JPH0478909B2 - - Google Patents

Info

Publication number
JPH0478909B2
JPH0478909B2 JP19373486A JP19373486A JPH0478909B2 JP H0478909 B2 JPH0478909 B2 JP H0478909B2 JP 19373486 A JP19373486 A JP 19373486A JP 19373486 A JP19373486 A JP 19373486A JP H0478909 B2 JPH0478909 B2 JP H0478909B2
Authority
JP
Japan
Prior art keywords
drying
dried
freezing
drying chamber
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19373486A
Other languages
Japanese (ja)
Other versions
JPS6349683A (en
Inventor
Masakazu Kobayashi
Yoshi Harashima
Koichi Aryama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOWA SHINKU GIJUTSU
Original Assignee
KYOWA SHINKU GIJUTSU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOWA SHINKU GIJUTSU filed Critical KYOWA SHINKU GIJUTSU
Priority to JP19373486A priority Critical patent/JPS6349683A/en
Publication of JPS6349683A publication Critical patent/JPS6349683A/en
Publication of JPH0478909B2 publication Critical patent/JPH0478909B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Description

【発明の詳細な説明】 本発明は、凍結乾燥装置、あるいは凍結乾燥に
用いられるトレイ等の乾燥容器内に未凍の被乾燥
材料(液状あるいは平板状)を入れて凍結し、ひ
き続き乾燥した後、乾燥材料を該装置あるいは該
容器から取出して、製品とする凍結乾燥方法およ
び該方法の実施に用いる真空凍結乾燥装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized in that an unfrozen material to be dried (liquid or plate-like) is placed in a freeze-drying device or a drying container such as a tray used for freeze-drying, frozen, and then dried. Thereafter, the present invention relates to a freeze-drying method in which a dried material is removed from the apparatus or the container to produce a product, and a vacuum freeze-drying apparatus used to carry out the method.

上述と異なる手法で被乾燥材料を凍結乾燥して
乾燥製品とする手段としては、被乾燥材料を予め
所望の形状に調整した凍結体としておき、それを
充分に冷却されたトレイ等の乾燥用の容器に充填
して、その容器ごと真空凍結乾燥装置の乾燥室内
に装入し乾燥せしめる手段があり、また、未凍の
材料を密封できる容器に収めて真空凍結乾燥装置
の乾燥室に装入し、凍結と乾燥を行なつた後、該
容器自体を封じて製品として取出す手段がある。
これら手段は前者では凍結体と乾燥容器との付着
は避けられるから乾燥容器から乾燥製品を容易に
回収でき、後者では乾燥容器から製品を回収する
必要がない。
As a means of freeze-drying the material to be dried into a dry product using a method different from that described above, the material to be dried is prepared in advance into a frozen body that has been adjusted to the desired shape, and then it is placed on a sufficiently cooled tray or the like for drying. There is a method of filling a container and placing the entire container into the drying chamber of a vacuum freeze-drying device for drying.Alternatively, there is a method of filling unfrozen materials into a sealable container and loading the container into the drying chamber of a vacuum freeze-drying device. After freezing and drying, there is a method of sealing the container itself and taking it out as a product.
In the former method, adhesion between the frozen body and the drying container can be avoided, so that the dried product can be easily recovered from the drying container, and in the latter method, there is no need to collect the product from the drying container.

しかし、本発明において対象とする手段の如
く、未凍の液状あるいは平板状材料を、真空凍結
乾燥装置の乾燥室内に設けた冷凍兼加熱面、ある
いはその乾燥室内に装入する乾燥容器内で直接凍
結させ、ひき続き乾燥する場合には、該冷凍兼加
熱面あるいは該乾燥容器の内面に特殊加工を施さ
ない限り、乾燥製品と冷凍兼加熱面あるいは乾燥
容器の内面との間に凍結に由来する付着を生じ、
冷凍兼加熱面あるいは乾燥容器から乾燥製品を回
収する際、冷凍兼加熱面に対する乾燥製品の静か
な摺動、あるいは乾燥容器の反転だけでは、乾燥
製品の一部ないし残渣が表面付着して残つてしま
う。回収操作の煩雑さ、製品ロス、および毎回の
冷凍兼加熱面あるいは乾燥容器の洗浄の必要性、
などの難点が避けられない。
However, as in the method targeted by the present invention, unfrozen liquid or flat material is directly stored on a freezing/heating surface installed in the drying chamber of a vacuum freeze-drying device or in a drying container charged into the drying chamber. In the case of freezing and subsequent drying, unless special processing is applied to the freezing/heating surface or the inner surface of the drying container, there will be no space between the dried product and the freezing/heating surface or the inner surface of the drying container due to freezing. causes adhesion,
When recovering dried product from a freezing/heating surface or a drying container, gently sliding the dry product against the freezing/heating surface or simply inverting the drying container will prevent some or residue of the dried product from remaining on the surface. Put it away. The complexity of collection operations, product loss, and the need to clean the freezing/heating surface or drying container each time.
Such difficulties cannot be avoided.

このために未凍の液あるいは平板状材料を直
接、真空凍結乾燥装置の冷凍兼加熱面に凍結させ
る方法は実用されず、トレイ等の容器内に入れて
凍結する方法のみが行なわれている。容器を用い
た場合にも、上述の難点は存在するが、真空凍結
乾燥装置自体を汚すのに比べれば耐えることがで
きるからである。上述の難点があるにも拘らず、
未凍の状態でトレイ等の乾燥容器に入れた後に、
その容器ごと真空凍結乾燥装置の乾燥室内に装入
して凍結し、ひき続き乾燥し、乾燥容器から乾燥
製品を回収する方法が広く採用されているのは、
工程が単純でしかも効率がよいからである。
For this reason, it is not practical to directly freeze an unfrozen liquid or a plate-shaped material onto the freezing/heating surface of a vacuum freeze-drying device, and only the method of freezing the material by placing it in a container such as a tray is used. Although the above-mentioned disadvantages still exist when using a container, this is more bearable than contaminating the vacuum freeze-drying apparatus itself. Despite the above-mentioned difficulties,
After placing it in a dry container such as a tray in an unfrozen state,
The widely adopted method is to place the entire container into the drying chamber of a vacuum freeze-drying device, freeze it, continue drying, and recover the dried product from the drying container.
This is because the process is simple and efficient.

本発明は、上述の難点を解消するためになされ
たものであつて、未凍の液状あるいは平板状の被
乾燥材料を、直接、真空凍結乾燥装置の乾燥室内
に設置される冷凍兼加熱面またはその乾燥室内に
装入する乾燥容器の内面に供給し、その後に凍結
せしめて凍結乾燥を行なうようにしながら、乾燥
し終えた被乾燥材料が、冷凍兼加熱面または乾燥
容器の内面に対する付着を生ぜしめずに、それら
の表面から僅かの力できれいに剥離してくるよう
になる新たな手段を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned difficulties, and it is possible to directly dry an unfrozen liquid or flat material to be dried on a freezing/heating surface installed in the drying chamber of a vacuum freeze-drying apparatus. While supplying the material to the inner surface of the drying container charged into the drying chamber and then freezing it for lyophilization, the dried material may adhere to the freezing/heating surface or the inner surface of the drying container. The purpose of the present invention is to provide a new means for cleanly peeling off these surfaces with a small amount of force without causing any damage.

