JP2618069B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JP2618069B2
JP2618069B2 JP2109085A JP10908590A JP2618069B2 JP 2618069 B2 JP2618069 B2 JP 2618069B2 JP 2109085 A JP2109085 A JP 2109085A JP 10908590 A JP10908590 A JP 10908590A JP 2618069 B2 JP2618069 B2 JP 2618069B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser device
voltage
surge
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2109085A
Other languages
Japanese (ja)
Other versions
JPH047881A (en
Inventor
正昭 油利
雅博 粂
Original Assignee
松下電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電子工業株式会社 filed Critical 松下電子工業株式会社
Priority to JP2109085A priority Critical patent/JP2618069B2/en
Publication of JPH047881A publication Critical patent/JPH047881A/en
Application granted granted Critical
Publication of JP2618069B2 publication Critical patent/JP2618069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06825Protecting the laser, e.g. during switch-on/off, detection of malfunctioning or degradation

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザ光を用いた各種の情報処理,情報伝
達,材料加工,固体レーザ励起のための光源として用い
ることのできる半導体レーザ装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device that can be used as a light source for various types of information processing, information transmission, material processing, and solid-state laser excitation using laser light.

従来の技術 近年、光ディスク,光通信,材料加工や医療用固体レ
ーザ励起のための光源として半導体レーザの需要が急速
に高まりつつある。このような要求を満たすべく各種の
構造を有する半導体レーザ装置が研究開発され、実用化
されてきた。
2. Description of the Related Art In recent years, a demand for a semiconductor laser as a light source for optical disk, optical communication, material processing, and excitation of a solid laser for medical use has been rapidly increasing. In order to satisfy such demands, semiconductor laser devices having various structures have been researched, developed, and put to practical use.

半導体レーザ装置をこれらのシステムに組み込む際に
問題となるのがサージ電圧による半導体レーザ装置の特
性劣化である。
A problem when incorporating the semiconductor laser device into these systems is deterioration of the characteristics of the semiconductor laser device due to a surge voltage.

半導体レーザ装置は通常2V前後の順方向バイアスで正
常に動作する。ところがシステムへの組み込み時に静電
気等により数百Vの高電圧が瞬間的に印加される場合が
しばしばある。このような高電圧が半導体レーザ素子に
順方向に印加されると急激に発振に至り瞬時に端面が破
壊される(これをCOD:Catastrophic Optical Damageと
いう)。一方、高電圧が逆方向に印加された場合には、
発光領域または電流ブロッキング層を形成するp−n接
合がブレークダウンにより破壊される。いずれの場合に
も、高電圧の印加によってレーザの特性は著しく劣化す
る。
The semiconductor laser device normally operates normally with a forward bias of about 2V. However, a high voltage of several hundred volts is often applied instantaneously due to static electricity or the like when incorporated in a system. When such a high voltage is applied to the semiconductor laser element in the forward direction, oscillation rapidly occurs and the end face is instantaneously destroyed (this is called COD: Catastrophic Optical Damage). On the other hand, when high voltage is applied in the opposite direction,
The pn junction forming the light emitting region or the current blocking layer is destroyed by breakdown. In any case, the characteristics of the laser are significantly degraded by the application of a high voltage.

サージ電圧に対する耐圧を高める方法の一つに、半導
体レーザ素子と並列にツェナーダイオードを接続する方
法がある。
One method of increasing the withstand voltage against a surge voltage is to connect a zener diode in parallel with the semiconductor laser device.

以下、図面を参照しながら上述のツェナーダイオード
を並列に接続した半導体レーザ装置について説明する。
Hereinafter, a semiconductor laser device in which the above-described zener diodes are connected in parallel will be described with reference to the drawings.

第2図は従来のツェナーダイオードを並列に接続した
半導体レーザ装置の構成図である。
FIG. 2 is a configuration diagram of a conventional semiconductor laser device in which zener diodes are connected in parallel.

第2図において、1は半導体レーザ素子、2は絶縁体
ヒートシンク、3は金線、4Aは蒸着電極、5は電流導入
リード、6は銅製ステム、7はツェナーダイオードであ
る。
In FIG. 2, 1 is a semiconductor laser device, 2 is an insulator heat sink, 3 is a gold wire, 4A is a vapor deposition electrode, 5 is a current introduction lead, 6 is a copper stem, and 7 is a Zener diode.

次に、第2図に示したツェナーダイオードを並列に接
続した半導体レーザ装置のサージ耐圧がツェーダイオー
ドを並列に接続しない半導体レーザ装置のそれよりも高
くなる理由を説明する。
Next, the reason why the surge withstand voltage of the semiconductor laser device having the Zener diodes connected in parallel shown in FIG. 2 is higher than that of the semiconductor laser device having no Zener diodes connected in parallel will be described.

