JPH0478970B2 - - Google Patents

Info

Publication number
JPH0478970B2
JPH0478970B2 JP61270404A JP27040486A JPH0478970B2 JP H0478970 B2 JPH0478970 B2 JP H0478970B2 JP 61270404 A JP61270404 A JP 61270404A JP 27040486 A JP27040486 A JP 27040486A JP H0478970 B2 JPH0478970 B2 JP H0478970B2
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
crystal element
rectangular
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61270404A
Other languages
Japanese (ja)
Other versions
JPS63123017A (en
Inventor
Junichiro Kanbe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27040486A priority Critical patent/JPS63123017A/en
Publication of JPS63123017A publication Critical patent/JPS63123017A/en
Publication of JPH0478970B2 publication Critical patent/JPH0478970B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の分野〕 本発明は、強誘電性液晶であるカイラルスメク
チツク液晶を用いた液晶素子に関する。 〔従来の技術〕 最近、液晶表示素子や液晶−光シヤツター等に
も、強誘電性液晶が使用されることが多い。この
液晶は電界に対して第1の光学的安定状態と第2
の光学的安定状態からなる双安定状態を有し、従
つて従来のTN(Twisted Nematic)型の液晶で
用いられた光学変調素子とは異なり、例えば一方
の電界ベクトルに対して第1の光学的安定状態に
液晶が配向し、他方の電界ベクトルに対しては第
2の光学的安定状態に液晶が配向される。またこ
の型の液晶は、加えられる電界に応答して、極め
て速やかに上記2の安定状態のいずれかを取り、
且つ電界の印加のないときはその状態を維持する
性質を有する。 〔発明の解決しようとする問題点〕 強誘電性液晶を構成するカイラルスメクチツク
液晶分子は、一様なモノドメインの層構造を有し
ているが、この層構造のモノドメイン性が外部衝
撃力によるセル自体のたわみによつて崩れてしま
い、さらに、この崩れたモノドメイン性の層構造
一様なモノドメイン性への回復が困難である問題
点があつた。 特に、クラークらにより発表された米国特許
4367924号公報によれば、第1安定配向状態と第
2安定配向状態を生じる双安定性を発現させるに
は、カイラルスメクチツク液晶の膜厚をらせん構
造が解消されるのに充分に薄い膜厚(約1〜5μ
m)に設定する必要があり、しかも大型デイスプ
レイパネル(対角線サイズ;15cm以上)の場合で
は、上述した薄膜のカイラルスメクチツク液晶を
前パネルに亘つて均一な薄膜で形成する必要があ
るため、カイラルスメクチツク液晶を用いた大型
デイスプレイパネルでは、セルを構成しているガ
ラス基板の厚みを薄く(一般に2mm以下)してい
る。 前述したカイラルスメクチツク液晶を注入した
液晶セルは、その後ワードプロセツサー、パソコ
ンやTVなどの表示面に適用するまでの間に、例
えば液晶セルに設けた電極と外部動回路とを電気
的に接続するために、液晶セルを構成するガラス
基板上に直接動回路用ICを設けたり、あるいは
TAB(Tape Automated Bonding)法が採用さ
れたり、さらには品質管理などの多くの工程を経
る。これらの工程中のハンドリング操作時に、液
晶セルに撓みを生じ、この撓みによる変位が原因
と見られる配向欠陥が生じていた。特に、長方形
状のガラス基板やプラスチツク基板を用いたカイ
ラルスメクチツク液晶セルは、撓による変位が長
方形の長手方向に生じるため、一様なモノドメイ
ンの層構造の形成が困難となつていた。 従つて、本発明の目的は、前述の問題点を解決
したカイラルスメクチツク液晶素子を提供するこ
とにある。 〔問題点を解決するための手段〕 本発明は、対向面が互いに長方形状で相対向
し、少なくとも一方に一軸性配向処理軸を付与し
た一対の長方形状基板の間に、該一軸性配向処理
に応じて配向した液晶分子で組織した層構造を形
成したカイラルスメクチツク液晶を配置してなる
液晶素子において、 前記長方形状基板の短手方向の軸と対角線との
なす角度をθaとした時、前記層構造の法線と前記
長方形状基板の短手方向の軸とのなす角度θAが前
記角度θaとの間で 0≦θA<θa の関係を有している液晶素子に特徴がある。 〔作 用〕 本発明者の実験により、 カイラルスメクチツク液晶を充填した液晶セル
に対し、 このセルの表示面に垂直な方向に外部より力を
加えた場合、前述の配向状態の乱れがカイラルス
メクチツク液晶の垂直分子層の法線に垂直な方向
に細長い針状の欠陥として現われ、垂直分子層の
法線方向には、現われ難いことが顕微鏡観察によ
つて分つた。 〔実施例〕 第1図は、本発明の液晶素子の平面図である。
図中、11は上側の長方形状基板(ガラス基板、
プラスチツク基板)、12は下側長方形状基板
(ガラス基板、プラスチツク基板)、13は基板1
1と12に対して垂直なカイラルスメクチツク液
晶分子層(垂直分子層という)の法線、14は上
側長方形状基板の短手方向と平行な軸、15は上
側長方形状基板の対角線を表わしている。角度θa
は短手方向と平行な軸14と対角15とのなす角
度を表わし、角度θAは短手方向と平行な軸14と
垂直層の法線13とのなす角度を表わしている。 この角度θAは0≦θA<θaの関係を有している
が、好ましくは0≦θA≦1/2θaの関係を有してい
るのがよい。 特に、角度θAが角度1/2θaを越え、その角度の
増大に応じて前述した配向欠陥の生じる危険が増
大することになる。 垂直分子層の法線13は、上側長方形状基板1
1に付与した一軸性配向処理軸、例えばラビング
処理軸、斜方蒸着処理軸、斜方エツチング処理軸
と平行となつている。 第2図は、カイラルスメクチツクC相(SmC*
相)の強誘電性液晶分子の配向状態を示したもの
で、21は配向した液晶分子であり、13は、
SmC*の基板に対する垂直な分子層22の法線、
23は法線13に直角な軸である。今、第2図の
紙面に垂直な方向から基板に力を加え、基板を撓
ませた場合、液晶分子21の配向秩序は、法線1
3が基板11の短手方向に対して平行となつてい
るため、軸23に対しては、ネマチツク液晶的に
作用し、軸23に働く力に対して液晶分子21
は、柔軟な動きを示し、配向欠陥を生じにくい。
これに対し、液晶分子21が、法線13に対して
結晶的な構造を成しているため、法線13方向に
働力は、垂直分子層22の構造を崩し、垂直分子
層22の法線に垂直な方向に沿つて細長い針状の
欠陥が、前述の現象の様に現われると考えられ
る。 従つて、長方形状の大型パネルの取扱中に、そ
のパネルに撓みを生じた時には、軸23の方向に
大きな力が印加されることになるが、本発明で垂
直分子層22の法線13が、上述の軸23に対し
て直角方向にあるため、撓みによつて生じる配向
欠陥を防止することができる。又、軸23に大き
な力が印加される長方形状板のサイズとしては、
一時に長手方向の長さをLとし、短手方向の長さ
をSとした時、S/L≦5/6、特に1/6≦S/L≦
5/6の場合であることが判明した。又、その時に
長方形状基板11の対角線15のサイズとして
は、その肉厚が2mm以下のガラス基板の場合で15
cm以上の時に、撓みが原因となつた配向欠陥を生
じ易くなる。 第3図a及びbは、それぞれ本発明の液晶素子
の実施態様を示す断面図である。第3図aに示す
液晶素子は、一対の平行配置した上側長方形状基