そして本発明においては、この目的を達成する
ための手段として、真空凍結乾燥装置の乾燥室に
内設される冷凍兼加熱面の冷凍面に水を注ぎ、か
つ該冷凍面を0℃以下に冷却して、該冷凍面上に
氷膜を形成せしめ、ひき続き該冷凍面を0℃以下
の充分な低温に保ちつつ、該氷膜上に液状あるい
は平板状の被乾燥材料を供給して、被乾燥材料を
前記氷膜上に凍結せしめ、しかる後に乾燥室を排
気し、真空状態下で該被乾燥材料の凍結層および
氷膜を乾燥せしめることを特徴とする凍結乾燥方
法、および、真空凍結乾燥装置の乾燥室内に配置
せる被乾燥材料用の容器内面に水を注ぎ、かつ該
容器を0℃以下に冷却して該容器内面に氷膜を形
成せしめ、ひき続き該容器を0℃以下の充分な低
温に保ちつつ、該氷膜上に液状あるいは平板状の
被乾燥材料を供給して、その被乾燥材料を前記氷
膜上に凍結せしめ、しかる後に乾燥室を排気し、
真空状態下で該被乾燥材料の凍結層および氷膜を
乾燥せしめる凍結乾燥方法を提起するものであ
り、また、この方法を実施するための装置とし
て、内部が通常の真空度に保持される乾燥室とそ
の乾燥室内に単段あるいは多段の水平棚面として
構成された冷凍兼加熱面と、該棚面上に固定また
は可動に配置せしめる被乾燥材料用と、該棚面上
に配置せしめた該フレームに囲まれる棚面および
該フレームと棚面との接触部に、ほぼ均等に水を
散布せしめる注水機構と、棚段の前面に位置する
扉面とを、有することを特徴とする真空凍結乾燥
装置、および、内部が通常の真空度に保持される
乾燥室とその乾燥室内に単一あるいは複数の、直
立面、例えば直立円筒面(内筒面あるいは外筒
面)または、直立平面として構成される冷凍兼加
熱面と、該冷凍兼加熱面にほぼ均等に水を供給し
排出する給排水機構と、該冷凍兼加熱面上の空間
に、液状の被乾燥材料を供給し排出する給排液機
構と、該乾燥室の下端面に位置する扉面とを有す
ることを特徴とする真空凍結乾燥装置を提起する
ものである。
In the present invention, as a means to achieve this objective, water is poured onto the freezing surface of the freezing and heating surface installed inside the drying chamber of the vacuum freeze-drying device, and the freezing surface is cooled to below 0°C. Then, an ice film is formed on the frozen surface, and while the frozen surface is kept at a sufficiently low temperature of 0° C. or less, a liquid or plate-shaped material to be dried is supplied onto the ice film. A freeze-drying method characterized by freezing a drying material on the ice film, then evacuating the drying chamber, and drying the frozen layer of the material to be dried and the ice film under a vacuum, and vacuum freeze-drying. Water is poured onto the inner surface of a container for the material to be dried, which is placed in the drying chamber of the apparatus, and the container is cooled to below 0°C to form an ice film on the inner surface of the container, and then the container is cooled sufficiently below 0°C. supplying a liquid or flat material to be dried onto the ice film while maintaining the temperature at a relatively low temperature to freeze the material to be dried on the ice film, and then evacuating the drying chamber;
The present invention proposes a freeze-drying method in which a frozen layer and an ice film of the material to be dried are dried under a vacuum condition, and an apparatus for carrying out this method is a drying method in which the inside is maintained at a normal degree of vacuum. A freezing/heating surface configured as a single or multi-stage horizontal shelf in the drying chamber, a material to be dried fixedly or movably arranged on the shelf, and a material to be dried arranged on the shelf. Vacuum freeze drying characterized by having a water injection mechanism that sprays water almost evenly onto the shelf surface surrounded by a frame and the contact area between the frame and the shelf surface, and a door surface located at the front of the shelf. an apparatus, a drying chamber whose interior is maintained at a normal degree of vacuum, and within the drying chamber one or more upright surfaces, such as an upright cylindrical surface (inner cylindrical surface or outer cylindrical surface) or an upright planar surface; a freezing/heating surface, a supply/drainage mechanism that supplies and discharges water almost evenly to the freezing/heating surface, and a liquid supply/drainage mechanism that supplies and discharges liquid material to be dried into the space above the freezing/heating surface. and a door surface located at the lower end surface of the drying chamber.

しかして、本発明手段によれば、被乾燥材料
は、真空凍結乾燥装置の乾燥室内に装置される冷
凍兼加熱面またはその乾燥室内に配置される乾燥
容器の内面で構成される冷凍面上に、そこにそこ
に予め凍結させて形成しておく氷膜を隔てて凍結
層を作るようになる。そして、この氷膜は乾燥の
過程で、被乾燥材料からの水蒸気の昇華と一緒に
昇華して消失することから、該被乾燥材料は、乾
燥した状態となつて、この氷膜が消失することで
形成される薄い膜状の間隔を介して冷凍面に接触
する状態となるので、乾燥を終えた段階において
は、冷凍面に対する付着がなく、したがつて、冷
凍面に沿う重力その他の僅かな力で、乾燥製品の
回収ができ、冷凍面には乾燥製品の痕跡も残らな
いようになる。そしてこのことから、次の利点が
生れる。
According to the means of the present invention, the material to be dried is placed on a freezing surface constituted by a freezing/heating surface installed in the drying chamber of a vacuum freeze-drying apparatus or an inner surface of a drying container placed in the drying chamber. , a frozen layer is created between the ice layers that have been pre-frozen there. During the drying process, this ice film sublimates and disappears together with the sublimation of water vapor from the material to be dried, so the material to be dried becomes dry and this ice film disappears. Since it comes into contact with the frozen surface through a thin film-like interval formed by The dried product can be recovered by force, and no trace of the dried product will remain on the frozen surface. And from this, the following advantages arise.

1) トレイ等の乾燥用容器は特別の制約がない
限り不要となり、乾燥装置に備わる冷凍兼加熱
面に直接被乾燥材料(液または平板状)を供給
し、凍結および乾燥後に、装置から直接回収で
きる(乾燥容器の、運搬、乾燥室への搬出入、
洗浄等のハンドリング系と、そのスペースの空
調設備が省略できる) 2) 被乾燥材料が、冷凍兼加熱面への氷膜を介
する直接的な密着による凍結となるので、乾燥
容器と冷凍兼加熱面との接触熱伝達という、乾
燥容器ごとに異なり、また、その乾燥容器がお
かれる場所により不均等になる要素が無くな
り、均質で敏速な(あるいは凍結乾燥を良く制
御された)予備凍結ができる。
1) Drying containers such as trays are not required unless there are special restrictions, and the material to be dried (liquid or flat plate) is supplied directly to the freezing and heating surface of the drying equipment, and after freezing and drying, it can be collected directly from the equipment. (Transportation of drying containers, taking them in and out of the drying room,
2) Since the material to be dried is frozen by direct contact with the freezing/heating surface via an ice film, the drying container and the freezing/heating surface can be omitted. This eliminates contact heat transfer, which differs from drying container to drying container and is uneven depending on where the drying container is placed, and enables homogeneous and rapid (or well-controlled freeze-drying) pre-freezing.

(註) 冷凍兼加熱面が熱媒流体の循環で温度
調節される場合には、熱媒流体と冷凍兼加熱
面との熱伝達係数は700〜600(kcal/m2h℃、
以下単位は省略する)に対し、前述の接触熱
伝達は平均で約70〜60であるゆえ、両者の総
括熱伝達係数はばらつきが大きい接触度に支
配され、平均で60程度である。他方、氷膜熱
伝達はその氷膜の厚さが0.5mmのときに4000
程度であり、総括熱伝達は、氷膜の抵抗があ
まり影響せず、仮に氷膜の厚さが不均等で
も、熱媒流体と冷凍兼加熱面との均等性にす
ぐれる熱伝達が支配的となり、平均凍結速度
を、トレイ方式の数倍にできる。
(Note) When the temperature of the freezing/heating surface is controlled by circulating a heat medium fluid, the heat transfer coefficient between the heat medium fluid and the freezing/heating surface is 700 to 600 (kcal/m 2 h℃,
(Units are omitted below), whereas the above-mentioned contact heat transfer is about 70 to 60 on average, so the overall heat transfer coefficient for both is dominated by the degree of contact, which varies widely, and is about 60 on average. On the other hand, ice film heat transfer is 4000 when the ice film thickness is 0.5 mm.
The overall heat transfer is not affected much by the resistance of the ice film, and even if the thickness of the ice film is uneven, the heat transfer with excellent uniformity between the heating medium fluid and the freezing/heating surface is dominant. Therefore, the average freezing speed can be several times that of the tray method.

3) 被乾燥材料が氷膜上に凍結することになる
ので、該被乾燥材料は、過冷却なしに氷点で氷
膜上全面一斉に凍結開始するようになり、前記
1)の効果と合わさつて、冷凍面に直立する均
等な針状の氷結晶を成長させながら凍結するよ
うになる。この氷結晶配列は熱伝導と水蒸気透
過の両方に有利で、均等な乾燥を促進する。
(氷が存在しない溶液は、氷点では凍結開始せ
ず、過冷却後の突然の凍結と再結晶により、弧
立した粒状の氷結晶の堆積層をつくり、均等な
乾燥に不利となる。) 4) 氷膜は0.5mm程度の薄膜であつても、既乾
燥多孔体の孔径0.1〜0.01mmより充分大きいか
ら、端部やクラツクを通じて、被乾燥材料の乾
燥行程の中頃に昇華消失し、これにより、被乾
燥材料の表裏両面からの水蒸気脱出を可能とし
て、乾燥を有利にし、また、付着部に融解を生
ぜしめない。
3) Since the material to be dried is frozen on the ice film, the material to be dried begins to freeze all at once on the ice film at the freezing point without supercooling, and this is combined with the effect of 1) above. , it begins to freeze while growing uniform needle-shaped ice crystals that stand upright on the frozen surface. This ice crystal arrangement favors both heat conduction and water vapor transmission, promoting even drying.
(A solution without ice does not start freezing at the freezing point, and sudden freezing and recrystallization after supercooling creates a layer of ice crystals with erect granules, which is disadvantageous for uniform drying.) 4 ) Even if the ice film is a thin film of about 0.5 mm, it is much larger than the pore diameter of the dry porous material, which is 0.1 to 0.01 mm, so it sublimates and disappears through the edges and cracks in the middle of the drying process of the material to be dried. This makes it possible for water vapor to escape from both the front and back surfaces of the material to be dried, making drying advantageous and preventing melting of the adhered portion.