第2図に示したツェナーダイオードを並列に接続した
半導体レーザ装置において、ツェナーダイオードのブレ
ークダウン電圧を半導体レーザ素子のサージ耐圧よりも
低い値に設定しておくと、半導体レーザ素子のサージ耐
圧よりも高いサージ電圧が印加されてもこれによる電荷
はツェナーダイオードに流れるため半導体レーザ素子の
劣化を防ぐことができる。
In the semiconductor laser device shown in FIG. 2 in which the Zener diodes are connected in parallel, if the breakdown voltage of the Zener diode is set to a value lower than the surge withstand voltage of the semiconductor laser device, the surge voltage of the semiconductor laser device becomes higher. Even if a high surge voltage is applied, the charge caused by the surge voltage flows through the Zener diode, thereby preventing the semiconductor laser element from being deteriorated.

発明が解決しようとする課題 しかしながら上述のような構成では、ツェナーダイオ
ードを外付けするための工程が必要となる。また順方向
と逆方向の両方のサージ電圧に対して半導体レーザ素子
を保護するためには二個のツェナーダイオードを接続し
なければならなかった。
Problems to be Solved by the Invention However, the above-described configuration requires a process for externally attaching a zener diode. Also, two Zener diodes had to be connected to protect the semiconductor laser device against both forward and reverse surge voltages.

本発明は上記の欠点に鑑み、ツェナーダイオードを用
いることなく、順方向,逆方向いずれのサージ電圧に対
しても特性劣化を生じない半導体レーザ装置の提供を目
的とする。
The present invention has been made in view of the above-described drawbacks, and has as its object to provide a semiconductor laser device that does not use a Zener diode and does not cause deterioration in characteristics with respect to both forward and reverse surge voltages.

課題を解決するための手段 上記の課題を解決するために本発明による半導体レー
ザ装置は、電気的に独立した二個の電極が絶縁体の表面
に形成され、それぞれの電極が半導体レーザ素子の一対
の電極に接続されており、かつ前記絶縁体上の二個の電
極間の距離がサージ電圧の印加によって、少なくとも一
個所でスパーク放電を発生させるに足る距離に選定する
構成とした。
Means for Solving the Problems In order to solve the above problems, a semiconductor laser device according to the present invention has two electrically independent electrodes formed on a surface of an insulator, and each electrode is a pair of semiconductor laser elements. And the distance between the two electrodes on the insulator is selected to be a distance sufficient to generate a spark discharge in at least one place by the application of a surge voltage.

作用 この構成によると、外部からサージ電圧が印加された
場合、まず二個の電極間の距離が最も短い部分に最も高
い電界が生じる。この部分の電極間距離は非常に狭いの
で数百Vの電圧で絶縁破壊が生じ、大部分の電荷はここ
を流れる。このため半導体レーザ素子にはサージ電圧に
よる電荷はほとんど流れず、サージ電圧印加後も正常な
特性が維持でき、サージ耐圧が向上する。
Operation According to this configuration, when a surge voltage is applied from the outside, first, the highest electric field is generated in a portion where the distance between the two electrodes is shortest. Since the distance between the electrodes in this portion is very small, dielectric breakdown occurs at a voltage of several hundred volts, and most of the electric charge flows here. Therefore, almost no charge due to the surge voltage flows to the semiconductor laser element, and normal characteristics can be maintained even after the surge voltage is applied, and the surge withstand voltage is improved.

実施例 以下、本発明の一実施例について、図面を参照しなが
ら説明する。
Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における半導体レーザ装置
の構成図である。
FIG. 1 is a configuration diagram of a semiconductor laser device according to one embodiment of the present invention.

第1図において、1は半導体レーザ素子、2は絶縁体
ヒートシンク、3は金線、4Bは蒸着電極、5は電流導入
リード、6は銅製ステムである。蒸着電極4Bの間隙は三
個所で30μmになっている。この蒸着電極4Bの間隙はサ
ージ電圧の印加によって少なくとも一個所でスパーク放
電を発生させるに足る距離が必要で、通常は50μm以下
である。
In FIG. 1, 1 is a semiconductor laser device, 2 is an insulator heat sink, 3 is a gold wire, 4B is a vapor deposition electrode, 5 is a current introduction lead, and 6 is a copper stem. The gap between the deposition electrodes 4B is 30 μm at three places. The gap between the vapor deposition electrodes 4B needs to have a distance enough to generate a spark discharge at at least one location by application of a surge voltage, and is usually 50 μm or less.

