、第1の実施例で
述べたように、画像センサ4の法線nと光軸12との間
である角度を持たせると、球面ミラー8までの光路長差
に基づく近似平面の傾きが補正できる。
In addition, the second. In the third embodiment, as described in the first embodiment, if a certain angle is set between the normal n of the image sensor 4 and the optical axis 12, the difference in the optical path length to the spherical mirror 8 will be The inclination of the approximate plane based on this can be corrected.

以上のごとく、透明導光体20の一部に結像機能を備え
た球面ミラーまたは非球面ミラー8を形成することによ
り、レンズを省くことができる。
As described above, by forming the spherical mirror or aspherical mirror 8 with an imaging function in a part of the transparent light guide 20, the lens can be omitted.

このため、光学系の一体成形が可能となり、組立誤差な
らびに耐久性が改善される。
Therefore, the optical system can be integrally molded, and assembly errors and durability are improved.

〔発明の効果〕 以上説明したように、本発明は透明導光体に形成するミ
ラーに結像機能をもたせたもので、透明導光体の一体成
形が可能になる。その結果、光学系の製作時に光学部品
の接着の必要が無くなり、■製作工数の削減、■組み立
て誤差の減少、■耐久性の向上を図ることが出来る等の
効果がある。
[Effects of the Invention] As explained above, in the present invention, a mirror formed on a transparent light guide has an imaging function, and the transparent light guide can be integrally molded. As a result, it is no longer necessary to bond optical parts during the production of the optical system, resulting in the following effects: (1) reduction in manufacturing man-hours, (2) reduction in assembly errors, and (2) improvement in durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の実施例の構成図、第2図は第2の実施例
の構成図、第3図は第3の実施例の構成図、第4図は従
来例(その1)の指紋像入力装置断面図、第5図は従来
例(その2) 装置断面図である。 図中、■は指、2,20は透明導光体、34は画像セン
サ、5は光源、6は平面ミは開口絞り、8は球面ミラー
、非球面ミは凹凸物体、11は散乱光、12は光軸、P
Qは凹部、0は曲率中心、nは法線、Sである。 の指紋像入力 はレンズ、 ラー、7 ラー、10 は凸部、 は接触面
Fig. 1 is a block diagram of the first embodiment, Fig. 2 is a block diagram of the second embodiment, Fig. 3 is a block diagram of the third embodiment, and Fig. 4 is a block diagram of the conventional example (part 1). FIG. 5 is a sectional view of a conventional example (No. 2) of the device. In the figure, ■ is a finger, 2 and 20 are transparent light guides, 34 is an image sensor, 5 is a light source, 6 is a flat surface Mi is an aperture stop, 8 is a spherical mirror, aspherical surface Mi is an uneven object, 11 is scattered light, 12 is the optical axis, P
Q is the concave portion, 0 is the center of curvature, n is the normal, and S is the normal. The fingerprint image input is the lens, ra, 7 ra, 10 is the convex part, and is the contact surface

Claims (4)

