JPH0478815B2 - - Google Patents
Info
- Publication number
- JPH0478815B2 JPH0478815B2 JP63291781A JP29178188A JPH0478815B2 JP H0478815 B2 JPH0478815 B2 JP H0478815B2 JP 63291781 A JP63291781 A JP 63291781A JP 29178188 A JP29178188 A JP 29178188A JP H0478815 B2 JPH0478815 B2 JP H0478815B2
- Authority
- JP
- Japan
- Prior art keywords
- speed side
- intake
- speed
- low
- side passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 claims description 20
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 230000000694 effects Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000005192 partition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/24—Cylinder heads
- F02F1/42—Shape or arrangement of intake or exhaust channels in cylinder heads
- F02F1/4214—Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B27/00—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
- F02B27/02—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B2275/00—Other engines, components or details, not provided for in other groups of this subclass
- F02B2275/18—DOHC [Double overhead camshaft]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Characterised By The Charging Evacuation (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は主として自動車に用いられる多吸気弁
式エンジンの吸気装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an intake system for a multi-intake valve engine mainly used in automobiles.
一般にエンジンの最高出力を増加させようとす
るとき、吸気管の管長を最高出力速度に適合させ
るべく設定する必要がある。ところがこのように
設定するとエンジンの他の速度域、特に低中速域
において大きいトルクが得られにくくなる。その
ため、従来、例えば特公昭47−32850号公報に開
示されているように、エアクリーナに接続された
気化器とシリンダの燃焼室との間を低速吸気管お
よび高速吸気管で連通し、低速吸気管を高速吸気
管より長く形成すると共に、これら吸気管の気化
器側開口端近傍に低速絞り弁および高速絞り弁を
設け、これら絞り弁の開閉を制御することによつ
て、低速・高速のいずれの場合であつても高トル
クを得ようとしている。
Generally, when trying to increase the maximum output of an engine, it is necessary to set the length of the intake pipe to match the maximum output speed. However, with this setting, it becomes difficult to obtain large torque in other speed ranges of the engine, especially in low and medium speed ranges. For this reason, conventionally, as disclosed in Japanese Patent Publication No. 47-32850, for example, a low-speed intake pipe and a high-speed intake pipe are used to communicate between a carburetor connected to an air cleaner and a combustion chamber of a cylinder. is longer than the high-speed intake pipe, and a low-speed throttle valve and a high-speed throttle valve are provided near the opening end of the intake pipe on the carburetor side, and by controlling the opening and closing of these throttle valves, it is possible to Even if you are trying to get high torque.
しかし、このような構造では、低速吸気管およ
び高速吸気管の上流側の開口端が共通のエアクリ
ーナに連通されているために、低速吸気管および
高速吸気管で生じた気柱振動が相互に干渉して弱
められてしまい必ずしも高トルクが得られない不
具合があつた。また、低速吸気管および高速吸気
管のエアクリーナへの接続位置が略同一であるた
めに、これら各吸気管の長さや、各吸気管が開口
する室の内容積を、低速・高速運転域において高
トルクが得られるようにそれぞれ独立して設定す
るのも困難であつた。本発明はこのような事情に
鑑みなされたもので、低速・高速運転域において
より高トルクが得られる多吸気弁式エンジンの吸
気装置を提供するものである。
However, in such a structure, the upstream open ends of the low-speed intake pipe and high-speed intake pipe are connected to a common air cleaner, so the air column vibrations generated in the low-speed intake pipe and high-speed intake pipe interfere with each other. There was a problem that high torque could not necessarily be obtained because the torque was weakened by the engine. In addition, since the connection positions of the low-speed intake pipe and the high-speed intake pipe to the air cleaner are almost the same, the length of each intake pipe and the internal volume of the chamber that each intake pipe opens can be increased in the low-speed and high-speed operating ranges. It was also difficult to set each independently so that the torque could be obtained. The present invention was made in view of the above circumstances, and it is an object of the present invention to provide an intake system for a multi-intake valve type engine that can obtain higher torque in low-speed and high-speed operating ranges.