以上の構成によれば、外部より電流導入リードを通し
て約200V以上のサージ電圧が印加されると、30μmの間
隙に生じる電界が間隙の絶縁体破壊電界以上となり、ス
パーク放電を生じる。これによってサージ電圧が直接半
導体レーザ素子に印加されることがなくなり、サージ耐
圧は約2000Vとなり、上述のような電極をもたない半導
体レーザ装置の場合の約800Vに比べ飛躍的に向上した。
According to the above configuration, when a surge voltage of about 200 V or more is applied from the outside through the current introduction lead, the electric field generated in the gap of 30 μm becomes equal to or larger than the dielectric breakdown electric field of the gap, and a spark discharge occurs. As a result, the surge voltage is not directly applied to the semiconductor laser element, and the surge withstand voltage is about 2000 V, which is dramatically improved compared to about 800 V in the case of the semiconductor laser device having no electrode as described above.

発明の効果 以上のように本発明はは半導体レーザ素子固有のサー
ジ耐圧以上のサージ電圧に耐える半導体レーザ装置を提
供するものであり、その実用的効果は大なるものがあ
る。
Effects of the Invention As described above, the present invention provides a semiconductor laser device that can withstand a surge voltage higher than the surge withstand voltage inherent to the semiconductor laser device, and its practical effects are large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明における一実施例の半導体レーザ装置の
構成図、第2図は従来のツェナーダイオードを並列に接
続した半導体レーザ装置の構成図である。 1……半導体レーザ素子、2……絶縁体ヒートシンク
(絶縁体)、4B……蒸着電極(電極)。
FIG. 1 is a configuration diagram of a semiconductor laser device according to one embodiment of the present invention, and FIG. 2 is a configuration diagram of a conventional semiconductor laser device in which zener diodes are connected in parallel. 1 ... Semiconductor laser device, 2 ... Insulator heat sink (insulator), 4B ... Evaporated electrode (electrode).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電気的に独立した二個の電極が絶縁体の表
面に形成され、それぞれの電極が半導体レーザ素子の一
対の電極に接続されており、かつ前記絶縁体上の二個の
電極間の距離がサージ電圧の印加によって少なくとも一
個所でスパーク放電を発生させるに足る距離に選定され
ていることを特徴とする半導体レーザ装置。
1. Two electrically independent electrodes are formed on the surface of an insulator, each electrode is connected to a pair of electrodes of a semiconductor laser device, and two electrodes on the insulator are provided. A semiconductor laser device characterized in that the distance between them is selected to be sufficient to generate a spark discharge in at least one place by applying a surge voltage.
JP2109085A 1990-04-25 1990-04-25 Semiconductor laser device Expired - Fee Related JP2618069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2109085A JP2618069B2 (en) 1990-04-25 1990-04-25 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2109085A JP2618069B2 (en) 1990-04-25 1990-04-25 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH047881A JPH047881A (en) 1992-01-13
JP2618069B2 true JP2618069B2 (en) 1997-06-11

Family

ID=14501217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2109085A Expired - Fee Related JP2618069B2 (en) 1990-04-25 1990-04-25 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2618069B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103120A (en) * 1997-09-25 1999-04-13 Rohm Co Ltd Semiconductor laser device
CA2708392C (en) * 2007-12-21 2014-03-18 Mitsubishi Electric Corporation Laser light source module

Also Published As

Publication number Publication date
JPH047881A (en) 1992-01-13

Similar Documents

Publication Publication Date Title
US4400711A (en) Integrated circuit protection device
US4037140A (en) Protection circuit for insulated-gate field-effect transistors (IGFETS)
JP3566512B2 (en) Static electricity protection circuit
US5401985A (en) Low voltage monolithic protection diode with a low capacitance
KR20020066393A (en) Fabrication method of InAlGaN LED device
JPH0297066A (en) Esd protection for soi circuit
CN1214803A (en) Semiconductor integrated circuit
JP2618069B2 (en) Semiconductor laser device
KR100206675B1 (en) Semiconductor integrated circuit device
US6791123B2 (en) ESD protection element
JP2791067B2 (en) Monolithic overvoltage protection assembly
JP3147780B2 (en) Integrated circuit electrostatic protection circuit
JPS624368A (en) Thyristor
US7262468B2 (en) Method and system for reducing charge damage in silicon-on-insulator technology
JPH02278783A (en) Semiconductor laser
JPH0494161A (en) Input-output protection device for integrated circuit
US5384482A (en) Semiconductor integrated circuit device having input protective circuit
JPH03124056A (en) Protective element
JPS5861650A (en) Semiconductor device
JPS60103687A (en) Semiconductor laser element
KR20010031314A (en) Semiconductor diode
JPH02283088A (en) Semiconductor laser device
JPS61107784A (en) Semiconductor laser device
JP2005175397A (en) Semiconductor protector
JP2004221273A (en) Submount and semiconductor device comprising it

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees