JPH047881A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH047881A
JPH047881A JP2109085A JP10908590A JPH047881A JP H047881 A JPH047881 A JP H047881A JP 2109085 A JP2109085 A JP 2109085A JP 10908590 A JP10908590 A JP 10908590A JP H047881 A JPH047881 A JP H047881A
Authority
JP
Japan
Prior art keywords
semiconductor laser
surge
surge voltage
electrodes
spark discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2109085A
Other languages
Japanese (ja)
Other versions
JP2618069B2 (en
Inventor
Masaaki Yuri
正昭 油利
Masahiro Kume
雅博 粂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP2109085A priority Critical patent/JP2618069B2/en
Publication of JPH047881A publication Critical patent/JPH047881A/en
Application granted granted Critical
Publication of JP2618069B2 publication Critical patent/JP2618069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06825Protecting the laser, e.g. during switch-on/off, detection of malfunctioning or degradation

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To increase surge breakdown strength, by selecting the distance between two electrodes on an insulator to be long enough to generate spark discharge at least one part when a surge voltage is applied. CONSTITUTION:The title device is constituted of the following; a semiconductor laser element 1, an insulator heat sink 2, gold wires 3, deposition electrodes 4B, current introducing leads 5, and a stem 6 of copper. Gaps of the deposition electrodes 4B are 30mum at three portions. As to the gaps between the deposition electrodes 4B, they must be wide enough to generate spark discharge at least one part when a surge voltage is applied, and usually smaller than or equal to 50mum. Thereby, when a surge voltage higher than or equal to about 200V is applied from outside through the current introducing leads, the electric field generated across the gap of 30mum becomes higher than or equal to the dielectric breakdown electric field of the gap, and spark discharge is generated, so that the surge voltage is not directly applied on the semiconductor laser element, and the surge breakdown strength is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザ光を用いた各種の情報処理。[Detailed description of the invention] Industrial applications The present invention relates to various information processing using laser light.

情報伝達、材料加工、固体レーザ励起のための光源とし
て用いることのできる半導体レーザ装置に関する。
The present invention relates to a semiconductor laser device that can be used as a light source for information transmission, material processing, and solid-state laser excitation.

従来の技術 近年、光ディスク、光通信、材料加工や医療用固体レー
ザ励起のための光源として半導体レーザの需要が急速に
高まりつつある。このような要求を満たすべく各種の構
造を有する半導体レーザ装置が研究開発され、実用化さ
れてきた。
BACKGROUND OF THE INVENTION In recent years, the demand for semiconductor lasers as light sources for optical disks, optical communications, material processing, and medical solid-state laser excitation has rapidly increased. In order to meet such demands, semiconductor laser devices having various structures have been researched and developed, and have been put into practical use.

半導体レーザ装置をこれらのシステムに組み込む際に問
題となるのがサージ電圧による半導体レーザ装置の特性
劣化である。
A problem when incorporating semiconductor laser devices into these systems is deterioration of the characteristics of the semiconductor laser device due to surge voltage.

半導体レーザ装置は通常2V前後の順方向バイアスで正
常に動作する。ところがシステムへの組み込み時に静電
気等により数百Vの高電圧が瞬間的に印加される場合が
しばしばある。このような高電圧が半導体レーザ素子に
順方向に印加されると急激に発振に至り瞬時に端面が破
壊される(これをCOD : Catastrophi
c 0ptical Damageという)。一方、高
電圧が逆方向に印加された場合には、発光領域または電
流ブロッキング層を形成するp−n接合がブレークダウ
ンにより破壊される。いずれの場合にも、高電圧の印加
によってレーザの特性は著しく劣化する。
Semiconductor laser devices usually operate normally with a forward bias of around 2V. However, when incorporating into a system, a high voltage of several hundred volts is often applied instantaneously due to static electricity or the like. When such a high voltage is applied in the forward direction to a semiconductor laser element, it suddenly oscillates and instantly destroys the end face (this is called COD: Catastrophe).
c 0ptical Damage). On the other hand, if a high voltage is applied in the opposite direction, the pn junction forming the light emitting region or current blocking layer is destroyed by breakdown. In either case, the laser characteristics are significantly degraded by the application of high voltage.