5) 特別の制約(工場、機器の配置、他)のた
めに、乾燥容器を必要とする場合には、上述の
1)と2)の利点はなくなるが、乾燥容器内面
に氷膜を形成することにより、利点3)と4)
がえられ、乾燥容器からの乾燥製品の回収は容
易で、乾燥行程の終了ごとに行なつていて乾燥
容器の洗浄も不要となる。
5) If a drying container is required due to special constraints (factory, equipment layout, etc.), the advantages of 1) and 2) above will disappear, but an ice film will form on the inside of the drying container. By this, advantages 3) and 4)
It is easy to recover the dried product from the drying container, and it is not necessary to wash the drying container since it is carried out after each drying process.

なお、本発明手段においては、被乾燥材料の他
に、氷膜の形成、昇華、凝結、除氷の負荷が加わ
ることになる。しかし、通常は単位面積当りの被
乾燥材料中の水分は10Kg(H2O)/m2程度以上
であるのに対し、氷膜の水分は0.5Kg/m2程度
(真荷負の5%〜10%以下)であるから、この負
荷によるエネルギーの損失は、利点2)に述べた
熱伝達係数が数倍になることによる全体の冷凍エ
ネルギー節約効果に対し遥かに小さいものとな
る。
In addition, in the method of the present invention, in addition to the material to be dried, the loads of ice film formation, sublimation, condensation, and deicing are added. However, while the moisture in the material to be dried per unit area is usually about 10Kg (H 2 O)/m 2 or more, the moisture in the ice film is about 0.5Kg/m 2 (5% of the true load). 10% or less), the energy loss due to this load is much smaller than the overall refrigeration energy saving effect due to the several-fold increase in the heat transfer coefficient mentioned in Advantage 2).

以上、本発明に共通の利点を包括的に述べた。
本発明による凍結乾燥方法は、取扱う材料の性
質、規模その他により最も適する方式と装置に具
体化できる。次に、その2、3の実施例について
説明する。
The common advantages of the present invention have been comprehensively described above.
The freeze-drying method according to the present invention can be implemented in the most suitable method and apparatus depending on the nature, scale, etc. of the materials to be handled. Next, the second and third embodiments will be explained.

第一は棚段形式に用いる場合である。この実施
例は、一定の装置の追加ないし改造によつて、既
設の真空凍結乾燥装置に適用できる。
The first is when it is used in a shelf format. This embodiment can be applied to existing vacuum freeze drying equipment by adding or modifying certain equipment.

第1図は、この棚段形式の真空凍結乾燥装置に
適用した本発明の実施例装置の要部の側断面図
で、第2図はその要部の斜視図である。
FIG. 1 is a side sectional view of a main part of an apparatus according to an embodiment of the present invention applied to this tray-type vacuum freeze-drying apparatus, and FIG. 2 is a perspective view of the main part.

同図において、4は通常の真空凍結乾燥装置の
乾燥室、1…はその乾燥室4内に棚段状に装設さ
れた冷凍兼加熱面を示し、乾燥室4は、前面側の
開放口4aに設けられる開閉扉が図面では省略し
てあり、また、該冷凍兼加熱面1…の各棚1a
は、図面では明示していないが、昇降作動する駆
動部6に連結する最上位の棚1aに対し、伸縮す
る連繋機構を介して連繋していて、駆動部6が上
昇側のストロークエンドにまで引上げられること
で、一定の間隔を保持して棚段状に並列し、駆動
部6が下降することで最下位の棚1aから順次積
み重ねられた状態となるようにしてある。そし
て、各棚1a内には、冷媒体および熱媒体を流過
さす管路が装備されている。
In the figure, 4 is a drying chamber of a normal vacuum freeze-drying device, 1... is a freezing and heating surface installed in the form of shelves in the drying chamber 4, and the drying chamber 4 has an open opening on the front side. The opening/closing door provided at 4a is omitted in the drawing, and each shelf 1a of the freezing/heating surface 1...
Although not clearly shown in the drawing, the uppermost shelf 1a is connected to the uppermost shelf 1a, which is connected to a drive unit 6 that moves up and down, through a linkage mechanism that expands and contracts, and the drive unit 6 reaches the stroke end on the upward side. By being pulled up, the shelves are lined up in a tiered manner with a constant interval between them, and when the drive unit 6 is lowered, the shelves are stacked one after another starting from the lowest shelf 1a. Each shelf 1a is equipped with a conduit through which a cooling medium and a heating medium flow.

2は最上位の棚1aを除く各棚1a…の上面で
形成される冷凍兼加熱面1上に密着的に配置せる
被乾燥材料用のフレームで、単純な方形状の枠、
あるいは格子状に形成されていて、この実施例で
は乾燥室4の開閉扉の側に向けて、低摩擦レール
7により摺動できるようにしてある。
Reference numeral 2 denotes a frame for the material to be dried, which is placed closely on the freezing/heating surface 1 formed by the upper surface of each shelf 1a except for the topmost shelf 1a, and is a simple rectangular frame.
Alternatively, it is formed in a lattice shape, and in this embodiment, it can be slid by a low-friction rail 7 toward the opening/closing door of the drying chamber 4.

3は、前記フレーム2…が冷凍兼加熱面1…の
上にあるとき、そのフレーム2およびそのフレー
ム2で囲まれた棚面に、ほぼ均等に水を散布せし
めるように乾燥室4内に装設せる注水機構で、こ
の実施例では多数の噴霧ノズル3a…で構成して
あり、棚1a…の両側に取付けられている。該注
水機構3は、この実施例では、乾燥室4の両側の
各1個所に設けてあつて、各棚1a…を駆動部6
により、上から順次噴霧ノズル3a…からの散水
を受けられる位置Aに動かすことで、全棚1a…
に対する水の供給が行なえるようになつている。
この棚1a…の昇降作動は、多段の棚1a…から
被乾燥材料を装入して取出すのが、一定の位置A
において行なえることで有利であるが、棚1a…
を固定し、注水機構3を上下可動とし、材料の出
入位置を各棚1a…ごとに変えてもよい。
3 is installed in the drying chamber 4 so that when the frame 2... is on the freezing/heating surface 1..., water is almost evenly distributed over the frame 2 and the shelf surface surrounded by the frame 2. In this embodiment, the water injection mechanism is comprised of a large number of spray nozzles 3a, which are attached to both sides of the shelves 1a. In this embodiment, the water injection mechanism 3 is provided at one location on each side of the drying chamber 4, and each shelf 1a is connected to a drive unit 6.
By moving all the shelves 1a... from the top to position A where they can receive water spray from the spray nozzles 3a...
water supply is now available.
In order to raise and lower the shelves 1a..., the materials to be dried are loaded and taken out from the multi-stage shelves 1a... at a certain position A.
Although it is advantageous that it can be carried out at shelf 1a...
may be fixed, the water injection mechanism 3 may be movable up and down, and the position in and out of the material may be changed for each shelf 1a.

また、フレーム2は棚1a…に固定してもよ
く、取出時に棚1a…を傾斜させ乾燥し終えた被
乾燥材料を滑り出させるようにしてもよい。
Further, the frame 2 may be fixed to the shelves 1a, or the shelves 1a may be tilted to allow the dried material to slide out when taken out.

このように構成される実施例装置は、以下の手
順で操作される。
The embodiment apparatus configured as described above is operated according to the following procedure.