板31a及び下側長方形状基板31bと、それぞ
れの基板に配線したた透明電極32aと32bを
備えている。上基板31aと下基板31bとの間
には強誘電性液晶、好ましくは少なくとも2つの
安定状態をもつ非らせん構造の強誘電性液晶33
が配置されている。 前述した透明電極32aと32bは、強誘電性
液晶33をマルチプレクシング駆動するために、
それぞれストライプ形状で配線され、且つそのス
トライプ形状が互いに交差させて配置されている
ことが好ましい。 第3図aに示す液晶素子では、基板31aと3
1bに配向制御膜34aと34bが配置されてい
る。 又、第3図aに示す液晶素子で用いた配向制御
膜34aと34bのうち何れか一方を省略するこ
とができる。 本発明では、前述した配向制御膜34aと34
bに一軸性配向軸を付与することができる。この
一軸性配向軸は、好ましくはラビング処理によつ
て付与されることができる。この際、前述した一
軸性配向軸を互いに平行方向とすることができる
が、互いに交互させることも可能である。 この際、用いることができる配向制御膜34a
と34bとしては、ポリイミド膜、ポリアミド
膜、ポリビニルアルコール膜、ポリエチレンオキ
シド膜、ポリエチレン膜やセルロース樹脂膜など
を用いることができる。 本発明の別の好ましい具体例では、SiOやSiO2
などの無機絶縁物質を長方形状基板11aと11
bの上に斜め蒸着法によつて被膜形成することに
よつて、一軸性配向処理軸が付与された配向制御
膜を得ることができる。 第4図に示された装置に於いてベルジヤー40
1は吸出口405を有する絶縁基板403上に載
置され、前記吸出口405から伸びる(図示され
ていない)真空ポンプによりベルジヤー401が
真空にされる。タングステン製又はモリブデン製
のるつぼ407はベルジヤー401の内部及び底
部に配置され、るつぼ407には数グラムの
SiO,SiO2,MgF2などの結晶408が載置され
る。るつぼ407は下方の2つのアーム407
a,407bを有し、前記アームは夫々導線40
9,410に接続される。電源406及びスイツ
チ404がベルジヤー401の外部導線409,
410間に直列に接続される。基板402はベル
ジヤー401の内部でるつぼ407の真上にベル
ジヤー401の垂直軸に対しKの角度を成して配
置される。 スイツチ404が開放されると、ベルジヤー4
01はまず約10-5mmHgの真空状態にされ、次に
スイツチ404が閉じられて、るつぼ407が適
温で白熱して結晶408が蒸発されるまで電源4
06を調節して電力が供給される。適温範囲
(700〜1000℃)に対して必要な電流は約100amps
である。結晶408は次に蒸発され図中Sで示さ
れた上向きの分子流を形成し、流体Sは、基板4
02に対してKの角度を成して基板402上に入
射され、この結果基板402が被覆される。角度
Kは上記の“入射角”であり、流体Sの方向は上
記の“斜め蒸着方向”である。この被膜の膜厚は
基板402をベルジヤー401に挿入する前に行
われる装置の時間に対する厚みのキヤリブレーシ
ヨンにより決定される。適宜な厚みの被膜が形成
されると電源406からの電力を減少させ、スイ
ツチ404を開放してベルジヤー401とその内
部を冷却する。次に圧力を大気圧まで上げ基板4
02をベルジヤー401から取り外す。 前述した入射角に相当する角度Kを調整するこ
とによつて、かかる斜め蒸着処理された基板に隣
接する液晶分子を傾斜角(プレチルト角)をもつ
て配向する傾斜配向状態とすることや基板に対し
て実質的に平行に配向する配向状態とすることが
できる。 また、別の具体例ではガラス又プラスチツクか
らなる基板11aの表面あるいは基板11bの上
に前述した無機絶縁物質や有機絶縁物質を被膜形
成した後、該被膜の表面を斜方エツチング法によ
りエツチングすることにより、その表面に配向制
御効果を付与することができる。 前述の配向制御膜は、同時に絶縁膜としても機
能させることが好ましく、このためにこの配向制
御膜の膜厚は一般に100Å〜1μ、好ましくは500
Å〜5000Åの範囲に設定することができる。この
絶縁膜は、液晶層に微量に含有される不純物等の
ために生ずる電流の発生を防止できる利点をも有
しており、従つて動作を繰り返し行つても液晶化
合物を劣化させることがない。 第5図は、本発明の強誘電性液晶の動作説明の
ために、セルの例を模式的に描いたものである。
以下、所望の層としてSmC*を例にとつて説明す
る。 51aと51bは、IN2O3あるいはITO
(Indium−Tin Oxide)等の薄膜からなる透明電
極で被覆された基板(ガラス板)であり、その間
に垂直分子層52がガラス面に配向したSmC*
の液晶が封入されている。太線で示した線53が
液晶分子を表わしており、この液晶分子53は基
板の面方向に連続的にらせん構造を形成して垂直
分子層52は、その法線55に沿つて均一に配向
し、モノドメインを形成している。 この液晶分子53は、その分子に直交した方向
に双極子モーメント(P⊥)54を有している。
基板51aと51b上の電極間に一定の閾値以上
の電圧を印加すると、液晶分子53のらせん構造
がほどけ、双極子がすべて電界方向に向くよう、
液晶分子53は方向を変えることができる。液晶
分子53は、細長い形状を有しており、その長軸
方向と短軸方向で屈折率異方性を示し、従つて例
えばガラス面の上下に互いにクロスニコルの偏光
子を置けば、電圧印加極性によつて光学特性が変
わる液晶光学素子となることは、容易に理解され
る。 本発明の液晶素子で好ましく用いられる液晶セ
ルは、例えば10μ以下とすることができる。この
ように液晶層が薄くなるにしたがい、第6図に示
すように電界を印加していない状態でも液晶分子
のらせん構造がほどけ、非らせん構造となり、そ
の双極子モーメントPaまたはPbは上向き64a
又は下向き64bのどちらかの状態をとる。この
場合でも垂直分子層52は、そのYの法線55に
沿つて均一に配向し、モノドメインを形成してい
る。 このようなセルに、第6図に示す如く一定の閾
値以上の極性の異る電界Ea又はEbを電圧印加手
段61aと61bにより付与すると、双極子モー
メントは、電界Ea又はEbの電界ベクトルに対応
して上向き64a又は下向き64bと向きを変
え、それに応じて液晶分子は、1つの安定配向6
3aかあるいは他の安定配向63bの何れか一方
に配向する。 このような強誘電性を液晶光学素子として用い
ることの利点は、先にも述べたが2つある。 その第1は、応答速度が極めて速いことであ
り、第2は液晶分子の配向が双安定性を有するこ
とである。第2の点を、例えば第6図によつて更
に説明すると、電界Eaを印加すると液晶分子は
1つの安定配向63aに配向するが、この状態は
電界を切つても安定である。又、逆向きの電界
Ebを印加すると、液晶分子は他の安定配向63
bに配向してその分子の向きを変えるが、やはり
電界を切つてもこの状態に留つている。 このような応答速度の速さと、双安定性が有効
に実現されるにはセル厚が出来るだけ薄い方が好
ましい。 実施例 1 基板サイズ200mm(長手方向)×70mm(短手方
向)×1.1mm(肉厚)のガラス基板を2枚用意し
た。それぞれのガラス基板の上に1000Å厚の
SiO2膜をスパツタリング法によつて設け、その
上に500Å厚のポリビニルアルコール膜を設けた
後、その表面にアセテート布で一方向にラビング
処理を施した。この際のラビング軸は角度θA=0
に相応する短手方向と平行に設定した。 次いで、一方のガラス基板上に平均粒経1.2μm
のシリカビーズを散布した後、もう一方のガラス
基板を重ね合せ、その周辺をエポキシ系接着剤で
シーリングした。 こうして作成したセル内に等方相下のCS−
1013(チツソ社製のカイラルスメクチツクC液晶)
を注入した後、徐冷(0.5℃/時間)させてカイ
ラルスメクチツク液晶セルを作成した。 尚、チツソ社製「CS−1013」の相転移点は、
以下のとおりであつた。 SmC*62.9℃ ―――→ SmA (スメクチツクA)70.2℃ ―――→ Ch (コレステリツク)80.2℃ ―――→ Isp (等方相) さらに、他のサンプルとして、前述のカイラル
スメクチツク液晶セルを作成した時の角度θA
10゜,30゜,60゜,75゜(本発明外)と80゜(本発明外