【特許請求の範囲】[Claims] (1)透明導光体(20)の一面に凹凸物体(10)を
接触させ、その接触面を照明した結果発生する散乱光を
該透明導光体内で少なくとも1回全反射させ、この全反
射した散乱光(11)を結像して前記凹凸物体の凹凸パ
ターン像を得る凹凸形状検出装置において、全反射した
該散乱光(11)を該透明導光体(20)の外部に出射
させ、且つ結像させる球面または非球面結像ミラー(8
)を該透明導光体(20)の一部に形成するとともに、
該結像ミラー(8)による像の形成位置に画像センサ(
4)を配置してなることを特徴とする凹凸形状検出装置
(1) The uneven object (10) is brought into contact with one surface of the transparent light guide (20), and the scattered light generated as a result of illuminating the contact surface is totally reflected at least once within the transparent light guide, and the total reflection In the unevenness shape detection device for imaging the scattered light (11) to obtain an uneven pattern image of the uneven object, the totally reflected scattered light (11) is emitted to the outside of the transparent light guide (20), In addition, a spherical or aspherical imaging mirror (8
) is formed on a part of the transparent light guide (20),
An image sensor (
4) An uneven shape detection device characterized by arranging the above.
(2)前記透明導光体の光線の出射面に開口絞りを形成
してなることを特徴とする請求項(1)記載の凹凸形状
検出装置。
(2) The uneven shape detection device according to claim 1, wherein an aperture stop is formed on the light emitting surface of the transparent light guide.
(3)各散乱光の結像面までの光路長の差が減少するよ
うに該結像ミラーを形成してなることを特徴とする請求
項(1)記載の凹凸形状検出装置。
(3) The uneven shape detecting device according to claim (1), wherein the imaging mirror is formed so that the difference in optical path length of each scattered light to the imaging surface is reduced.
(4)該接触面の中心から発する散乱光のうち、該ミラ
ーの中心から発する散乱光を光軸とし、この光軸と該画
像センサの受光面の法線との成す角度を像面湾曲による
焦点ずれを減少させる所定角度に設定することを特徴と
する請求項(1)記載の凹凸形状検出装置。
(4) Of the scattered light emitted from the center of the contact surface, the scattered light emitted from the center of the mirror is defined as the optical axis, and the angle formed between this optical axis and the normal to the light-receiving surface of the image sensor is determined by the curvature of field. 2. The uneven shape detection device according to claim 1, wherein the angle is set to a predetermined angle that reduces defocus.
JP2193736A 1990-07-20 1990-07-20 Uneven shape detector Expired - Lifetime JP2956154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2193736A JP2956154B2 (en) 1990-07-20 1990-07-20 Uneven shape detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2193736A JP2956154B2 (en) 1990-07-20 1990-07-20 Uneven shape detector

Publications (2)

Publication Number Publication Date
JPH0478980A true JPH0478980A (en) 1992-03-12
JP2956154B2 JP2956154B2 (en) 1999-10-04

Family

ID=16312957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2193736A Expired - Lifetime JP2956154B2 (en) 1990-07-20 1990-07-20 Uneven shape detector

Country Status (1)

Country Link
JP (1) JP2956154B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10171968A (en) * 1996-12-06 1998-06-26 Yamatake Honeywell Co Ltd Fingerprint input unit
JP2001153630A (en) * 1999-11-30 2001-06-08 Mitsubishi Electric Corp Projecting and recessed pattern detecting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10171968A (en) * 1996-12-06 1998-06-26 Yamatake Honeywell Co Ltd Fingerprint input unit
JP2001153630A (en) * 1999-11-30 2001-06-08 Mitsubishi Electric Corp Projecting and recessed pattern detecting device

Also Published As

Publication number Publication date
JP2956154B2 (en) 1999-10-04

Similar Documents

Publication Publication Date Title
JP3780785B2 (en) Concavity and convexity pattern detector
JP2622307B2 (en) Fingerprint recognition device using hologram
JP2003066335A (en) Optical system device
JPH1065882A (en) Method for acquiring medium surface shape data
JPH07220041A (en) Rugged face reader
US6414749B1 (en) Uneven-pattern reading apparatus
JPH1131216A (en) Fingerprint read optical system
JPH0478980A (en) Uneven shape detector
US4984886A (en) Surface inspection apparatus for objects
JPH0713699B2 (en) Projection system for automatic focus detection
CN107402439B (en) Thin plate imaging device
JP3155494B2 (en) Imaging element
JPH0478979A (en) Uneven shape detector
JP3599908B2 (en) Refractive index measurement method and apparatus
JPH0754822Y2 (en) Optical sensor
JP2531890Y2 (en) Optical sensor
US10467769B2 (en) Thin plate imaging device
JP2001133714A (en) Scanning optical system
JPH1115948A (en) Fingerprint input device
JPH056423A (en) Image reader
JP2598964Y2 (en) Image distortion measuring device for live scanner
JP3323619B2 (en) Lens measurement method
JP3169774B2 (en) Image recognition device
JPH09203872A (en) Lens for optical scanning, synchronous optical detecting device, and optical scanning device
KR20040039856A (en) Apparatus for recognizing information of live body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 11

EXPY Cancellation because of completion of term