フレーム2を載置した棚1a…を所定の位置A
に配し、その棚1aを0℃以下に保ち、注水機構
3の弁を開き所定の水量を、フレーム2に囲まれ
た棚1aの冷凍兼加熱面1およびフレーム2下端
とその冷凍兼加熱面1との接触部に噴霧すると、
噴霧した水はそのまま凍結し氷膜をつくる。ひき
続き棚1aを0℃以下の充分な低温に保ちつつ、
被乾燥材料が液状である場合には、その液状材料
を定量注入器によりフレーム2内に流し込む。こ
の場合、液状材料は、その氷点近く(凍結しない
最低温)に予め冷却されていることが品質保存上
も氷膜の保護のためにも望ましい。しかし例えば
常温の液であつても、氷温および棚面が充分に深
く冷却されていれば支障はない。注入速度が極端
にのろくなければ、液状材料は水平にフレーム2
内に拡がる。被乾燥材料がスライス肉のごとく平
板固形材料であれば、フレーム2内に均等水平に
配置する。氷膜の存在と均等な熱伝達のために過
冷却は起こらず、被乾燥材料内に均等な直立針状
の氷結晶が成長し材料は凍結する。この間の棚温
度を正確に制御すれば接触熱抵抗がないので氷結
晶の成長速度が制御でき、したがつてその氷結晶
の太さが制御できる。凍結後、乾燥室4内を排気
し、必要な真空を保持しつつ、棚1aの温度を制
御し乾燥に移る。初期には氷膜を介して被乾燥材
料が棚1aの上面に密着しているので、棚温は低
く保つべきであり、低棚温で充分な熱が供給され
る。しかし乾燥が進み通常50〜60%(材料の性
状、乾燥条件で異なるが)が既乾燥に変わる頃、
凍結時に通常生じるクラツクなどから水蒸気が脱
出して氷膜が昇華により消失し、被乾燥材料の下
面からも昇華し乾燥は容易になる。この頃から棚
温を上昇させる。乾燥終了後、真空を破り、乾燥
室4の開閉扉を開いて、各棚1aごとに製品受け
5を当てがつてフレーム2を手前に引く。乾燥製
品8には多くの場合、凍結と乾燥の過程で生じた
クラツクがあり、一定の収縮があるのでフレーム
2寸法より小さい断片として製品受け5に回収さ
れる。フレーム2は再び摺動により正しい位置に
戻され、あるいは一旦乾燥室外に回収される。以
上の実施例では氷膜の形成は、0℃以下に冷却さ
れた棚1a…への水噴霧によつているが、棚1a
の冷凍兼加熱面1に水膜をつくつた後に凍結させ
てもよい。
Place the shelf 1a on which the frame 2 is placed at a predetermined position A.
The shelf 1a is kept at 0°C or below, and the valve of the water injection mechanism 3 is opened to pour a predetermined amount of water onto the freezing/heating surface 1 of the shelf 1a surrounded by the frame 2, the lower end of the frame 2, and its freezing/heating surface. When sprayed on the contact area with 1,
The sprayed water freezes and forms an ice film. While continuing to keep shelf 1a at a sufficiently low temperature below 0°C,
When the material to be dried is liquid, the liquid material is poured into the frame 2 using a metering syringe. In this case, it is desirable for the liquid material to be cooled in advance to near its freezing point (lowest temperature at which it will not freeze), both for quality preservation and for protection of the ice film. However, for example, even if the liquid is at room temperature, there will be no problem as long as the ice temperature and the shelf surface are sufficiently deeply cooled. If the injection rate is not extremely slow, the liquid material will flow horizontally into frame 2.
Expand within. If the material to be dried is a flat solid material such as sliced meat, it is arranged evenly and horizontally within the frame 2. Due to the presence of the ice film and uniform heat transfer, supercooling does not occur, and uniform upright needle-shaped ice crystals grow within the material to be dried and the material freezes. If the shelf temperature during this period is accurately controlled, the growth rate of ice crystals can be controlled because there is no contact thermal resistance, and therefore the thickness of the ice crystals can be controlled. After freezing, the interior of the drying chamber 4 is evacuated, and while maintaining the necessary vacuum, the temperature of the shelf 1a is controlled and drying begins. Initially, the material to be dried is in close contact with the upper surface of the shelf 1a via the ice film, so the shelf temperature should be kept low, and sufficient heat can be supplied at the low shelf temperature. However, as the drying progresses, usually 50 to 60% (depending on the properties of the material and drying conditions) becomes dry.
Water vapor escapes from cracks that normally occur during freezing, and the ice film disappears by sublimation, and sublimes from the bottom surface of the material to be dried, making drying easier. From around this time, the shelf temperature will increase. After the drying is completed, the vacuum is broken, the door of the drying chamber 4 is opened, the product receivers 5 are applied to each shelf 1a, and the frame 2 is pulled toward the front. The dried product 8 often has cracks formed during the freezing and drying process and, due to certain shrinkage, is collected in the product receiver 5 as fragments smaller than the frame 2 dimensions. The frame 2 is returned to the correct position by sliding again, or once recovered outside the drying chamber. In the above embodiments, the formation of an ice film is based on water spraying onto the shelves 1a that have been cooled to below 0°C.
Freezing may be carried out after forming a water film on the freezing/heating surface 1.

次に、第3図及び第4図は、棚数をもたない形
態の実施例装置を示す。この形態の実施例は、液
材料のみを対象とし、かつ同一材料を連続的に乾
燥する用途に適する装置である。かかる制約の半
面、この実施例によると、先に挙げた1)〜5)
の諸利点の他に、つぎの利点が追加される。
Next, FIGS. 3 and 4 show an embodiment of the apparatus having no shelves. This embodiment is an apparatus suitable for use in drying only liquid materials and continuously drying the same material. On the other hand, according to this embodiment, the above-mentioned 1) to 5)
In addition to the above advantages, the following advantages are added.

6) 完全密封の空間とラインで凍結乾燥が処理
できるので無菌、無異物の高度な衛生条件を保
ち易い。
6) Freeze-drying can be performed in a completely sealed space and line, making it easy to maintain highly hygienic conditions of sterility and no foreign substances.

7) 真空室内にいかなる駆動部もなく、材料の
供給から製品の回収までが、液輸送ラインの循
環ポンプの発停と弁の開閉、乾燥製品用扉の開
閉の組合わせだけで自動化できる。
7) There is no drive unit in the vacuum chamber, and everything from supplying materials to collecting products can be automated by simply starting and stopping the circulation pump in the liquid transport line, opening and closing valves, and opening and closing the dry product door.

8) 被乾燥材料の凍結層の表面が、水蒸気難透
性の皮膜で蔽われないため乾燥が一段と容易で
ある。(詳しくは後述) 次にこの形態の実施例装置の幾つかを、図面に
もとづいて説明する。
8) Drying is easier because the surface of the frozen layer of the material to be dried is not covered with a film that is impermeable to water vapor. (Details will be described later) Next, some of the embodiment devices of this form will be explained based on the drawings.

第3図は、この形態のものの第1の実施例を示
している。同図において、aは真空凍結乾燥装置
の乾燥室で、その乾燥室a内に直立した単一ある
いは複数の円筒bを配設し、その円筒bの内壁面
あるいは、外壁面側を真空排気可能とし、その反
対側から、この筒壁を冷却および加熱可能とす
る。この例においては直立した複数の円筒b…の
内側11を真空排気可能とし、その円筒b…の外
側12に不凍熱媒流体を循環させる構成としてあ
る。従つて、この例においては直立した円筒b…
の各内壁面が、冷凍兼加熱面1となる。
FIG. 3 shows a first embodiment of this configuration. In the figure, a is a drying chamber of a vacuum freeze-drying apparatus, and a single or plural cylinders b are arranged upright in the drying chamber a, and the inner wall surface or outer wall surface of the cylinder b can be evacuated. The cylindrical wall can be cooled and heated from the opposite side. In this example, the inner sides 11 of the plurality of upright cylinders b can be evacuated, and the antifreeze heat medium fluid is circulated around the outer sides 12 of the cylinders b. Therefore, in this example, the upright cylinder b...
Each inner wall surface becomes a freezing/heating surface 1.

次に第4図はこの形態のものにおける第2の実
施例を示し、直立した複数の円筒b…は二重管に
形成してあつて、その内側11に不凍熱媒流体を
循環させ、円筒群の外側12を真空排気可能とし
た構成となつている。従つて、この例において
は、円筒bの外壁面が冷凍兼加熱面1となる。
Next, FIG. 4 shows a second embodiment of this form, in which a plurality of upright cylinders b... are formed into double pipes, in which an antifreeze heat medium fluid is circulated inside 11, The structure is such that the outside 12 of the cylinder group can be evacuated. Therefore, in this example, the outer wall surface of the cylinder b becomes the freezing and heating surface 1.

第3図aは、上部扉17を省いた平面図の上半
分、第3図bはS−S断面の側面図である。
FIG. 3a is the upper half of a plan view with the upper door 17 omitted, and FIG. 3b is a side view taken along the line SS.

第3図に示す実施例においては、円筒b…の上
部空間が、真空凍結乾燥装置のトラツプ室21に
連結し、そのトラツプ室21を経て管路22を介
し真空ポンプ(略)が結合される。トラツプ室2
1内に配設されるコイル状のトラツプ18には、
冷媒または熱媒体が循環する(入口は二重矢印、
出口(略)は第4図のS−S断面において入口と
対称する位置に設けられる)。
In the embodiment shown in FIG. 3, the upper space of the cylinder b... is connected to a trap chamber 21 of a vacuum freeze-drying apparatus, and a vacuum pump (omitted) is connected via a conduit 22 through the trap chamber 21. . Trap room 2
The coil-shaped trap 18 disposed within the
Refrigerant or heating medium circulates (inlet is double arrow,
The outlet (omitted) is provided at a position symmetrical to the inlet in the SS cross section of FIG. 4).