に代えたほかは、全く同様の方法でカイラルスメ
クチツク液晶セルを作成したサンプルを用意し
た。 これら5種のサンプルについての初期配向状態
を偏光顕微鏡によつて観察したところ、垂直分子
層の法線がラビング方向に沿つており、且つ配向
欠陥を生じていない一様なモノドメインとなつて
いることが判明した。 しかる後に、駆動用ICを接続したフレキ基板
の端子を前述のサンプルセル(縦方向に400本の
電極、横方向に800本の電極が設けられている)
の端子とを異方性導電接着剤である日立化成社製
の「アニソルムAC5052(商品名)によつて電気的
に接続し、次いで手で持ち上げて外観検査を行つ
た。この外観検査を終えたサンプルについての配
向状態を偏光顕微鏡によつて観察した。その結果
を下記に示す。
[Field of the Invention] The present invention relates to a liquid crystal device using chiral smectic liquid crystal, which is a ferroelectric liquid crystal. [Prior Art] Recently, ferroelectric liquid crystals are often used in liquid crystal display elements, liquid crystal light shutters, and the like. This liquid crystal exhibits a first optically stable state and a second optically stable state in response to an electric field.
It has a bistable state consisting of an optically stable state of The liquid crystal is aligned in a stable state, and the liquid crystal is aligned in a second optically stable state with respect to the other electric field vector. In addition, this type of liquid crystal very quickly takes one of the two stable states mentioned above in response to an applied electric field.
In addition, it has the property of maintaining that state when no electric field is applied. [Problems to be solved by the invention] The chiral smectic liquid crystal molecules constituting the ferroelectric liquid crystal have a uniform monodomain layer structure, but the monodomain nature of this layer structure makes it difficult for external shock to occur. Another problem was that the cell itself collapsed due to the bending caused by the force, and it was difficult to restore the collapsed monodomain layer structure to a uniform monodomain structure. In particular, the U.S. patent published by Clark et al.
According to Publication No. 4367924, in order to exhibit bistability that produces a first stable orientation state and a second stable orientation state, the film thickness of the chiral smectic liquid crystal must be made thin enough to eliminate the helical structure. Thickness (approximately 1~5μ
m), and in the case of large display panels (diagonal size: 15 cm or more), it is necessary to form the above-mentioned thin chiral smect liquid crystal in a uniform thin film over the front panel. In large display panels using chiral smectic liquid crystals, the glass substrates that make up the cells are thin (generally less than 2 mm). The liquid crystal cell injected with the above-mentioned chiral smectic liquid crystal must be electrically connected, for example, to the electrodes provided on the liquid crystal cell and the external circuit before being applied to the display surfaces of word processors, personal computers, TVs, etc. In order to connect to
The TAB (Tape Automated Bonding) method is used, and it also goes through many processes such as quality control. During handling operations during these steps, the liquid crystal cell was bent, and alignment defects appeared to be caused by displacement due to this bending. In particular, in chiral smectic liquid crystal cells using rectangular glass or plastic substrates, displacement due to bending occurs in the longitudinal direction of the rectangle, making it difficult to form a uniform monodomain layer structure. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a chiral smectic liquid crystal device that solves the above-mentioned problems. [Means for Solving the Problems] The present invention provides for the uniaxial alignment treatment to be performed between a pair of rectangular substrates whose facing surfaces are rectangular and face each other, and at least one of which is provided with a uniaxial alignment treatment axis. In a liquid crystal element in which a chiral smectic liquid crystal is arranged to form a layered structure of liquid crystal molecules oriented according to In the liquid crystal element, the angle θ A between the normal line of the layer structure and the transverse axis of the rectangular substrate has a relationship of 0≦θ Aa with the angle θ a . There are characteristics. [Function] Through experiments conducted by the present inventors, it was found that when an external force is applied to a liquid crystal cell filled with chiral smectic liquid crystal in a direction perpendicular to the display surface of the cell, the above-mentioned disturbance of the alignment state becomes chiral. It has been found through microscopic observation that the defect appears as an elongated needle-like defect in the direction perpendicular to the vertical molecular layer of the smectic liquid crystal, and is difficult to appear in the normal direction to the vertical molecular layer. [Example] FIG. 1 is a plan view of a liquid crystal element of the present invention.
In the figure, 11 is the upper rectangular substrate (glass substrate,
12 is the lower rectangular substrate (glass substrate, plastic substrate), 13 is the substrate 1
The normal to the chiral smectic liquid crystal molecular layer (referred to as the vertical molecular layer) is perpendicular to 1 and 12, 14 is an axis parallel to the short direction of the upper rectangular substrate, and 15 is the diagonal of the upper rectangular substrate. ing. Angle θ a
represents the angle formed between the axis 14 parallel to the transverse direction and the diagonal 15, and the angle θ A represents the angle formed between the axis 14 parallel to the transverse direction and the normal 13 of the vertical layer. This angle θ A has a relationship of 0≦θ Aa , and preferably has a relationship of 0≦θ A ≦1/2θ a . In particular, when the angle θ A exceeds the angle 1/2 θ a , the risk of occurrence of the above-mentioned alignment defect increases as the angle increases. The normal 13 of the vertical molecular layer is the upper rectangular substrate 1
It is parallel to the uniaxial orientation treatment axis given to 1, for example, the rubbing treatment axis, the oblique vapor deposition treatment axis, and the oblique etching treatment axis. Figure 2 shows the chiral smectic C phase (SmC *
This figure shows the orientation state of ferroelectric liquid crystal molecules in phase), where 21 is an oriented liquid crystal molecule, and 13 is
The normal of the molecular layer 22 perpendicular to the substrate of SmC * ,