サージ電圧に対する耐圧を高める方法の一つに、半導体
レーザ素子と並列にツエナーダイオードを接続する方法
がある。
One method for increasing the withstand voltage against surge voltages is to connect a Zener diode in parallel with the semiconductor laser element.

以下、図面を参照しながら上述のツェナーダイオードを
並列に接続した半導体レーザ装置について説明する。
Hereinafter, a semiconductor laser device in which the above-mentioned Zener diodes are connected in parallel will be described with reference to the drawings.

第2図は従来のツェナーダイオードを並列に接続した半
導体レーザ装置の構成図である。
FIG. 2 is a configuration diagram of a conventional semiconductor laser device in which Zener diodes are connected in parallel.

第2図において、1は半導体レーザ素子、2は絶縁体ヒ
ートシンク、3は金線、4Aは蒸着電極、5は電流導入
リード、6は銅製ステム、7はツェナーダイオードであ
る。
In FIG. 2, 1 is a semiconductor laser element, 2 is an insulating heat sink, 3 is a gold wire, 4A is a vapor deposited electrode, 5 is a current introduction lead, 6 is a copper stem, and 7 is a Zener diode.

次に、第2図に示したツェナーダイオードを並列に接続
した半導体レーザ装置のサージ耐圧がンエーダイオード
を並列に接続しない半導体レーザ装置のそれよりも高く
なる理由を説明する。
Next, the reason why the surge breakdown voltage of the semiconductor laser device shown in FIG. 2 in which the Zener diodes are connected in parallel is higher than that of the semiconductor laser device in which the Zener diodes are not connected in parallel will be explained.

第2図に示したツェナーダイオードを並列に接続した半
導体レーザ装置において、ツェナーダイオードのブレー
クダウン電圧を半導体レーザ素子のサージ耐圧よりも低
い値に設定しておくと、半導体レーザ素子のサージ耐圧
よりも高いサージ電圧が印加されてもこれによる電荷は
ツェナーダイオードに流れるため半導体レーザ素子の劣
化を防ぐことができる。
In the semiconductor laser device shown in Figure 2, in which Zener diodes are connected in parallel, if the breakdown voltage of the Zener diode is set to a value lower than the surge withstand voltage of the semiconductor laser element, then Even if a high surge voltage is applied, the resulting charge flows to the Zener diode, thereby preventing deterioration of the semiconductor laser element.

発明が解決しようとする課題 しかしながら上述のような構成では、ツェナーダイオー
ドを外付けするための工程が必要となる。また順方向と
逆方向の両方のサージ電圧に対して半導体レーザ素子を
保護するためには二個のツェナーダイオードを接続しな
ければならなかった。
Problems to be Solved by the Invention However, the above configuration requires a step for externally attaching the Zener diode. Furthermore, in order to protect the semiconductor laser element from both forward and reverse surge voltages, two Zener diodes had to be connected.

本発明は上記の欠点に鑑み、ツェナーダイオードを用い
ることな(、順方向、逆方向いずれのサージ電圧に対し
ても特性劣化を生じない半導体レーザ装置の提供を目的
とする。
In view of the above drawbacks, it is an object of the present invention to provide a semiconductor laser device that does not use a Zener diode and does not suffer characteristic deterioration due to surge voltages in either the forward or reverse direction.

課題を解決するための手段 上記の課題を解決するために本発明による半導体レーザ
装置は、電気的に独立した二個の電極が絶縁体の表面に
形成され、それぞれの電極が半導体レーザ素子の一対の
電極に接続されており、かつ前記絶縁体上の二個の電極
間の距離がサージ電圧の印加によって、少なくとも一個
所でスパーク放電を発生させるに足る距離に選定する構
成とした。
Means for Solving the Problems In order to solve the above problems, a semiconductor laser device according to the present invention has two electrically independent electrodes formed on the surface of an insulator, each electrode connected to a pair of semiconductor laser elements. and the distance between the two electrodes on the insulator is selected to be a distance sufficient to generate a spark discharge at at least one location by applying a surge voltage.