第4図aは第4図bのC−C断面の平面図、第
4図bは第4図aのS−S断面の側面図である。
第4図に示す実施例のものにおいても、上部空間
がトラツプ室21に連通し、そのトラツプ室21
は管路22を介し、真空ポンプ系(略)に結合さ
れる。
FIG. 4a is a plan view taken along the line CC in FIG. 4b, and FIG. 4b is a side view taken along the line S-S in FIG. 4a.
Also in the embodiment shown in FIG. 4, the upper space communicates with the trap chamber 21, and the trap chamber 21
is connected to a vacuum pump system (omitted) via a conduit 22.

以下第3図bを中心にして、その操作について
説明する。
The operation will be explained below with reference to FIG. 3b.

最初に、円筒b…群の外側12すなわち筒状の
シエル14と円筒b…群との間に0℃以下に冷却
された熱媒体を循環させ(出入口は半矢印で示
す)、円筒b…群を納めるシエル14の下部空間
面に設けた注水口23からそれに通ずる給水槽1
3の水を各円筒b…内の上端に近い水準まで導入
する。水は既に0℃以下に冷却された円筒b…群
内壁から凍結し始める。望ましくは1mm未満、
0.5mm程度の厚さの氷が形成されたとき、円筒b
…群内に満たした水を、排水口24から排水する
(白矢印で示す)。ひき続き円筒b…群を充分深く
冷却し、そこに、注水口23を兼ねている液材量
の給液口から、給液槽20で予め該液材料の氷点
程度まで冷却された液材料を、既に氷膜が形成さ
れた水準の僅か下部まで、円筒b…群内に満た
す。液材料は円筒b壁内面の氷膜との境界面から
円筒b…群の中心軸に向つて均等に凍結層10が
増大していく。所望の厚さ、すなわち円筒b…群
の中心部に水蒸気脱出に必要な通路に相当する未
凍部分を残す凍結層厚さにおいて、排水口24を
兼ねている液材料排出管口から受液槽30に液材
料を回収する。第3図の例では注水口23と給液
口を共通させ、排水口24とを共通させているが
各別の口でもよい。凍結部と未凍部の界面温度は
当然、液材料の氷点であるから、受液槽30に回
収される液温は、給水槽13内の液温と共に氷点
温度である。受液槽30に回収した液は次回分の
ために受液槽20に汲み上げられるが、多数の凍
結乾燥室が並列される場合には、次に運転される
凍結乾燥室付属の給液槽に汲み上げられるか多凍
結乾燥室に共通単一の給水槽とする。
First, a heat medium cooled to below 0°C is circulated between the outer side 12 of the cylinder b group, that is, the cylindrical shell 14, and the cylinder b group (inlets and outlets are shown by half arrows), and the cylinder b group A water supply tank 1 that communicates with it from a water inlet 23 provided in the lower space surface of the shell 14 that houses the
3. Introduce the water in each cylinder b to a level close to the upper end. The water begins to freeze from the inner wall of cylinder b, which has already been cooled to below 0°C. Preferably less than 1 mm,
When ice with a thickness of about 0.5 mm is formed, cylinder b
...The water filled in the group is drained from the drain port 24 (indicated by a white arrow). Subsequently, cylinder b... group is cooled sufficiently deeply, and a liquid material that has been cooled in advance in the liquid supply tank 20 to about the freezing point of the liquid material is poured into it from the liquid supply port that also serves as the water injection port 23. , the cylinders b... are filled to just below the level at which the ice film has already formed. The frozen layer 10 of the liquid material increases uniformly from the interface with the ice film on the inner surface of the wall of the cylinder b toward the central axis of the group of cylinders b. At the desired thickness, that is, the thickness of the frozen layer that leaves an unfrozen part corresponding to the passage necessary for water vapor escape in the center of cylinder b...group, the liquid material discharge pipe that also serves as the drain port 24 is connected to the liquid receiving tank. Collect the liquid material at 30 minutes. In the example of FIG. 3, the water inlet 23 and the liquid supply port are shared, and the drain port 24 is shared, but they may be separate ports. Since the interface temperature between the frozen part and the unfrozen part is naturally the freezing point of the liquid material, the temperature of the liquid collected in the liquid receiving tank 30 is at the freezing point temperature as well as the temperature of the liquid in the water supply tank 13. The liquid collected in the liquid receiving tank 30 is pumped up to the liquid receiving tank 20 for the next time, but when many freeze-drying chambers are arranged in parallel, the liquid is pumped up to the liquid receiving tank attached to the next freeze-drying chamber to be operated. The water can be pumped into a single water tank common to multiple freeze-drying chambers.

水および液用配管の弁(略)をすべて閉じた
後、乾燥室a(円筒b…群内部およびその上下空
間)はトラツプ室21を経て真空ポンプ系によつ
て、所望の真空圧力まで排気され、円筒b…の外
周とシエル14の内側との間に流す熱媒体は材料
および氷膜が融解しない限度に循環熱媒(出入は
半矢印)により加熱され、凍結乾燥が進行する。
After closing all the valves (omitted) for the water and liquid piping, the drying chamber a (the inside of cylinder b... group and the space above and below it) is evacuated to the desired vacuum pressure by the vacuum pump system through the trap chamber 21. , the heating medium flowing between the outer periphery of the cylinder b... and the inside of the shell 14 is heated by the circulating heating medium (half arrows indicate entry and exit) to the extent that the material and the ice film do not melt, and freeze-drying proceeds.

乾燥初期には、凍結層10は氷膜を介して各円
筒b…内壁に付着し、昇華は各円筒b…の各軸心
側から進行する。これにより凍結層10は各軸心
側から既乾層に変わつていくが、やがて、氷膜自
体が昇華消失することで、各円筒b…に対し自由
な状態となる。そこで被乾燥材料の円筒bからの
剥落を防ぐため、各円筒b下端に支えが必要であ
る。第3図の例では乾燥室aの下部扉16の裏面
に取付けられた金網ないし支持棒が、この乾燥し
た被乾燥材料の落下を防止する支え19である。
In the early stage of drying, the frozen layer 10 adheres to the inner wall of each cylinder b through an ice film, and sublimation proceeds from the axis side of each cylinder b. As a result, the frozen layer 10 transforms into a dry layer from each axis side, but eventually the ice film itself sublimates and disappears, making it free for each cylinder b... Therefore, in order to prevent the material to be dried from falling off from the cylinder b, a support is required at the lower end of each cylinder b. In the example shown in FIG. 3, a wire mesh or a support rod attached to the back side of the lower door 16 of the drying chamber a serves as a support 19 for preventing the dried material from falling.

凍結乾燥が終了した後、乾燥室aを1気圧に復
圧し、下部扉16をヒンジ16a中心に下方に開
くと氷膜の消失によつて各円筒bに対し自由にな
つている乾燥製品は、下部扉16の開度に応じて
自由に降下し、製品受け25に案内されて下部の
製品槽15に落下する。乾燥製品である液材料の
凍結乾燥体は脆く落下時の軽い衝撃によつて、数
cm程度の大きさに砕けて、製品槽15内に落下し
回収される。落下の衝撃で円筒状の乾燥体が数cm
の寸法に分裂する際、僅かの微粉が発生し、製品
受け25の傾斜面に僅かに軽く付着する場合もあ
るが、製品受け25の傾斜面は次回注入の液材料
にも真空にも接することのない密閉空間内であ
り、加熱も加湿もされないから、これが衛生条件
をさまたげることはない。円筒b…群の内壁や円
筒b…群とシエル14とを連結する熱媒体容器の
下端面には、肉眼観察で検出できる乾燥体粉末は
その痕跡も見出すことができない。
After the freeze-drying is completed, the pressure in the drying chamber a is restored to 1 atm, and when the lower door 16 is opened downward around the hinge 16a, the dried product, which has become free with respect to each cylinder b due to the disappearance of the ice film, is It freely descends depending on the opening degree of the lower door 16, is guided by the product receiver 25, and falls into the product tank 15 at the lower part. Freeze-dried liquid materials, which are dry products, are brittle and can be damaged by a light impact when dropped.
It is broken into pieces about cm in size, falls into the product tank 15, and is collected. Due to the impact of the fall, the cylindrical dry body was damaged by several centimeters.
When the powder is divided into the following sizes, a small amount of fine powder may be generated and slightly adhere to the sloped surface of the product receiver 25, but the sloped surface of the product receiver 25 will be in contact with both the liquid material to be injected next time and the vacuum. This does not interfere with sanitary conditions as it is a closed space with no heating or humidification. No trace of dried powder that can be detected by naked eye observation can be found on the inner wall of the cylinder b group or on the lower end surface of the heat transfer medium container connecting the cylinder b group and the shell 14.