23 is an axis perpendicular to the normal line 13. Now, if a force is applied to the substrate from a direction perpendicular to the plane of the paper in FIG. 2 and the substrate is bent, the orientation order of the liquid crystal molecules 21 will be
3 is parallel to the lateral direction of the substrate 11, it acts on the axis 23 like a nematic liquid crystal, and the liquid crystal molecules 21 act against the force acting on the axis 23.
exhibits flexible movement and is less prone to orientation defects.
On the other hand, since the liquid crystal molecules 21 have a crystalline structure with respect to the normal line 13, the force in the direction of the normal line 13 destroys the structure of the vertical molecular layer 22, and the normal line of the vertical molecular layer 22 It is thought that elongated needle-like defects along the direction perpendicular to the above-mentioned phenomenon appear. Therefore, when a large rectangular panel is deflected during handling, a large force will be applied in the direction of the axis 23. However, in the present invention, when the normal line 13 of the vertical molecular layer 22 is , is perpendicular to the above-mentioned axis 23, so that alignment defects caused by bending can be prevented. Also, the size of the rectangular plate to which a large force is applied to the shaft 23 is as follows:
When the length in the longitudinal direction is L and the length in the transverse direction is S, S/L≦5/6, especially 1/6≦S/L≦
It turned out to be the case in 5/6. Also, at this time, the size of the diagonal line 15 of the rectangular substrate 11 is 15 in the case of a glass substrate whose wall thickness is 2 mm or less.
cm or more, alignment defects caused by deflection are likely to occur. FIGS. 3a and 3b are cross-sectional views showing embodiments of the liquid crystal element of the present invention, respectively. The liquid crystal element shown in FIG. 3a includes a pair of upper rectangular substrates 31a and lower rectangular substrates 31b arranged in parallel, and transparent electrodes 32a and 32b wired to each substrate. Between the upper substrate 31a and the lower substrate 31b is a ferroelectric liquid crystal, preferably a non-helical ferroelectric liquid crystal 33 having at least two stable states.
is located. The transparent electrodes 32a and 32b described above are used to multiplex drive the ferroelectric liquid crystal 33.
It is preferable that the wires are wired in a stripe shape, and the stripe shapes are arranged to intersect with each other. In the liquid crystal element shown in FIG. 3a, the substrates 31a and 3
Orientation control films 34a and 34b are arranged at 1b. Further, one of the alignment control films 34a and 34b used in the liquid crystal element shown in FIG. 3a can be omitted. In the present invention, the above-mentioned alignment control films 34a and 34
b can be given a uniaxial orientation axis. This uniaxial orientation axis can be imparted preferably by a rubbing treatment. At this time, the aforementioned uniaxial orientation axes can be parallel to each other, but they can also be alternated. At this time, the alignment control film 34a that can be used
As the and 34b, a polyimide film, a polyamide film, a polyvinyl alcohol film, a polyethylene oxide film, a polyethylene film, a cellulose resin film, etc. can be used. In another preferred embodiment of the invention, SiO or SiO 2
The rectangular substrates 11a and 11 are made of inorganic insulating materials such as
By forming a film on b by an oblique vapor deposition method, an orientation control film imparted with a uniaxial orientation processing axis can be obtained. In the apparatus shown in FIG.
1 is placed on an insulating substrate 403 having a suction port 405, and the bell jar 401 is evacuated by a vacuum pump (not shown) extending from the suction port 405. A crucible 407 made of tungsten or molybdenum is placed inside and at the bottom of the bell jar 401, and the crucible 407 contains several grams of
A crystal 408 of SiO, SiO 2 , MgF 2 or the like is placed. The crucible 407 has two lower arms 407
a, 407b, and each arm has a conducting wire 40
Connected to 9,410. The power supply 406 and the switch 404 are connected to the external conductor 409 of the bell gear 401,
410 are connected in series. Substrate 402 is positioned inside bell gear 401 directly above crucible 407 at an angle K to the vertical axis of bell gear 401 . When the switch 404 is opened, the bell gear 4
01 is first evacuated to approximately 10 -5 mmHg, then switch 404 is closed and power source 4 is turned on until crucible 407 becomes incandescent at a suitable temperature and crystal 408 evaporates.
Power is supplied by adjusting 06. The current required for the appropriate temperature range (700-1000℃) is approximately 100amps
It is. The crystal 408 is then evaporated to form an upward molecular stream indicated by S in the figure, and the fluid S is directed toward the substrate 4.
02 onto the substrate 402, resulting in coating of the substrate 402. The angle K is the above-mentioned "incident angle", and the direction of the fluid S is the above-mentioned "oblique deposition direction". The thickness of this coating is determined by a time-to-thickness calibration of the apparatus prior to inserting the substrate 402 into the bell gear 401. When a coating of appropriate thickness is formed, the power from power source 406 is reduced and switch 404 is opened to cool bell jar 401 and its interior. Next, the pressure is increased to atmospheric pressure and the substrate 4
02 from the bell jar 401. By adjusting the angle K corresponding to the above-mentioned incident angle, it is possible to obtain an inclined alignment state in which liquid crystal molecules adjacent to the substrate subjected to the oblique vapor deposition treatment are aligned at an inclination angle (pre-tilt angle), The orientation state can be such that the orientation is substantially parallel to the orientation. In another specific example, after forming a film of the above-mentioned inorganic insulating material or organic insulating material on the surface of the substrate 11a or the substrate 11b made of glass or plastic, the surface of the film is etched by an oblique etching method. Accordingly, an orientation control effect can be imparted to the surface. The above-mentioned alignment control film preferably functions as an insulating film at the same time, and for this purpose, the thickness of this alignment control film is generally 100 Å to 1 μ, preferably 500 Å to 1 μm.