本発明に係る他吸気弁式エンジンの吸気装置
は、各燃焼室に連なる吸気通路を低速側通路と高
速側通路とで構成し、低速側通路の長さを高速側
通路よりも長く低速運転域に適合するように設定
し、高速側通路の長さを高速運転域に適合するよ
うに設定すると共に、低速側通路の上流側開口端
を低速側集合室に連通させ、高速側通路の上流側
開口端を高速側集合室に連通させてなり、前記低
速側通路と高速側通路とを、吸気弁近傍において
互いに連通させかつこの連通部分より吸気の下流
側においてそれぞれ吸気ポートに分岐させ、前記
高速側通路をエンジンの低出力運転時に閉じる絞
り弁を設けたものである。
In the intake system for a multi-intake valve type engine according to the present invention, the intake passage connected to each combustion chamber is composed of a low-speed side passage and a high-speed side passage, and the length of the low-speed side passage is longer than that of the high-speed side passage in the low-speed operation region. The length of the high-speed side passage is set to suit the high-speed operation range, and the upstream opening end of the low-speed side passage is communicated with the low-speed side gathering room, and the length of the high-speed side passage is set to suit the high-speed operation range. The opening end communicates with the high-speed side gathering chamber, the low-speed side passage and the high-speed side passage communicate with each other in the vicinity of the intake valve, and each branch into an intake port on the downstream side of the intake from this communication portion, and the high-speed side passage It is equipped with a throttle valve that closes the side passage when the engine is operating at low output.
本発明においては、低速側通路および高速側通
路で発生した気柱振動はそれぞれ独立して設けた
集合室に導かれ、燃焼室に吸気が効率よく導入さ
れるように各運転域に応じて作用する。
In the present invention, the air column vibrations generated in the low-speed side passage and the high-speed side passage are guided to the collecting chambers provided independently, and the vibrations are applied according to each operating range so that the intake air is efficiently introduced into the combustion chamber. do.
また、低速側通路での吸気流速が所定以上の高
速となると、低速側低路から吸気の一部が吸気弁
近傍の連通部を通つて高速側通路内へ流れること
になる。 Further, when the intake air flow velocity in the low-speed side passage reaches a predetermined high speed or higher, a portion of the intake air flows from the low-speed side low passage into the high-speed side passage through the communication portion near the intake valve.
以下、本発明の一実施例を図により詳細に説明
する。第1図は本発明に係る多吸気弁式エンジン
の吸気装置が備えられたエンジンの一部を示す断
面図、第2図は同じく平面図である。第1図にお
いて符号1で示すものは四気筒エンジンのエンジ
ン本体であり、シリンダ2、シリンダヘツド3お
よびピストン4により形成される燃焼室5を有し
ている。燃焼室5には2個の吸気ポート6,6
と、2個の排気ポート7,7とが開口しており、
それぞれ吸気弁8,8、排気弁9,9によつて開
閉される。10は公知の動弁機構であり、吸気弁
8と排気弁9とを定時に開閉する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing a part of an engine equipped with an intake device for a multi-intake valve type engine according to the present invention, and FIG. 2 is a plan view thereof. In FIG. 1, the reference numeral 1 indicates the engine body of a four-cylinder engine, which has a combustion chamber 5 formed by a cylinder 2, a cylinder head 3, and a piston 4. The combustion chamber 5 has two intake ports 6, 6.
and two exhaust ports 7, 7 are open,
They are opened and closed by intake valves 8, 8 and exhaust valves 9, 9, respectively. Reference numeral 10 denotes a known valve operating mechanism, which opens and closes the intake valve 8 and the exhaust valve 9 at regular times.