第3図あるいは第4図の形状の円筒b…群に氷
膜を形成させることなく、液材料の凍結層10を
形成させてこれを凍結乾燥することは、言うまで
もなく可能であり、各種多様な材料の中には、氷
膜がなくても僅から付着のほかは剥落し、付着が
あつても、次回に注入される低温の液に撹拌なし
に付着物が溶解し、妨げとならない種類の材料が
皆無とは断言できないが、一般には氷膜なしには
程度の差はあれ相当の付着物を残し、低温の液の
単純な注入ではこの付着物は溶解しない。
Needless to say, it is possible to form a frozen layer 10 of liquid material and freeze-dry it without forming an ice film on the cylinder b... group having the shape of FIG. 3 or 4. Even if there is no ice film on some materials, only a small amount of adhesion will peel off, and even if there is adhesion, the adhesion will dissolve into the next low temperature liquid injected without stirring and will not interfere with the material. Although it cannot be said with certainty that there is no material present, in general, without an ice film, a considerable amount of deposits remain, albeit to varying degrees, and simple injection of low-temperature liquid does not dissolve these deposits.

以上の説明においては、氷膜形成の方法として
円筒b…内注水とその凍結としたが、これは他の
方法によることができる。すなわち、既述の実施
例装置において、乾燥製品を取り出したあと、円
筒b…群温度を0℃より僅かに高く保持し、乾燥
室aを真空排気し、トラツプ室21底に底部ヒー
ターを設けて、そこに溜つた水を加熱すると、底
部の溜り水は蒸発して円筒b…群の各内壁面に凝
縮し、円筒b…内面を流下する凝縮水と新たに凝
縮する水蒸気とがバランスした厚みを保つ。そこ
で円筒b…群温度を0℃以下に急冷して凝縮膜を
凍結させる。トラツプ室21底部の溜り水として
は新たな水を導入せず、凍結乾燥中のトラツプ凝
結氷の融氷水を用いることができる。
In the above description, the ice film is formed by injecting water into the cylinder b and freezing it, but other methods may be used. That is, in the apparatus of the above-described embodiment, after taking out the dried product, the temperature of the cylinder b... group was maintained slightly higher than 0°C, the drying chamber a was evacuated, and a bottom heater was provided at the bottom of the trap chamber 21. When the water accumulated there is heated, the accumulated water at the bottom evaporates and condenses on each inner wall surface of cylinder b... keep it. Therefore, the temperature of cylinder b... group is rapidly cooled to 0° C. or lower to freeze the condensed film. As the standing water at the bottom of the trap chamber 21, it is possible to use melted water from trap condensed ice during freeze-drying without introducing new water.

第3図,第4図に示す実施例は、受液槽20か
ら一たん、円筒b…群内に供給された液の一部
が、液状で回収され、次回にまわされ、さらに、
その一部は次々回にまわされる。
In the embodiment shown in FIGS. 3 and 4, a part of the liquid once supplied from the liquid receiving tank 20 into the cylinders b... group is recovered in liquid form and passed to the next time, and further,
Some of it will be passed on from time to time.

したがつて、これらの実施例は、一定量の材料
を1回の乾燥で終り、直ちに他品種に移る用途に
は不向きである(この場合は、第1図,第2図の
例が適する)。
Therefore, these examples are not suitable for applications where a certain amount of material is dried in one time and then immediately transferred to another type (in this case, the examples shown in Figures 1 and 2 are suitable). .

しかし、ある品種を一定期間、連続的に乾燥す
る用途に最適である。準備された液材料の一部が
次回、次々回へとまわされるが、この間の液温
は、本実施例に固有の特徴のため、常時その材料
の氷点に、しかも密閉空間に保たれる。一般的に
はこの条件は保存に最適である。また滞留時間の
短縮は第5図の概念図のとおり設備を大型乾燥室
1基に集中せずに、数基に分割し、第1の受液槽
30−1に回収された液を、次の乾燥室用の給液
槽20−2に送る。乾燥室aがN(=6)基で、
1回の乾燥時間がH(=12)時間で、円筒b内に
供給された液のX=(52)%が受液槽30に回収
されるなら、θ=12時間プラトン内に滞留する液
材料が乾燥製品に占める%は、X=2%にすぎな
い。(X=0.6のとき4.7%である。)これを目安に
運転計画を立て、また使用の適否を判断できる。
However, it is most suitable for applications where certain varieties are dried continuously for a certain period of time. A portion of the prepared liquid material is passed on to the next time, one after another, but the temperature of the liquid during this time is always maintained at the freezing point of the material, and in a closed space, due to the unique features of this embodiment. Generally, these conditions are optimal for preservation. In addition, as shown in the conceptual diagram in Figure 5, the residence time can be reduced by dividing the equipment into several drying chambers instead of concentrating them on one large drying chamber, and transferring the liquid collected in the first liquid receiving tank 30-1 to the next drying chamber. The liquid is sent to the liquid supply tank 20-2 for the drying room. The drying chamber a has N (=6) groups,
If one drying time is H (= 12) hours and X = (52)% of the liquid supplied into the cylinder b is collected in the liquid receiving tank 30, the liquid that stays in the Plato for θ = 12 hours. The percentage of material in the dry product is only X=2%. (When X = 0.6, it is 4.7%.) Using this as a guide, you can make an operation plan and judge whether it is appropriate to use it.

第5図は複数の乾燥室を等しい時差で連続的に
運転されるプラントの説明図で、被乾燥材料の流
れ以外は省略されている。既に第3図,第4図で
用いた記号(数字)の後の数字1,2,…Nは、
乾燥室aのナンバーを示す。原液は、共通の供給
源から連続的に送られ、所定量が給液槽20−1
に送られると、供給は給液槽20−2に切替られ
る。
FIG. 5 is an explanatory diagram of a plant in which a plurality of drying chambers are operated continuously at equal time differences, and the flow of materials to be dried is omitted. The numbers 1, 2,...N after the symbols (numbers) already used in Figures 3 and 4 are
Shows the number of drying room a. The stock solution is continuously sent from a common supply source, and a predetermined amount is supplied to the supply tank 20-1.
When the liquid is sent to the liquid supply tank 20-2, the supply is switched to the liquid supply tank 20-2.

給水槽13から、乾燥室a−1の円筒b…内に
水が送られ、氷膜形成後排出され、給液槽20−
1の液が、乾燥室a−1の円筒b…内に送られ、
所定の凍結層を形成後、余剰は受液槽30−1に
落され、乾燥室a−2のスタートまでの時間、す
なわち凍結乾燥所用時間H(例えば12)時間を乾
燥室数N(例えば6基)で除したH/N(例えば
2)時間以内に、ポンプにより給液槽20−2に
汲み上げられ、供給源100からの液と1体とな
る。これが反復される。N番目の受液槽30−N
の液は、No.1の給液槽20−1に汲み上げられ
る。乾燥製品はH(例えば12)時間後から、H/
N(例えば2時間)間隔で製品槽15−1,15
−2…のNo.順に回収される。各製品槽15の製品
の処理は、これに続く工程との関係で決定でき
る。
From the water supply tank 13, water is sent into the cylinder b of the drying chamber a-1, and after forming an ice film, it is discharged, and the water is sent to the cylinder b of the drying chamber a-1.
1 liquid is sent into the cylinder b... of the drying chamber a-1,
After forming a predetermined frozen layer, the surplus is dropped into the liquid receiving tank 30-1, and the time until the start of drying chamber a-2, that is, the freeze-drying time H (for example, 12), is increased by the number of drying chambers N (for example, 6). The liquid is pumped into the liquid supply tank 20-2 by the pump within hours divided by H/N (for example, 2), and becomes one with the liquid from the supply source 100. This is repeated. Nth liquid receiving tank 30-N
The liquid is pumped into the No. 1 liquid supply tank 20-1. After H (e.g. 12) hours, the dried product is
Product tanks 15-1, 15 at intervals of N (for example, 2 hours)
-2... are collected in order of number. The processing of the products in each product tank 15 can be determined in relation to the subsequent steps.

第5図では、原液の流れの説明の便宜のため
に、各乾燥室aのそれぞれに給液槽20−1,2
0−2,…20−Nと、受液槽30−1,30−
2,…30−Nを設けた実例としたが、乾燥室の
数と配置しだいで、乾燥室全数にたいして共通の
給液槽、共通の受液槽およびポンプ各1基とす
る。あるいは乾燥室aの2、3基当り1基とし乾
燥室数より少ない複数の共通槽とすることもでき
る。
In FIG. 5, for convenience of explanation of the flow of the stock solution, the liquid supply tanks 20-1 and 2 are provided in each drying chamber a.
0-2,...20-N, and liquid receiving tanks 30-1, 30-
2,...30-N was provided, but depending on the number and arrangement of drying chambers, one common liquid supply tank, one common liquid receiving tank, and one pump each may be provided for all the drying chambers. Alternatively, the number of common tanks may be one for every two or three drying chambers a, and the number of common tanks may be smaller than the number of drying chambers.

また、乾燥室a内に設置する円筒b…は、第6
図aおよび第6図bに示している実施例のよう
に、薄い平箱状の筒体b′に形成し、その筒体
b′(単一または複数)を直立状態に配置して、そ
れの内部に冷媒体および熱媒体を循環させ、外面
を冷凍兼加熱面1に構成するようにしてもよい。
なお、同効の構成部材については同一の符号を付
して説明は省略する。この第6図に示す実施例
は、前記第3図a・bおよび第4図a・bに示す
実施例と同様の操作手順で使用され、また、同様
に作用する。
In addition, the cylinder b... installed in the drying chamber a is the sixth
As in the embodiments shown in Figures a and 6b, it is formed into a thin flat box-shaped cylinder b';
b'(s) may be arranged upright, with cooling and heating media circulating inside it, and the outer surface configured as a freezing and heating surface 1.
Note that the same reference numerals are given to the constituent members having the same effect, and the explanation thereof will be omitted. The embodiment shown in FIG. 6 is used in the same operating procedure as the embodiments shown in FIGS. 3a-b and 4a-b, and functions in the same manner.

以上、第3図,第4図,第5図および第6図に
示した本発明の実施例の最大の特徴は、凍結乾燥
への液材料の供給から乾燥製品の回収までが、完
全な密閉装置内で処理できること、および、その
運転が液配管系の自動弁の開閉と液ポンプの発
停、および乾燥室不部扉の開閉の単純な組合わせ
のみで進行し、しかも、この密閉空間の内部に
は、上述の弁、ポンプ、扉の他に、いかなる駆動
部(回転部、摺動部、その他)も存在せず、高度
な衛生条件が保持できる事である。
As described above, the most important feature of the embodiments of the present invention shown in FIGS. The process can be carried out within the device, and its operation proceeds with a simple combination of opening and closing automatic valves in the liquid piping system, starting and stopping the liquid pump, and opening and closing the drying chamber door. Other than the valves, pumps, and doors mentioned above, there are no driving parts (rotating parts, sliding parts, etc.) inside, so a high level of sanitary conditions can be maintained.

以上の特徴は、実用された在来のいかなる凍結
乾燥装置にも存在しなかつたもので、直立する冷
凍兼加熱面に、氷膜を介して液材料の凍結層を形
成することによつて、始めて密閉装置における全
自動無人運転が可能となつた。
The above features do not exist in any conventional freeze-drying equipment that has been put to practical use, and by forming a frozen layer of liquid material via an ice film on an upright freezing and heating surface, For the first time, fully automatic, unmanned operation of a closed device has become possible.

その上、この実施例によつて得られる、液材料
の凍結層は、凍結乾燥にとつて特に有利である。
氷膜上に氷点温度の液が供給されるために、過冷
却なしに、しかも、均質な針状氷晶が、冷凍兼加
熱面から、直立して成長する特徴は、第1図、お
よび第2図に示した実施例と共通の利点である
が、それに加えてこの第3図乃至第6図に示す実
施例においては、供給された液材料の一部が未凍
結のまま流下するため、針状氷晶の先端部は、濃
縮された液相、あるいは共晶体に蔽われることな
く、殆んど露出する。このため、昇華面からの水
蒸気の通過を妨げる難透膜は極めて弱い。
Moreover, the frozen layer of liquid material obtained by this embodiment is particularly advantageous for freeze-drying.
The characteristics of homogeneous acicular ice crystals growing upright from the freezing/heating surface without supercooling because the liquid at the freezing point temperature is supplied onto the ice film are shown in Figures 1 and 2. This is a common advantage with the embodiment shown in Fig. 2, but in addition, in the embodiment shown in Figs. 3 to 6, a part of the supplied liquid material flows down unfrozen, so that The tips of the needle ice crystals are mostly exposed without being covered by the concentrated liquid phase or eutectic. Therefore, the impermeable membrane that prevents the passage of water vapor from the sublimation surface is extremely weak.

従来はこの難透膜を避けるために、供給された
液層表面にナイロンガーゼを押しつけて、凍結後
にこれを引きはがすが、凍結後、過冷却ないし0
℃の水を表面にスプレーして、高濃度の難透膜を
稀釈するなどの煩雑な方法が試みられ、結局は、
凍結体を砕いて1−3mmの凍結粒とした後、トレ
イに充填する方法のみが実用されてきたのであ
る。難透膜の形成は、乾燥速度を遅らせるだけで
なく、この膜の破壊が、いつ、どこで起るかによ
つて不均等な乾燥の原因となつてきた。
Conventionally, in order to avoid this difficult-to-perme membrane, nylon gauze was pressed onto the surface of the supplied liquid layer and then peeled off after freezing.
Cumbersome methods such as spraying water at ℃ onto the surface to dilute the highly concentrated membrane were tried, but in the end,
The only method that has been put into practical use is to crush the frozen material into 1-3 mm frozen particles and then fill them into trays. The formation of a poorly permeable membrane not only slows down the drying rate, but also causes uneven drying depending on when and where the membrane breakdown occurs.

以上の諸特徴のために、第3図〜第6図の装置
は、液材料の高品質な濃縮にも有効に用いること
ができる。すなわち、材料層の全体に未だ凍結層
が残存している時に、凍結乾燥を中断する方法に
よる濃縮である。蒸発による濃縮においては、水
より揮発しやすいため芳香成分の多くは失われ
る。しかし、凍結乾燥の昇華過程では、芳香成分
は、濃縮された液相側に吸着されているため、そ
の消失はなく昇華後の既乾多孔層の乾燥過程で、
その一部が水と共に蒸発する。この公知の原理を
利用して、従来から濃縮を目的とする部分的凍結
乾燥が一部に行なわれてきた。しかし、第1には
トレイに依るために、その取扱いが煩雑であり、
第2に凍結時の不均質な氷結晶のために、乾燥の
進行がまだらになり、一部に厚い凍結層が残存す
るのに、他は、既に全く凍結層が消滅して芳香成
分の損失をともなう二次乾燥が進行するため、品
質上の不満を残した。本発明手段は、以上の2つ
の失点も解消せしめているものである。
Due to the above characteristics, the apparatus shown in FIGS. 3 to 6 can be effectively used for high-quality concentration of liquid materials. That is, concentration is performed by interrupting freeze-drying when a frozen layer still remains over the entire material layer. When concentrated by evaporation, much of the aromatic components are lost because it is more volatile than water. However, in the sublimation process of freeze-drying, the aromatic components are adsorbed on the concentrated liquid phase side, so they do not disappear, but in the drying process of the dried porous layer after sublimation.
Some of it evaporates along with the water. Utilizing this known principle, partial freeze-drying for the purpose of concentration has heretofore been carried out in part. However, firstly, it is complicated to handle because it depends on the tray.
Second, due to the inhomogeneous ice crystals during freezing, the drying process becomes patchy, with a thick frozen layer remaining in some parts, while in others, the frozen layer has completely disappeared and the aromatic components are lost. As secondary drying progressed with The means of the present invention also eliminates the above two points conceded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法の実施に用いる真空凍結乾燥
装置の要部の縦断側面図、第2図は同上要部の乾
燥製品を取出す状態における斜視図、第3図aは
別の形態の実施例装置の要部の横断平面図、第3
図bは同上要部の第3図aにおけるS−S′線の縦
断側面図、第4図aはさらに異なる実施例装置の
要部の横断平面図、第4図bは同上要部の第4図
aにおけるS−S′線の縦断側面図、第5図は本発
明法の実施に用するプラントの概要説明図、第6
図aは前記第3図a・bおよび第4図a・bの形
態のものの変形の実施例装置の要部の横断面図、
第6図bは同上要部のS−S′線の縦断側面図であ
る。 図面符号の説明 a…乾燥室、b…円筒、1…
冷凍兼加熱面、1a…棚、10…凍結層、11…
内側、12…外側、13…給水槽、14…シエ
ル、15…製品槽、16…下部扉、16a…ヒン
ジ、17…上部扉、18…トラツプ、19…支
え、2…フレーム、20…給液槽、21…トラツ
プ室、22…管路、23…注水口、24…排水
口、25…製品受け、3…注水機構、3a…噴霧
ノズル、30…受液槽、4…乾燥室、4a…開放
口、5…製品受け、6…駆動部、7…低摩擦レー
ル、8…乾燥製品、100…原液の供給源。
Fig. 1 is a vertical cross-sectional side view of the essential parts of the vacuum freeze-drying apparatus used to implement the method of the present invention, Fig. 2 is a perspective view of the main parts of the same in a state in which dried products are taken out, and Fig. 3a is an implementation of another embodiment. Example Cross-sectional plan view of the main parts of the device, No. 3
Fig. 4b is a vertical cross-sectional side view taken along line S-S' in Fig. 3a of the main part of the same, Fig. 4a is a cross-sectional plan view of the main part of the apparatus of a different embodiment, and Fig. 4b is a cross-sectional side view of the main part of the same. 4a is a longitudinal cross-sectional side view taken along line S-S' in FIG.
Figure a is a transverse cross-sectional view of the main part of the embodiment of the apparatus which is a modification of the configuration shown in Figures 3 a and 4 b and Figure 4 a and b;
FIG. 6b is a longitudinal cross-sectional side view taken along line S-S' of the main part of the same. Explanation of drawing symbols a...Drying chamber, b...Cylinder, 1...
Freezing/heating surface, 1a... Shelf, 10... Freezing layer, 11...
Inside, 12...Outside, 13...Water tank, 14...Ciel, 15...Product tank, 16...Lower door, 16a...Hinge, 17...Upper door, 18...Trap, 19...Support, 2...Frame, 20...Liquid supply Tank, 21... Trap chamber, 22... Pipe line, 23... Water inlet, 24... Drain port, 25... Product receiver, 3... Water injection mechanism, 3a... Spray nozzle, 30... Liquid receiving tank, 4... Drying room, 4a... Opening port, 5... Product receiver, 6... Drive section, 7... Low friction rail, 8... Dry product, 100... Supply source of stock solution.