It can be set in the range of Å to 5000 Å. This insulating film also has the advantage of being able to prevent the generation of current caused by trace amounts of impurities contained in the liquid crystal layer, and therefore does not deteriorate the liquid crystal compound even if the operation is repeated. FIG. 5 schematically depicts an example of a cell for explaining the operation of the ferroelectric liquid crystal of the present invention.
Hereinafter, explanation will be given using SmC * as an example of the desired layer. 51a and 51b are IN 2 O 3 or ITO
It is a substrate (glass plate) coated with a transparent electrode made of a thin film such as (Indium-Tin Oxide), and a SmC * phase liquid crystal with vertical molecular layers 52 oriented on the glass surface is sealed between the substrates (glass plates). A thick line 53 represents liquid crystal molecules, and the liquid crystal molecules 53 continuously form a helical structure in the plane direction of the substrate, and the vertical molecular layer 52 is uniformly aligned along the normal line 55. , forming a monodomain. This liquid crystal molecule 53 has a dipole moment (P⊥) 54 in a direction perpendicular to the molecule.
When a voltage higher than a certain threshold is applied between the electrodes on the substrates 51a and 51b, the helical structure of the liquid crystal molecules 53 is unraveled so that all the dipoles are oriented in the direction of the electric field.
Liquid crystal molecules 53 can change direction. The liquid crystal molecules 53 have an elongated shape and exhibit refractive index anisotropy in the major and minor axis directions. Therefore, if crossed Nicol polarizers are placed above and below the glass surface, voltage can be applied. It is easily understood that the liquid crystal optical element is a liquid crystal optical element whose optical properties change depending on the polarity. The liquid crystal cell preferably used in the liquid crystal element of the present invention can be, for example, 10 μm or less. As the liquid crystal layer becomes thinner in this way, the helical structure of the liquid crystal molecules unwinds and becomes a non-helical structure even when no electric field is applied, as shown in FIG.
or downward 64b. Even in this case, the vertical molecular layer 52 is uniformly oriented along its Y normal 55, forming a monodomain. When an electric field Ea or Eb of different polarity above a certain threshold value is applied to such a cell by voltage applying means 61a and 61b as shown in FIG. 6, the dipole moment corresponds to the electric field vector of the electric field Ea or Eb. The liquid crystal molecules change direction to upward direction 64a or downward direction 64b, and accordingly the liquid crystal molecules have one stable orientation 64a.
3a or another stable orientation 63b. As mentioned earlier, there are two advantages to using such ferroelectricity as a liquid crystal optical element. The first is that the response speed is extremely fast, and the second is that the alignment of liquid crystal molecules has bistability. The second point will be further explained with reference to FIG. 6, for example. When the electric field Ea is applied, the liquid crystal molecules are aligned in one stable orientation 63a, and this state remains stable even when the electric field is turned off. Also, the electric field in the opposite direction
When Eb is applied, the liquid crystal molecules change to other stable orientations 63
The molecules change their orientation by aligning to b, but they remain in this state even when the electric field is turned off. In order to effectively realize such fast response speed and bistability, it is preferable that the cell thickness be as thin as possible. Example 1 Two glass substrates with a substrate size of 200 mm (longitudinal direction) x 70 mm (lateral direction) x 1.1 mm (thickness) were prepared. 1000Å thick on each glass substrate
A SiO 2 film was formed by sputtering, a 500 Å thick polyvinyl alcohol film was formed on top of the SiO 2 film, and then the surface was rubbed in one direction with an acetate cloth. The rubbing axis at this time is the angle θ A = 0
It was set parallel to the transverse direction corresponding to . Next, on one glass substrate, the average grain size was 1.2 μm.
After scattering silica beads, the other glass substrate was placed on top of the other glass substrate, and the surrounding area was sealed with epoxy adhesive. In the cell created in this way, CS− under the isotropic phase
1013 (Chiral Smectic C liquid crystal manufactured by Chitso Corporation)
was injected and then slowly cooled (0.5°C/hour) to create a chiral smectic liquid crystal cell. In addition, the phase transition point of "CS-1013" manufactured by Chitsuso is
It was as follows. SmC * 62.9℃ ---→ SmA (Smectic A) 70.2℃ ---→ Ch (Cholesteric) 80.2℃ ---→ Is p (Isotropic phase) Furthermore, as another sample, the above-mentioned chiral smectic liquid crystal The angle θ A when the cell was created is
10°, 30°, 60°, 75° (outside the invention) and 80° (outside the invention)
A sample of a chiral smectic liquid crystal cell was prepared using exactly the same method, except that . When we observed the initial orientation states of these five types of samples using a polarizing microscope, we found that the normal to the vertical molecular layer was along the rubbing direction, and that they were uniform monodomains with no orientation defects. It has been found. After that, connect the terminals of the flexible board connected to the drive IC to the sample cell mentioned above (400 electrodes are provided in the vertical direction and 800 electrodes are provided in the horizontal direction).
The terminals were electrically connected using an anisotropic conductive adhesive, ``Anisolm AC5052'' (trade name) manufactured by Hitachi Chemical, and then lifted by hand for an external inspection. The orientation state of the sample was observed using a polarizing microscope.The results are shown below.

【表】 欠陥を生じていた。
さらに、サンプルセル5と6について再配向処
理を施した。すなわち、サンプルにセル5と6の
SmC*を等方相となるまで加熱した後、SmC*
で徐冷(0.5℃/時間)した後、偏光顕微鏡によ
る観察を行つたが、配向欠陥はいぜんとして生じ
ていた。 又、前述のサンプルセルとフレキ基板の接続を
TAB法によつて行つたが、前述と同様の結果が
得られ、さらに前述のサンプルセルに直接駆動用
ICを設けた場合でも同様の結果が得られた。 (発明の効果) 本発明によれば、長方形状の大型パネルをワー
プロ、パソコンあるいはTV等などの表示媒体と
して組み込むまでの工程で、大型パネルのハンド
リング時に生じるパネルの撓みが原因となつて生
じていた配向込欠陥を防止することができる。
[Table] A defect had occurred.
Furthermore, sample cells 5 and 6 were subjected to reorientation treatment. That is, cells 5 and 6 are included in the sample.
After heating SmC * until it became an isotropic phase and slowly cooling it to SmC * (0.5°C/hour), observation using a polarizing microscope was performed, but orientation defects still occurred. Also, the connection between the sample cell and the flexible board mentioned above.
The TAB method was used to obtain the same results as described above, and in addition, it was possible to directly drive the sample cell as described above.
Similar results were obtained when an IC was provided. (Effects of the Invention) According to the present invention, in the process of incorporating a large rectangular panel as a display medium in a word processor, personal computer, TV, etc., bending of the panel that occurs when handling the large panel can be avoided. Orientation defects can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の液晶素子の平面図である。
第2図は本発明の液晶素子の分子配向状態を模式
的に表わした平面図である。第3図aと第3図b
は、本発明の液晶素子の断面図である。第4図
は、本発明で用いた斜方蒸着装置の模式図であ
る。第5図と第6図は、本発明で用いたカイラル
スメクチツク液晶を模式的に表わした斜視図であ
る。
FIG. 1 is a plan view of the liquid crystal element of the present invention.
FIG. 2 is a plan view schematically showing the molecular orientation state of the liquid crystal element of the present invention. Figure 3a and Figure 3b
1 is a cross-sectional view of a liquid crystal element of the present invention. FIG. 4 is a schematic diagram of the oblique evaporation apparatus used in the present invention. 5 and 6 are perspective views schematically showing the chiral smectic liquid crystal used in the present invention.

Claims (1)

【特許請求の範囲】 1 対向面が互いに長方形状で相対向し、少なく
とも一方に一軸性配向処理軸を付与した一対の長
方形状基板の間に、該一軸性配向処理に応じて配
向した液晶分子で組織した層構造を形成したカイ
ラルスメクチツク液晶を配置してなる液晶素子に
おいて、 前記長方形状基板の短手方向の軸と対角線との
なす角度をθaとした時、前記層構造の法線と前記
長方形状基板の短手方向の軸とのなす角度θAが前
記角度θaとの間で 0≦θA<θa の関係を有していることを特徴とする液晶素子。 2 前記長方形状基板の長手方向の長さLと短手
方向の長さSがS/L≦5/6の関係を有してい
る特許請求の範囲第1項記載の液晶素子。 3 前記長方形状基板の長手方向の長さLと短手
方向の長さSが1/6≦S/L≦5/6の関係を
有している特許請求の範囲第1項記載の液晶素
子。 4 TAB法によつて駆動回路と長方形状基板に
形成した電極とが電気的接続された接続構造体を
有する特許請求の範囲第1項記載の液晶素子。
[Scope of Claims] 1. A pair of rectangular substrates whose facing surfaces are rectangular and face each other, and at least one of which is provided with a uniaxial alignment treatment axis, between which liquid crystal molecules are aligned according to the uniaxial alignment treatment. In a liquid crystal element in which chiral smectic liquid crystals are arranged with a layered structure organized in A liquid crystal element characterized in that an angle θ A between a line and an axis in a transverse direction of the rectangular substrate has a relationship of 0≦θ Aa with the angle θ a . 2. The liquid crystal element according to claim 1, wherein the length L in the longitudinal direction and the length S in the lateral direction of the rectangular substrate have a relationship of S/L≦5/6. 3. The liquid crystal element according to claim 1, wherein the length L in the longitudinal direction and the length S in the lateral direction of the rectangular substrate have a relationship of 1/6≦S/L≦5/6. . 4. The liquid crystal element according to claim 1, comprising a connection structure in which a drive circuit and an electrode formed on a rectangular substrate are electrically connected by the TAB method.
JP27040486A 1986-11-12 1986-11-12 Liquid crystal element Granted JPS63123017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27040486A JPS63123017A (en) 1986-11-12 1986-11-12 Liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27040486A JPS63123017A (en) 1986-11-12 1986-11-12 Liquid crystal element