吸気ポート6,6には各気筒毎にそれぞれ各別
の低速側通路11と高速側通路12とが連通して
おり、各通路11,12の他端は吸気分配箱14
内に開口している。すなわち、複数個のシリンダ
2に設けられた燃焼室5に連なる吸気通路は、低
速側通路11と高速側通路12との二本の通路で
構成されている。吸気分配箱14内は隔壁15に
よつて上下二室に画成されており、上部に低速側
集合室14aが形成され、下部に高速側集合室1
4bが形成されている。低速側通路11は高速側
集合室14bを貫通し、隔壁15から低速側集合
室14a内に連通され、高速側通路12は高速側
集合室14bの下面に連通されている。斯くて低
速側通路11は高速側通路12よりやや長く設定
され、エンジン本体1の比較的低速運転域に適合
し、高速側通路12は比較的高速運転域、例えば
最高出力速度に適合するように設定されている。
両通路11,12は吸気管16により構成されて
おり、それらの吸気弁8近傍において連通孔17
により互いに連通されている。18は前記連通孔
17内に開口する電子制御式燃料噴射装置の噴射
ノズルである。 The intake ports 6, 6 are connected to a separate low-speed side passage 11 and a high-speed side passage 12 for each cylinder, respectively, and the other end of each passage 11, 12 is connected to an intake distribution box 14.
It is open inward. That is, the intake passages connected to the combustion chambers 5 provided in the plurality of cylinders 2 are composed of two passages: a low-speed side passage 11 and a high-speed side passage 12. The inside of the intake distribution box 14 is divided into two upper and lower chambers by a partition wall 15, with a low-speed side gathering chamber 14a formed in the upper part and a high-speed side gathering chamber 1 in the lower part.
4b is formed. The low-speed side passage 11 passes through the high-speed side gathering chamber 14b and communicates with the low-speed side gathering chamber 14a from the partition wall 15, and the high-speed side passage 12 communicates with the lower surface of the high-speed side gathering chamber 14b. Thus, the low-speed side passage 11 is set to be slightly longer than the high-speed side passage 12, so that it is adapted to a relatively low-speed operation range of the engine body 1, and the high-speed side passage 12 is set to be adapted to a relatively high-speed operation range, for example, the maximum output speed. It is set.
Both passages 11 and 12 are constituted by an intake pipe 16, and a communication hole 17 is formed near the intake valve 8.
are connected to each other. Reference numeral 18 denotes an injection nozzle of an electronically controlled fuel injection device that opens into the communication hole 17.
吸気分配箱14の上流側は吸入管19が取付け
られ、この吸入管19は図示してない吸気流量計
測器を介して大気に通じている。21はアクセル
ペダルなどの操作子によつて人為的に開閉制御さ
れる一次絞り弁である。この一次絞り弁21は低
速側集合室14aの上流側に配置され、吸気管1
9から低速側集合室14aを経て低速側通路11
へ流入する吸気量を制御するものである。22は
一次絞り弁21の所定以上の高開度域において自
動的に開かれる二次絞り弁である。この二次絞り
弁22は高速側集合室14bの上流側に配置さ
れ、吸気管19から高速側集合室14bを経て高
速側通路12へ流入する吸気量を制御するもので
ある。 A suction pipe 19 is attached to the upstream side of the intake air distribution box 14, and this suction pipe 19 communicates with the atmosphere via an intake air flow meter (not shown). Reference numeral 21 denotes a primary throttle valve whose opening and closing are controlled artificially by an operator such as an accelerator pedal. This primary throttle valve 21 is arranged on the upstream side of the low-speed side collective chamber 14a, and
9 to the low speed side passage 11 via the low speed side gathering room 14a.
This controls the amount of intake air flowing into the intake air. Reference numeral 22 denotes a secondary throttle valve that is automatically opened in a high opening range of a predetermined degree or more of the primary throttle valve 21. This secondary throttle valve 22 is disposed upstream of the high-speed side gathering chamber 14b, and controls the amount of intake air flowing from the intake pipe 19 into the high-speed side passage 12 via the high-speed side gathering chamber 14b.
次にこの実施例の作動を説明する。エンジンの
運転中に、一次絞り弁21がアイドリング開度に
あると、二次絞り弁22は略全開しているので、
吸気の略全量は低速側集合室14aから各気筒の
低速側通路11を通り噴射ノズル18により燃料
を混合されて混合気となり、エンジンの吸気行程
中に燃焼室5内へ流入する。 Next, the operation of this embodiment will be explained. When the primary throttle valve 21 is at the idling opening while the engine is running, the secondary throttle valve 22 is approximately fully open.
Substantially the entire amount of intake air passes through the low-speed side passages 11 of each cylinder from the low-speed side collective chamber 14a, is mixed with fuel by the injection nozzle 18, becomes an air-fuel mixture, and flows into the combustion chamber 5 during the intake stroke of the engine.
エンジン出力を増すべく一次絞り弁21がやや
大きく開かれると、吸気流量が増大する。このと
き、吸気は低速側集合室14aから低速側通路1
1のみを通過するので吸気流量すなわち動圧が十
分に大きい。 When the primary throttle valve 21 is opened slightly wider to increase the engine output, the intake air flow rate increases. At this time, intake air flows from the low-speed side collective chamber 14a to the low-speed side passage 1.
1, the intake flow rate, that is, the dynamic pressure is sufficiently large.
ところで、吸気通路内には間欠的な吸気サイク
ルにより圧力変動が生じる。低速側通路11の長
さは、低速運転域に適合する、すなわち低速運転
時において吸気弁8が閉じる直前に正圧力波が吸
気ポート6の吸気弁8近傍に到達するように設定
されている。吸気弁8は通常はピストン4が下死
点を越えて上昇を開始してから閉じるように構成
されている関係から吸気弁8が閉じる直前には燃
焼室から吸気が吹き返されるが、上述したように
正圧波が吸気弁8の閉弁直前に吸気弁8近傍に到
達することによつて、吸気の吹き返しを防ぐこと
ができる。さらに、正圧波が吸気弁8近傍に到達
したときには吸気ポート6における吸気弁8の近
傍の吸気圧力がそれ以前より高まるので、燃焼室
5内圧力との差圧が大きくなつて吸気が燃焼室5
内に押し込まれるようになる。 Incidentally, pressure fluctuations occur in the intake passage due to intermittent intake cycles. The length of the low-speed side passage 11 is set to suit the low-speed operating range, that is, so that the positive pressure wave reaches the vicinity of the intake valve 8 of the intake port 6 immediately before the intake valve 8 closes during low-speed operation. The intake valve 8 is normally configured to close after the piston 4 passes the bottom dead center and begins to rise, so the intake air is blown back from the combustion chamber just before the intake valve 8 closes. Since the positive pressure wave reaches the vicinity of the intake valve 8 immediately before the intake valve 8 closes, blowback of intake air can be prevented. Furthermore, when the positive pressure wave reaches the vicinity of the intake valve 8, the intake pressure in the vicinity of the intake valve 8 at the intake port 6 becomes higher than before, so the pressure difference between the pressure inside the combustion chamber 5 and the pressure inside the combustion chamber 5 increases, and the intake air flows into the combustion chamber 5.
Becomes pushed inside.
このように、上述した動圧と気柱振動との効果
によつて吸気弁8の閉弁直前における吸気弁8付
近の吸気圧力が比較的高く保たれて吸入効率が高
くなる。よつて、燃焼室5内からの吹き返しが制
御され、吸気が能率よく燃焼室5内へ吸入される
ので比較的高いトルクが得られる。低速運転域に
おいて吸気は、第3図aに示すように専ら低速側
通路11を経て燃焼室5へ給送される。エンジン
負荷が増して同図bに示すように吸気流速が上昇
すると、吸気弁8近傍の通気抵抗が増加する傾向
が生じる。このとき、燃焼室5内は吸気で満たさ
れなくなり、燃焼室5内の負圧が他方の吸気弁8
を介して連通孔17に作用するようになる。その
ため、吸気流の一部は同図cに示すように連通孔
17から高速側通路12内に転流して複数の吸気
ポート6,6を介して燃焼室5内に吸入されるの
で、円滑な吸気の供給がなされる。なお、図3d
は二次絞り弁22か開かれたときの状態を示す。 In this way, due to the effects of the dynamic pressure and air column vibration described above, the intake pressure near the intake valve 8 immediately before the intake valve 8 closes is kept relatively high, and the intake efficiency is increased. Therefore, blowback from inside the combustion chamber 5 is controlled, and intake air is efficiently drawn into the combustion chamber 5, so that relatively high torque can be obtained. In the low-speed operating range, intake air is fed to the combustion chamber 5 exclusively through the low-speed side passage 11, as shown in FIG. 3a. When the engine load increases and the intake flow velocity increases as shown in FIG. 2B, the ventilation resistance near the intake valve 8 tends to increase. At this time, the inside of the combustion chamber 5 is no longer filled with intake air, and the negative pressure inside the combustion chamber 5 is reduced to the other intake valve 8.
It comes to act on the communication hole 17 through. Therefore, a part of the intake air flow is diverted from the communication hole 17 into the high-speed passage 12 as shown in FIG. Intake air is supplied. In addition, Figure 3d
indicates the state when the secondary throttle valve 22 is opened.
一次絞り弁21がさらに大きく開かれると、二
次絞り弁22も開弁され吸気は低速側通路11の
みならず高速側集合室14bを経て、高速側通路
12からも燃焼室5内へ吸入される。エンジンの
回転速度が上昇し、最高出力速度付近に達すると
高速側通路12には最高出力速度付近の高速運転
に適合する気柱振動が発生し、この気柱振動によ
つて一層効率よく吸気が導入される。 When the primary throttle valve 21 is opened further, the secondary throttle valve 22 is also opened, and the intake air is drawn into the combustion chamber 5 not only from the low-speed passage 11 but also from the high-speed passage 12 through the high-speed gathering chamber 14b. Ru. When the rotational speed of the engine increases and reaches near the maximum output speed, air column vibration suitable for high-speed operation near the maximum output speed occurs in the high-speed side passage 12, and this air column vibration makes the intake air more efficient. be introduced.
さらに、低速側通路11と高速側通路12とは
吸気弁8の近傍を除いて互いに独立し、それぞれ
独立した低速側集合室14aおよび高速側集合室
14bに連通されているから、各通路11,12
の長さおよび各集合室14a,14bの容積を、
それぞれ独立して各運転域に対応した最適な長さ
および容積に容易に設定することができ、しか
も、双方の通路11,12に生じた気柱振動が集
合室14a,14b内において相互に干渉するよ
うなことがないから、各運転域において各気筒に
生じる気柱振動を有効に作用させ、より一層高ト
ルクを得ることができる。 Further, since the low-speed side passage 11 and the high-speed side passage 12 are independent from each other except for the vicinity of the intake valve 8, and communicate with the independent low-speed side gathering chamber 14a and the high-speed side gathering chamber 14b, each passage 11, 12
The length of and the volume of each gathering room 14a, 14b,
The optimum length and volume can be easily set independently for each operating range, and the air column vibrations generated in both passages 11 and 12 can interfere with each other in the gathering chambers 14a and 14b. Therefore, the air column vibration generated in each cylinder in each operating range can be effectively used to obtain even higher torque.
以上説明したように本発明は、各燃焼室に連な
る吸気通路を低速側通路と高速側通路とで構成
し、低速側通路の長さを高速側通路よりも長く低
速運転域に適合するように設定し、高速側通路の
長さを高速運転域に適合するように設定すると共
に、低速側通路の上流側開口端を低速側集合室に
連通させ、高速側通路の上流側開口端を高速側集
合室に連通させてなり、前記低速側通路と高速側
通路とを、吸気弁近傍において互いに連通させか
つこの連通部分より吸気の下流側においてそれぞ
れ吸気ポートに分岐させ、前記高速側通路をエン
ジンの低出力運転時に閉じる絞り弁を設けたもの
である。
As explained above, in the present invention, the intake passage connected to each combustion chamber is composed of a low-speed side passage and a high-speed side passage, and the length of the low-speed side passage is made longer than the high-speed side passage to suit the low-speed operation range. The length of the high-speed side passage is set to suit the high-speed operation range, and the upstream opening end of the low-speed side passage is communicated with the low-speed side gathering room, and the upstream opening end of the high-speed side passage is connected to the high-speed side. The low-speed side passage and the high-speed side passage communicate with each other near the intake valve, and branch into intake ports on the downstream side of the intake from this communication portion, and the high-speed side passage communicates with the engine. It is equipped with a throttle valve that closes during low output operation.
したがつて、低速側通路が低速運転域に適合
し、高速側通路が高速運転域に適合していること
から、低速・高速運転域において高トルクを得る
ことができる。さらに、低速側の集合室と高速側
の集合室とがそれぞれ独立しており、低速側の通
路長さおよび集合室容積と高速側の通路長さおよ
び集合室容積とを、それぞれの運転域に応じて容
易に設定することができる共に、各通路内に生じ
た気柱振動が集合室内で相互に干渉するのを防止
することができる。その結果、各運転域において
各気筒に生じる気柱振動を有効に作用させること
ができるから、低速・高速運転域においてより一
層高トルクを得ることができる。 Therefore, since the low-speed side passage is suitable for the low-speed operating range and the high-speed side passage is suitable for the high-speed operating range, high torque can be obtained in the low-speed and high-speed operating ranges. Furthermore, the low-speed side gathering room and the high-speed side gathering room are independent, and the passage length and gathering room volume on the low-speed side and the passage length and gathering room volume on the high-speed side are set to each operating range. It can be easily set according to the requirements, and it is also possible to prevent the air column vibrations generated in each passage from interfering with each other in the gathering room. As a result, since the air column vibration generated in each cylinder can be effectively applied in each operating range, even higher torque can be obtained in low-speed and high-speed operating ranges.
また、低速側通路での吸気流速が所定以上の高
速となると、低速側通路から吸気の一部が吸気弁
近傍の連通部を通つて高速側通路内へ流れること
になる。そのため、複数の吸気ポートを介して吸
入されるので、円滑な吸気の供給がなされ、吸気
流速が高まることに起因して吸気抵抗が増大する
のを抑えることができる。これにより低速、高速
運転域は勿論、中速運転域においても一層高トル
クを得ることができる。 Further, when the intake air flow velocity in the low-speed side passage reaches a predetermined high speed or higher, a portion of the intake air from the low-speed side passage flows into the high-speed side passage through the communication portion near the intake valve. Therefore, since the intake air is inhaled through a plurality of intake ports, intake air is smoothly supplied, and an increase in intake resistance due to an increase in intake flow velocity can be suppressed. As a result, even higher torque can be obtained not only in low speed and high speed operating ranges, but also in medium speed operating ranges.
第1図は本発明に係る多吸気弁式エンジンの吸
気装置が備えられたエンジンの一部を示す断面
図、第2図は同じく平面図である。第3図は本発
明に係る吸気装置の動作を説明するための構成図
である。
2……シリンダ、5……燃焼室、11……低速
側通路、12……高速側通路、14……吸気分配
箱、14a……低速側集合室、14b……高速側
集合室、21……一次絞り弁、22……二次絞り
弁。
FIG. 1 is a sectional view showing a part of an engine equipped with an intake device for a multi-intake valve type engine according to the present invention, and FIG. 2 is a plan view thereof. FIG. 3 is a configuration diagram for explaining the operation of the intake device according to the present invention. 2...Cylinder, 5...Combustion chamber, 11...Low speed side passage, 12...High speed side passage, 14...Intake distribution box, 14a...Low speed side gathering chamber, 14b...High speed side gathering chamber, 21... ...Primary throttle valve, 22...Secondary throttle valve.
Claims (1)
気通路を低速側通路と高速側通路とで構成し、低
速側通路の長さを高速側通路よりも長く低速運転
域に適合するように設定し、高速側通路の長さを
高速運転域に適合するように設定すると共に、低
速側通路の上流側開口端を低速側集合室に連通さ
せ、高速側通路の上流側開口端を高速側集合室に
連通させてなり、前記低速側通路と高速側通路と
を、吸気弁近傍において互いに連通させかつこの
連通部分より吸気の下流側においてそれぞれ吸気
ポートに分岐させ、前記高速側通路をエンジンの
低出力運転時に閉じる絞り弁を設けたことを特徴
とする多吸気弁式エンジンの吸気装置。1 The intake passage that connects to the combustion chambers provided in multiple cylinders is composed of a low-speed side passage and a high-speed side passage, and the length of the low-speed side passage is set to be longer than the high-speed side passage to suit the low-speed operating range. The length of the high-speed side passage is set to suit the high-speed operation range, and the upstream opening end of the low-speed side passage is communicated with the low-speed side gathering chamber, and the upstream opening end of the high-speed side passage is connected to the high-speed side gathering room. The low-speed side passage and the high-speed side passage communicate with each other near the intake valve, and are branched to intake ports on the downstream side of the intake from this communication portion, and the high-speed side passage is connected to the low speed side passage of the engine. An intake system for a multi-intake valve engine, characterized by being provided with a throttle valve that closes during output operation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63291781A JPH01159416A (en) | 1988-11-18 | 1988-11-18 | Intake device for multiple inlet valve type engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63291781A JPH01159416A (en) | 1988-11-18 | 1988-11-18 | Intake device for multiple inlet valve type engine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55187716A Division JPS57110765A (en) | 1980-12-27 | 1980-12-27 | Intake unit for multiple intake valve type engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01159416A JPH01159416A (en) | 1989-06-22 |
JPH0478815B2 true JPH0478815B2 (en) | 1992-12-14 |
Family
ID=17773342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63291781A Granted JPH01159416A (en) | 1988-11-18 | 1988-11-18 | Intake device for multiple inlet valve type engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01159416A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5484128A (en) * | 1977-12-19 | 1979-07-04 | Nissan Motor Co Ltd | Internal combustion engine with two intake passages |
-
1988
- 1988-11-18 JP JP63291781A patent/JPH01159416A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5484128A (en) * | 1977-12-19 | 1979-07-04 | Nissan Motor Co Ltd | Internal combustion engine with two intake passages |
Also Published As
Publication number | Publication date |
---|---|
JPH01159416A (en) | 1989-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0262688B2 (en) | ||
JPS6060007B2 (en) | Intake system for counterflow multi-cylinder internal combustion engine | |
JPH02277919A (en) | Suction device of multi-cylinder engine | |
JPH0670371B2 (en) | Multi-cylinder engine intake system | |
JPS5934850B2 (en) | Intake system for multi-cylinder internal combustion engine | |
JPH0263092B2 (en) | ||
JPH0478815B2 (en) | ||
JP2639720B2 (en) | Intake control device for internal combustion engine | |
JPH10231729A (en) | Intake device for internal combustion engine | |
JPS614821A (en) | Intake device for internal-combustion engine | |
JPH0263089B2 (en) | ||
JP3209578B2 (en) | Engine intake system | |
JPH0247236Y2 (en) | ||
JPS64587B2 (en) | ||
JPH0574691B2 (en) | ||
JPS5851375Y2 (en) | Internal combustion engine intake system | |
JPH0612062B2 (en) | Intake system for multi-intake valve engine | |
JPS628627B2 (en) | ||
JPS5849385Y2 (en) | Intake system for multi-cylinder internal combustion engine | |
JPS63150418A (en) | Suction device of multiple cylinder internal combustion engine | |
JPS6139096Y2 (en) | ||
JPH04214923A (en) | Intake device for multiple cylinder engine | |
JPH01290907A (en) | Device for introducing blow-by gas of internal combustion engine | |
JPS597539Y2 (en) | Double intake internal combustion engine | |
JPH0513985Y2 (en) |