作用 この構成によると、外部からサージ電圧が印加された場
合、まず二個の電極間の距離が最も短い部分に最も高い
電界が生じる。この部分の電極間距離は非常に狭いので
数百Vの電圧で絶縁破壊が生じ、大部分の電荷はここを
流れる。このため半導体レーザ素子にはサージ電圧によ
る電荷はほとんど流れず、サージ電圧印加後も正常な特
性が維持でき、サージ耐圧が向上する。
Effect: According to this configuration, when a surge voltage is applied from the outside, the highest electric field is first generated at the part where the distance between the two electrodes is the shortest. Since the distance between the electrodes in this part is very narrow, dielectric breakdown occurs at a voltage of several hundred volts, and most of the charge flows here. Therefore, almost no charge due to the surge voltage flows through the semiconductor laser element, and normal characteristics can be maintained even after the application of the surge voltage, improving the surge withstand voltage.

実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における半導体レーザ装置の
構成図である。
FIG. 1 is a configuration diagram of a semiconductor laser device according to an embodiment of the present invention.

第1図において、1は半導体レーザ素子、2は絶縁体ヒ
ートシンク、3は金線、4Bは蒸着電極、5は電流導入
リード、6は銅製ステムである。蒸着電極4Bの間隙は
三個所で30μmになっている。この蒸着電極4Bの間
隙はサージ電圧の印加によって少なくとも一個所でスパ
ーク放電を発生させるに足る距離が必要で、通常は50
μm以下である。
In FIG. 1, 1 is a semiconductor laser element, 2 is an insulating heat sink, 3 is a gold wire, 4B is a vapor deposited electrode, 5 is a current introduction lead, and 6 is a copper stem. The gaps between the vapor deposition electrodes 4B are 30 μm at three locations. The gap between the evaporation electrodes 4B needs to be long enough to generate a spark discharge at least in one place when a surge voltage is applied, and the gap between the vapor deposition electrodes 4B is usually 50.
It is less than μm.

以上の構成によれば、外部より電流導入リードを通して
約200v以上のサージ電圧が印加されると、30μm
の間隙に生じる電界が間隙の絶縁体破壊電界以上となり
、スパーク放電を生じる。これによってサージ電圧が直
接半導体レーザ素子に印加されることがなくなり、サー
ジ耐圧は約2000Vとなり、上述のような電極をもた
ない半導体レーザ装置の場合の約5oovに比べ飛躍的
に向上した。
According to the above configuration, when a surge voltage of approximately 200V or more is applied from the outside through the current introduction lead, the
The electric field generated in the gap exceeds the dielectric breakdown field of the gap, causing spark discharge. As a result, a surge voltage is no longer directly applied to the semiconductor laser element, and the surge withstand voltage is approximately 2000V, which is a dramatic improvement compared to approximately 5oOV in the case of the semiconductor laser device without electrodes as described above.

発明の効果 以上のように本発明は半導体レーザ素子固有のサージ耐
圧以上のサージ電圧に耐える半導体レーザ装置を提供す
るものであり、その実用的効果は大なるものがある。
Effects of the Invention As described above, the present invention provides a semiconductor laser device that can withstand a surge voltage higher than the surge voltage inherent to a semiconductor laser element, and has great practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における一実施例の半導体装置ザ装置の
構成図、第2図は従来のツェナーダイオードを並列に接
続した半導体レーザ装置の構成図である。 ■・・・・・・半導体レーザ素子、2・・・・・・絶縁
体ヒートシンク(絶縁体)、4B・・・・・・蒸着電極
(電極)。 代理人の氏名 弁理士 粟野重孝 ばか1名第1 図 1−月64インドし−リ“゛幸J二 2・・系P丞艮イ本ヒートシレク(昶1本1本)4ト蕉
葛電硫(’WJ&)
FIG. 1 is a block diagram of a semiconductor laser device according to an embodiment of the present invention, and FIG. 2 is a block diagram of a conventional semiconductor laser device in which Zener diodes are connected in parallel. ■... Semiconductor laser element, 2... Insulator heat sink (insulator), 4B... Vapor deposited electrode (electrode). Name of agent: Patent attorney Shigetaka Awano 1st figure ('WJ&)