Publications (2)

Publication Number Publication Date
JPS63123017A JPS63123017A (en) 1988-05-26
JPH0478970B2 true JPH0478970B2 (en) 1992-12-14

Family

ID=17485789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27040486A Granted JPS63123017A (en) 1986-11-12 1986-11-12 Liquid crystal element

Country Status (1)

Country Link
JP (1) JPS63123017A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623137B2 (en) * 1989-03-07 1997-06-25 キヤノン株式会社 Chiral smectic liquid crystal element unit and method of supporting chiral smectic liquid crystal panel
JPH0534697A (en) * 1991-07-25 1993-02-12 Canon Inc Ferroelectric liquid crystal display element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272719A (en) * 1985-05-27 1986-12-03 Hosiden Electronics Co Ltd Ferroelectric liquid crystal cell and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272719A (en) * 1985-05-27 1986-12-03 Hosiden Electronics Co Ltd Ferroelectric liquid crystal cell and its production

Also Published As

Publication number Publication date
JPS63123017A (en) 1988-05-26

Similar Documents

Publication Publication Date Title
JPS61260222A (en) Liquid crystal element
JPS6377019A (en) Ferroelectric liquid crystal element
JP2746486B2 (en) Ferroelectric liquid crystal device
US5559619A (en) Liquid crystal electro-optical device and manufacturing method for the same
JPH0422487B2 (en)
JPH0478970B2 (en)
JPH0448368B2 (en)
KR100958254B1 (en) Liquid crystal display of in-plane-switching mode and method of fabricating the same
JPS63124027A (en) Liquid crystal element
JPS61170726A (en) Liquid crystal cell
JP2983724B2 (en) Alignment treatment method for ferroelectric liquid crystal devices
JPH0527090B2 (en)
JP3080123B2 (en) Manufacturing method of ferroelectric liquid crystal device
JP2815415B2 (en) Manufacturing method of ferroelectric liquid crystal panel
JPH0774867B2 (en) Liquid crystal element
JPS62295021A (en) Liquid crystal element and its production
JP2851500B2 (en) Liquid crystal display
JP3083016B2 (en) Liquid crystal alignment treatment method and liquid crystal element manufacturing method
JP2681779B2 (en) Liquid crystal cell
JPS6398632A (en) Liquid crystal electrooptical device
JPH05203959A (en) Ferroelectric liquid crystal element
JPH03168724A (en) Ferroelectric liquid crystal electro-optical device
JPS62235928A (en) Ferroelectric crystal element
JPS61205922A (en) Liquid crystal element
JPH0731325B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term