Claims (1)

【特許請求の範囲】 1 真空凍結乾燥装置の乾燥室に内設される冷凍
兼加熱面の冷凍面に水を注ぎ、かつ該冷凍面を0
℃以下に冷却して、該冷凍面上に氷膜を形成せし
め、ひき続き該冷凍面を0℃以下の充分な低温に
保ちつつ、該氷膜上に液状あるいは平板状の被乾
燥材料を供給して、被乾燥材料を前記氷膜上に凍
結せしめ、しかる後に乾燥室を排気し、真空状態
下で該被乾燥材料の凍結層および氷膜を乾燥せし
めることを特徴とする凍結乾燥方法。 2 真空凍結乾燥装置の乾燥室内に配置せる被乾
燥材料用の容器内面に水を注ぎ、かつ該容器を0
℃以下に冷却して該容器内面に氷膜を形成せし
め、ひき続き該容器を0℃以下の充分な低温に保
ちつつ、該氷膜上に液状あるいは平板状の被乾燥
材料を供給して、その被乾燥材料を前記氷膜上に
凍結せしめ、しかる後に乾燥室を排気し、真空状
態下で該被乾燥材料の凍結層および氷膜を乾燥せ
しめる凍結乾燥方法。 3 内部が通常の真空度に保持される乾燥室とそ
の乾燥室内に単段あるいは多段の水平棚面として
構成された冷凍兼加熱面と、該棚面上に固定また
は可動に配置せしめる被乾燥材料用フレームと、
該棚面上に配置せしめた該フレームに囲まれる棚
面および該フレームと棚面との接触部に、ほぼ均
等に水を散布せしめる注水機構と、棚段の前面に
位置する扉面とを、有することを特徴とする真空
凍結乾燥装置。 4 内部が通常の真空度に保持される乾燥室とそ
の乾燥室内に単一あるいは複数の、直立面、例え
ば直立円筒面(内筒面あるいは外筒面)または、
直立平面として構成される冷凍兼加熱面と、該冷
凍兼加熱面にほぼ均等に水を供給し排出する給排
水機構と、該冷凍兼加熱面上の空間に、液状の被
乾燥材料を供給し排出する給排液機構と、該乾燥
室の下端面に位置する扉面とを有することを特徴
とする真空凍結乾燥装置。
[Claims] 1. Water is poured onto the freezing surface of a freezing and heating surface installed in the drying chamber of a vacuum freeze-drying device, and the freezing surface is heated to zero.
℃ or below to form an ice film on the frozen surface, and while continuing to maintain the frozen surface at a sufficiently low temperature of 0°C or below, supply a liquid or flat material to be dried onto the ice film. A freeze-drying method characterized in that the material to be dried is frozen on the ice film, and then the drying chamber is evacuated and the frozen layer of the material to be dried and the ice film are dried under a vacuum condition. 2. Pour water onto the inner surface of the container for the material to be dried, which is placed in the drying chamber of the vacuum freeze-drying equipment, and place the container at zero temperature.
℃ or below to form an ice film on the inner surface of the container, and while continuing to maintain the container at a sufficiently low temperature of 0°C or below, supplying a liquid or flat material to be dried onto the ice film, A freeze-drying method in which the material to be dried is frozen on the ice film, the drying chamber is then evacuated, and the frozen layer of the material to be dried and the ice film are dried under a vacuum condition. 3. A drying chamber whose interior is maintained at a normal degree of vacuum, a freezing/heating surface configured as a single or multi-level horizontal shelf within the drying chamber, and a material to be dried fixed or movably arranged on the shelf. frame for
A water injection mechanism that sprays water almost evenly onto the shelf surface surrounded by the frame arranged on the shelf surface and the contact area between the frame and the shelf surface, and a door surface located at the front of the shelf. A vacuum freeze-drying device comprising: 4. A drying chamber whose interior is maintained at a normal degree of vacuum, and a single or multiple upright surfaces within the drying chamber, such as an upright cylindrical surface (inner cylindrical surface or outer cylindrical surface), or
A freezing and heating surface configured as an upright plane, a water supply and drainage mechanism that supplies and discharges water almost evenly to the freezing and heating surface, and a liquid material to be dried that is supplied and discharged to the space above the freezing and heating surface. 1. A vacuum freeze-drying apparatus comprising: a liquid supply/drainage mechanism; and a door surface located at a lower end surface of the drying chamber.
JP19373486A 1986-08-19 1986-08-19 Freeze-drying method and device Granted JPS6349683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19373486A JPS6349683A (en) 1986-08-19 1986-08-19 Freeze-drying method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19373486A JPS6349683A (en) 1986-08-19 1986-08-19 Freeze-drying method and device

Publications (2)

Publication Number Publication Date
JPS6349683A JPS6349683A (en) 1988-03-02
JPH0478909B2 true JPH0478909B2 (en) 1992-12-14

Family

ID=16312920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19373486A Granted JPS6349683A (en) 1986-08-19 1986-08-19 Freeze-drying method and device

Country Status (1)

Country Link
JP (1) JPS6349683A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536837B2 (en) * 1998-01-21 2010-09-01 武田薬品工業株式会社 Manufacturing method of sustained-release preparation
KR100595340B1 (en) 1998-01-21 2006-07-03 다케다 야쿠힌 고교 가부시키가이샤 Lyophilization method for sustained-release preparations

Also Published As

Publication number Publication date
JPS6349683A (en) 1988-03-02

Similar Documents

Publication Publication Date Title
AU2004312777B2 (en) Method and apparatus for reclaiming effluent from a freeze-drying process, and uses for effluent
CN110945305B (en) Freeze dryer and method for inducing nucleation in a product
JP2977896B2 (en) Cryogenic equipment
US4802286A (en) Method and apparatus for freeze drying
KR930010720B1 (en) Method and apparatus for freeze drying
US5992169A (en) Apparatus and methods for vacuum cooling produce
JP2004503473A (en) Cryopreservation of bioactive materials using high-temperature freezing
US5715688A (en) Apparatus and methods for cryogenic treatment of materials
US7089681B2 (en) Method and apparatus for filtering and drying a product
US3431655A (en) Freeze drying
JP5847919B1 (en) Freeze-drying method for freeze-drying equipment
CN104949473A (en) Vacuum freeze drying method and vacuum freeze dryer
CN214172702U (en) Spray freeze drying system
JPH0478909B2 (en)
CN210569543U (en) Freeze dryer
KR20020095442A (en) food and drug dehydrofreezing apparatus
US5524451A (en) Method and apparatus for freezing food products
JPH11504699A (en) Apparatus for freezing fluid substances with cryogenic fluid
US2634591A (en) Vacuum cooling system employing chamber surface condensation
KR910001699B1 (en) Method and apparatus for freeze drying
JP3869297B2 (en) Temperature control device for shelf in freeze dryer
CN1006327B (en) Freeze dry process and freeze drier
JP7402096B2 (en) Freeze-drying method and freeze-drying equipment
RU2733878C1 (en) Method and device for disintegration of gold-bearing clay rocks
JPS6147510B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term