Claims (1)

【特許請求の範囲】[Claims] 電気的に独立した二個の電極が絶縁体の表面に形成され
、それぞれの電極が半導体レーザ素子の一対の電極に接
続されており、かつ前記絶縁体上の二個の電極間の距離
がサージ電圧の印加によって少なくとも一個所でスパー
ク放電を発生させるに足る距離に選定されていることを
特徴とする半導体レーザ装置。
Two electrically independent electrodes are formed on the surface of the insulator, each electrode is connected to a pair of electrodes of the semiconductor laser element, and the distance between the two electrodes on the insulator is such that the surge A semiconductor laser device characterized in that the distance is selected to be sufficient to generate a spark discharge at at least one location upon application of a voltage.
JP2109085A 1990-04-25 1990-04-25 Semiconductor laser device Expired - Fee Related JP2618069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2109085A JP2618069B2 (en) 1990-04-25 1990-04-25 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2109085A JP2618069B2 (en) 1990-04-25 1990-04-25 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH047881A true JPH047881A (en) 1992-01-13
JP2618069B2 JP2618069B2 (en) 1997-06-11

Family

ID=14501217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2109085A Expired - Fee Related JP2618069B2 (en) 1990-04-25 1990-04-25 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2618069B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301278B2 (en) * 1997-09-25 2001-10-09 Rohm Co., Ltd. Semiconductor laser devices
EP2239823A1 (en) * 2007-12-21 2010-10-13 Mitsubishi Electric Corporation Laser light source module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301278B2 (en) * 1997-09-25 2001-10-09 Rohm Co., Ltd. Semiconductor laser devices
EP2239823A1 (en) * 2007-12-21 2010-10-13 Mitsubishi Electric Corporation Laser light source module
EP2239823A4 (en) * 2007-12-21 2013-07-17 Mitsubishi Electric Corp Laser light source module

Also Published As

Publication number Publication date
JP2618069B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
US5811330A (en) Method of fabricating an overvoltage protection device in integrated circuits
JPH08264898A (en) Semiconductor laser device
US5781392A (en) Balanced overvoltage protector for a dual-wire system
US6225653B1 (en) Semiconductor components and methods of manufacturing semiconductor components
JPS62193193A (en) Laser diode
CN1214803A (en) Semiconductor integrated circuit
GB2335084A (en) A spark gap assembly
JP2618069B2 (en) Semiconductor laser device
KR100206675B1 (en) Semiconductor integrated circuit device
EP0340466B1 (en) Semiconductor device comprising leads
JP2791067B2 (en) Monolithic overvoltage protection assembly
JPS624368A (en) Thyristor
EP1672701B1 (en) Method for fabricating and packaging Zener diodes
JPH02278783A (en) Semiconductor laser
US20150092805A1 (en) Semiconductor laser device
JP4402944B2 (en) Semiconductor protection device
GB2295049A (en) Overvoltage protection for integrated circuits
JPH02283088A (en) Semiconductor laser device
JPH03124056A (en) Protective element
US5384482A (en) Semiconductor integrated circuit device having input protective circuit
JPH0555839A (en) Semiconductor integrated circuit
KR20010031314A (en) Semiconductor diode
US5844293A (en) Semiconductor device with improved dielectric breakdown strength
JPS61107783A (en) Semiconductor laser device
JPS5861650A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees